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Abstract

A honeypot is a closely monitored network decoy
serving several purposes: it can distract adversaries
from more valuable machines on a network, pro-
vide early warning about new attack and exploita-
tion trends, or allow in-depth examination of ad-
versaries during and after exploitation of a honey-
pot. Deploying a physical honeypot is often time in-
tensive and expensive as different operating systems
require specialized hardware and every honeypot re-
quires its own physical system. This paper presents
Honeyd, a framework for virtual honeypots that sim-
ulates virtual computer systems at the network level.
The simulated computer systems appear to run on
unallocated network addresses. To deceive network
fingerprinting tools, Honeyd simulates the network-
ing stack of different operating systems and can pro-
vide arbitrary routing topologies and services for an
arbitrary number of virtual systems. This paper dis-
cusses Honeyd’s design and shows how the Honeyd
framework helps in many areas of system security,
e.g. detecting and disabling worms, distracting ad-
versaries, or preventing the spread of spam email.

1 Introduction

Internet security is increasing in importance as
more and more business is conducted there. Yet,
despite decades of research and experience, we are
still unable to make secure computer systems or even
measure their security.

As a result, exploitation of newly discovered vul-
nerabilities often catches us by surprise. Exploit au-
tomation and massive global scanning for vulnerabil-
ities enable adversaries to compromise computer sys-
tems shortly after vulnerabilities become known [25].
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One way to get early warnings of new vulnerabil-
ities is to install and monitor computer systems on
a network that we expect to be broken into. Every
attempt to contact these systems via the network is
suspect. We call such a system a honeypot. If a hon-
eypot is compromised, we study the vulnerability
that was used to compromise it. A honeypot may
run any operating system and any number of ser-
vices. The configured services determine the vectors
an adversary may choose to compromise the system.

A physical honeypot is a real machine with its
own IP address. A virtual honeypot is a simulated
machine with modeled behaviors, one of which is the
ability to respond to network traffic. Multiple vir-
tual honeypots can be simulated on a single system.

Virtual honeypots are attractive because they re-
quirer fewer computer systems, which reduces main-
tenance costs. Using virtual honeypots, it is possible
to populate a network with hosts running numerous
operating systems. To convince adversaries that a
virtual honeypot is running a given operating sys-
tem, we need to simulate the TCP/IP stack of the
target operating system carefully, in order to deceive
TCP/IP stack fingerprinting tools like Xprobe [1] or
Nmap [9].

This paper describes the design and implemen-
tation of Honeyd, a framework for virtual honey-
pots that simulates computer systems at the network
level. Honeyd supports the IP protocol suites [26]
and responds to network requests for its virtual hon-
eypots according to the services that are configured
for each virtual honeypot. When sending a response
packet, Honeyd’s personality engine makes it match
the network behavior of the configured operating
system personality.

To simulate real networks, Honeyd creates virtual
networks that consist of arbitrary routing topologies
with configurable link characteristics such as latency
and packet loss. When networking mapping tools
like traceroute are used to probe the virtual network,
they discover only the topologies simulated by Hon-
eyd.



Our performance evaluation of Honeyd shows
that a 1.1 GHz Pentium III can support 30 MBit/s
aggregate bandwidth and that it can sustain over
two thousand TCP transactions per second. The
experimental evaluation of Honeyd verifies that fin-
gerprinting tools are deceived by the simulated sys-
tems and shows that our virtual network topologies
seem realistic to network mapping tools.

To demonstrate the power of the Honeyd frame-
work, we show how it can be used in many areas
of system security. For example, Honeyd can help
with detecting and disabling worms, distracting ad-
versaries, or preventing the spread of spam email.

The rest of this paper is organized as follows. Sec-
tion 2 presents background information on honey-
pots. In Section 3, we discuss the design and imple-
mentation of Honeyd. Section 4 presents an evalua-
tion of the Honeyd framework in which we analyze
the performance of Honeyd and verify that finger-
printing and network mapping tools are deceived to
report the specified system configurations. We de-
scribe how Honeyd can help to improve system se-
curity in Section 5 and present related work in Sec-
tion 6. We summarize and conclude in Section 7.

2 Honeypots

This section presents background information on
honeypots and our terminology. We provide moti-
vation for their use by comparing honeypots to net-
work intrusion detection systems (NIDS) [19]. The
amount of useful information provided by NIDS is
decreasing in the face of ever more sophisticated eva-
sion techniques [21, 28] and an increasing number of
protocols that employ encryption to protect network
traffic from eavesdroppers. NIDS also suffer from
high false positive rates that decrease their useful-
ness even further. Honeypots can help with some of
these problems.

A honeypot is a closely monitored computing re-
source that we intend to be probed, attacked, or
compromised. The value of a honeypot is deter-
mined by the information that we can obtain from it.
Monitoring the data that enters and leaves a honey-
pot lets us gather information that is not available
to NIDS. For example, we can log the key strokes
of an interactive session even if encryption is used
to protect the network traffic. To detect malicious
behavior, NIDS require signatures of known attacks
and often fail to detect compromises that were un-
known at the time it was deployed. On the other

hand, honeypots can detect vulnerabilities that are
not yet understood. For example, we can detect
compromise by observing network traffic leaving the
honeypot even if the means of the exploit has never
been seen before.

Because a honeypot has no production value, any
attempt to contact it is suspicious. Consequently,
forensic analysis of data collected from honeypots is
less likely to lead to false positives than data col-
lected by NIDS.

Honeypots can run any operating system and any
number of services. The configured services deter-
mine the vectors available to an adversary for com-
promising or probing the system. A high-interaction
honeypot simulates all aspects of an operating sys-
tem. A low-interaction honeypots simulates only
some parts, for example the network stack [24]. A
high-interaction honeypot can be compromised com-
pletely, allowing an adversary to gain full access to
the system and use it to launch further network at-
tacks. In contrast, low-interaction honeypots sim-
ulate only services that cannot be exploited to get
complete access to the honeypot. Low-interaction
honeypots are more limited, but they are useful to
gather information at a higher level, e.g., learn about
network probes or worm activity. They can also be
used to analyze spammers or for active countermea-
sures against worms; see Section 5.

We also differentiate between physical and virtual
honeypots. A physical honeypot is a real machine on
the network with its own IP address. A virtual hon-
eypot is simulated by another machine that responds
to network traffic sent to the virtual honeypot.

When gathering information about network at-
tacks or probes, the number of deployed honeypots
influences the amount and accuracy of the collected
data. A good example is measuring the activity
of HTTP based worms [23]. We can identify these
worms only after they complete a TCP handshake
and send their payload. However, most of their con-
nection requests will go unanswered because they
contact randomly chosen IP addresses. A honeypot
can capture the worm payload by configuring it to
function as a web server. The more honeypots we
deploy the more likely one of them is contacted by
a worm.

Physical honeypots are often high-interaction, so
allowing the system to be compromised completely,
they are expensive to install and maintain. For large
address spaces, it is impractical or impossible to de-
ploy a physical honeypot for each IP address. In
that case, we need to deploy virtual honeypots.



Figure 1: Honeyd receives traffic for its virtual honey-
pots via a router or Proxy ARP. For each honeypot,
Honeyd can simulate the network stack behavior of a
different operating system.

3 Design and Implementation

In this section, we present Honeyd, a lightweight
framework for creating virtual honeypots. The
framework allows us to instrument thousands of IP
addresses with virtual machines and corresponding
network services. We start by discussing our design
considerations, then describe Honeyd’s architecture
and implementation.

We limit adversaries to interacting with our hon-
eypots only at the network level. Instead of simulat-
ing every aspect of an operating system, we choose
to simulate only its network stack. The main draw-
back of this approach is that an adversary never
gains access to a complete system even if he compro-
mises a simulated service. On the other hand, we are
still able to capture connection and compromise at-
tempts. However, we can mitigate these drawbacks
by combining Honeyd with a virtual machine like
Vmware [27]. This is discussed in the related work
section. For that reason, Honeyd is a low-interaction
virtual honeypot that simulates TCP and UDP ser-
vices. It also understands and responds correctly to
ICMP messages.

Honeyd must be able to handle virtual honeypots
on multiple IP addresses simultaneously, in order to
populate the network with numerous virtual hon-
eypots simulating different operating systems and
services. To increase the realism of our simulation,
the framework must be able to simulate arbitrary
network topologies. To simulate address spaces that
are topologically dispersed and for load sharing, the
framework also needs to support network tunneling.

Figure 1 shows a conceptual overview of the
framework’s operation. A central machine intercepts
network traffic sent to the IP addresses of configured
honeypots and simulates their responses. Before we
describe Honeyd’s architecture, we explain how net-
work packets for virtual honeypots reach the Honeyd
host.

3.1 Receiving Network Data

Honeyd is designed to reply to network packets
whose destination IP address belongs to one of the
simulated honeypots. For Honeyd, to receive the
correct packets, the network needs to be configured
appropriately. There are several ways to do this,
e.g., we can create special routes for the virtual IP
addresses that point to the Honeyd host, or we can
use Proxy ARP [3], or we can use network tunnels.

Let A be the IP address of our router and B the
IP address of the Honeyd host. In the simplest case,
the IP addresses of virtual honeypots lie within our
local network. We denote them V1, . . . , Vn. When an
adversary sends a packet from the Internet to hon-
eypot Vi, router A receives and attempts to forward
the packet. The router queries its routing table to
find the forwarding address for Vi. There are three
possible outcomes: the router drops the packet be-
cause there is no route to Vi, router A forwards the
packet to another router, or Vi lies in local network
range of the router and thus is directly reachable by
A.

To direct traffic for Vi to B, we can use the fol-
lowing two methods. The easiest way is to configure
routing entries for Vi with 1 ≤ i ≤ n that point to B.
In that case, the router forwards packets for our vir-
tual honeypots directly to the Honeyd host. On the
other hand, if no special route has been configured,
the router ARPs to determine the MAC address of
the virtual honeypot. As there is no corresponding
physical machine, the ARP requests go unanswered
and the router drops the packet after a few retries.
We configure the Honeyd host to reply to ARP re-
quests for Vi with its own MAC addresses. This
is called Proxy ARP and allows the router to send
packets for Vi to B’s MAC address.

In more complex environments, it is possible to
tunnel network address space to a Honeyd host. We
use the generic routing encapsulation (GRE) [11, 12]
tunneling protocol described in detail in Section 3.4.



Figure 2: This diagram gives an overview of Honeyd’s
architecture. Incoming packets are dispatched to the
correct protocol handler. For TCP and UDP, the con-
figured services receive new data and send responses
if necessary. All outgoing packets are modified by the
personality engine to mimic the behavior of the config-
ured network stack. The routing component is optional
and used only when Honeyd simulates network topolo-
gies.

3.2 Architecture

Honeyd’s architecture consists of several compo-
nents: a configuration database, a central packet dis-
patcher, protocol handlers, a personality engine, and
an optional routing component; see Figure 2.

Incoming packets are processed by the central
packet dispatcher. It first checks the length of an
IP packet and verifies the packet’s checksum. The
framework is aware of the three major Internet pro-
tocols: ICMP, TCP and UDP. Packets for other pro-
tocols are logged and silently discarded.

Before it can process a packet, the dispatcher
must query the configuration database to find a hon-
eypot configuration that corresponds to the destina-
tion IP address. If no specific configuration exists, a
default template is used. Given a configuration, the
packet and corresponding configuration is handed to
the protocol specific handler.

The ICMP protocol handler supports most ICMP
requests. By default, all honeypot configurations re-
spond to echo requests and process destination un-
reachable messages. The handling of other requests
depends on the configured personalities as described
in Section 3.3.

For TCP and UDP, the framework can establish

connections to arbitrary services. Services are ex-
ternal applications that receive data on stdin and
send their output to stdout. The behavior of a ser-
vice depends entirely on the external application.
When a connection request is received, the frame-
work checks if the packet is part of an established
connection. In that case, any new data is sent to
the already started service application. If the packet
contains a connection request, a new process is cre-
ated to run the appropriate service. Instead of cre-
ating a new process for each connection, the frame-
work supports subsystems and internal services. A
subsystem is an application that runs in the name
space of the virtual honeypot. The subsystem spe-
cific application is started when the corresponding
virtual honeypot is instantiated. A subsystem can
bind to ports, accept connections, and initiate net-
work traffic. While a subsystem runs as an external
process, an internal service is a Python script that
executes within Honeyd. Internal services require
even less resources than subsystems but can only
accept connections and not initiate them.

Honeyd contains a simplified TCP state machine.
The three-way handshake for connection establish-
ment and connection teardown via FIN or RST are
fully supported, but receiver and congestion window
management is not fully implemented.

UDP datagrams are passed directly to the appli-
cation. When the framework receives a UDP packet
for a closed port, it sends an ICMP port unreach-
able message unless this is forbidden by the config-
ured personality. In sending ICMP port unreach-
able messages, the framework allows network map-
ping tools like traceroute to discover the simulated
network topology.

In addition to establishing a connection to a lo-
cal service, the framework also supports redirection
of connections. The redirection may be static or it
can depend on the connection quadruple (source ad-
dress, source port, destination address and destina-
tion port). Redirection lets us forward a connection
request for a service on a virtual honeypot to a ser-
vice running on a real server. For example, we can
redirect DNS requests to a proper name server. Or
we can reflect connections back to an adversary, e.g.
just for fun we might redirect an SSH connection
back to the originating host and cause the adver-
sary to attack her own SSH server. Evil laugh.

Before a packet is sent to the network, it is pro-
cessed by the personality engine. The personality
engine adjusts the packet’s content so that it appears
to originate from the network stack of the configured



Fingerprint IRIX 6.5.15m on SGI O2

TSeq(Class=TD%gcd=<104%SI=<1AE%IPID=I%TS=2HZ)

T1(DF=N%W=EF2A%ACK=S++%Flags=AS%Ops=MNWNNTNNM)

T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)

T3(Resp=Y%DF=N%W=EF2A%ACK=O%Flags=A%Ops=NNT)

T4(DF=N%W=0%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

T6(DF=N%W=0%ACK=O%Flags=R%Ops=)

T7(DF=N%W=0%ACK=S%Flags=AR%Ops=)

PU(Resp=N)

Figure 3: An example of an Nmap fingerprint that spec-
ifies the network stack behavior of a system running
IRIX.

operating system.

3.3 Personality Engine

Adversaries commonly run fingerprinting tools
like Xprobe [1] or Nmap [9] to gather information
about a target system. It is important that honey-
pots do not stand out when fingerprinted. To make
them appear real to a probe, Honeyd simulates the
network stack behavior of a given operating system.
We call this the personality of a virtual honeypot.
Different personalities can be assigned to different
virtual honeypots. The personality engine makes a
honeypot’s network stack behave as specified by the
personality by introducing changes into the protocol
headers of every outgoing packet so that they match
the characteristics of the configured operating sys-
tem.

The framework uses Nmap’s fingerprint database
as its reference for a personality’s TCP and UCP
behavior; Xprobe’s fingerprint database is used as
reference for a personality’s ICMP behavior.

Next, we explain how we use the information pro-
vided by Nmap’s fingerprints to change the charac-
teristics of a honeypot’s network stack.

Each Nmap fingerprint has a format similar to
the example shown in Figure 3. We use the string
after the Fingerprint token as the personality name.
The lines after the name describe the results for nine
different tests that Nmap performs to determine the
operating system of a remote host. The first test
is the most comprehensive. It determines how the
network stack of the remote operating system cre-
ates the initial sequence number (ISN) for TCP SYN
segments. Nmap indicates the difficulty of predict-
ing ISNs in the Class field. Predictable ISNs post a
security problem because they allow an adversary to

Figure 4: The diagram shows the structure of the TCP
header. Honeyd changes options and other parameters
to match the behavior of network stacks.

spoof connections [2]. The gcd and SI field provide
more detailed information about the ISN distribu-
tion. The first test also determines how IP identifi-
cation numbers and TCP timestamps are generated.

The next seven tests determine the stack’s behav-
ior for packets that arrive on open and closed TCP
ports. The last test analyzes the ICMP response
packet to a closed UDP port.

The framework keeps state for each honeypot.
The state includes information about ISN genera-
tion, the boot time of the honeypot and the current
IP packet identification number. Keeping state is
necessary so that we can generate subsequent ISNs
that follow the distribution specified by the finger-
print.

Nmap’s fingerprinting is mostly concerned with
an operating system’s TCP implementation. TCP
is a stateful, connection-oriented protocol that pro-
vides error recovery and congestion control [20].
TCP also supports additional options, not all of
which implemented by all systems. The size of the
advertised receiver windows varies between imple-
mentations and is used by Nmap as part of the fin-
gerprint.

When the framework sends a packet for a newly
established TCP connection, it uses the Nmap fin-
gerprint to see the initial window size. After a con-
nection has been established, the framework adjusts
the window size according to the amount of buffered
data.

If TCP options present in the fingerprint have
been negotiated during connection establishment,



Figure 5: The diagram shows the structure of an ICMP
port unreachable message. Honeyd introduces errors
into the quoted IP header to match the behavior of
network stacks.

then Honeyd inserts them into the response packet.
The framework uses the fingerprint to determine the
frequency with which TCP timestamps are updated.
For most operating systems, the update frequency is
2 Hz.

Generating the correct distribution of initial se-
quence numbers is tricky. Nmap obtains six ISN
samples and analyzes their consecutive differences.
Nmap recognizes several ISN generation types: con-
stant differences, differences that are multiples of a
constant, completely random differences, time de-
pendent and random increments. To differentiate
between the latter two cases, Nmap calculates the
greatest common divisor (gcd) and standard devia-
tion for the collected differences.

The framework keeps track of the last ISN that
was generated by each honeypot and its generation
time. For new TCP connection requests, Honeyd
uses a formula that approximates the distribution
described by the fingerprint’s gcd and standard de-
viation. In this way, the generated ISNs match the
generation class that Nmap expects for the particu-
lar operating system.

For the IP header, Honeyd adjusts the generation
of the identification number. It can either be zero,
increment by one, or random.

For ICMP packets, the personality engine uses
the PU test entry to determine how the quoted
IP header should be modified using the associated
Xprobe fingerprint for further information. Some
operating systems modify the incoming packet by
changing fields from network to host order and as
a result quote the IP and UDP header incorrectly.
Honeyd introduces these errors if necessary. Figure 5
shows an example for an ICMP destination unreach-
able message. The framework also supports the gen-
eration of other ICMP messages, not described here
due to space considerations.

3.4 Routing Topology

Honeyd simulates arbitrary virtual routing
topologies to deceive adversaries and network map-
ping tools. This goal is different from NS-based sim-
ulators [8] which try to faithfully reproduce network
behavior in order to understand it. We simulate
just enough to deceive adversaries. When simulat-
ing routing topologies, it is not possible to employ
Proxy ARP to direct the packets to the Honeyd host.
Instead, we need to configure routers to delegate net-
work address space to our host.

Normally, the virtual routing topology is a tree
rooted where packets enter the virtual routing topol-
ogy. Each interior node of the tree represents a
router and each edge a link that contains latency
and packet loss characteristics. Terminal nodes of
the tree correspond to networks. The framework
supports multiple entry points that can exit in par-
allel. An entry router is chosen by the network space
for which it is responsible.

To simulate an asymmetric network topology, we
consult the routing tables when a packet enters the
framework and again when it leaves the framework;
see Figure 2. In this case, the network topology
resembles a directed acyclic graph1.

When the framework receives a packet, it finds
the correct entry routing tree and traverses it, start-
ing at the root until it finds a node that contains the
destination IP address of the packet. Packet loss and
latency of all edges on the path are accumulated to
determine if the packet is dropped and how long its
delivery should be delayed.

The framework also decrements the time to live
(TTL) field of the packet for each traversed router. If
the TTL reaches zero, the framework sends an ICMP
time exceeded message with the source IP address of
the router that causes the TTL to reach zero.

For network simulations, it is possible to inte-
grate real systems into the virtual routing topology.
When the framework receives a packet for a real sys-
tem, it traverses the topology until it finds a virtual
router that is directly responsible for the network
space that the real machine belongs to. The frame-
work sends an ARP request if necessary to discover
the hardware address of the system, then encapsu-
lates the packet in an Ethernet frame. Similarly,
the framework responds with ARP replies from the
corresponding virtual router when the real system
sends ARP requests.

1Although it is possible to configure routing loops, this is
normally undesirable and should be avoided.



route entry 10.0.0.1

route 10.0.0.1 link 10.0.0.0/24

route 10.0.0.1 add net 10.1.0.0/16 10.1.0.1 latency 55ms loss 0.1

route 10.0.0.1 add net 10.2.0.0/16 10.2.0.1 latency 20ms loss 0.1

route 10.1.0.1 link 10.1.0.0/24

route 10.2.0.1 link 10.2.0.0/24

create routerone

set routerone personality "Cisco 7206 running IOS 11.1(24)"

set routerone default tcp action reset

add routerone tcp port 23 "scripts/router-telnet.pl"

create netbsd

set netbsd personality "NetBSD 1.5.2 running on a Commodore Amiga (68040 processor)"

set netbsd default tcp action reset

add netbsd tcp port 22 proxy $ipsrc:22

add netbsd tcp port 80 "scripts/web.sh"

bind 10.0.0.1 routerone

bind 10.1.0.2 netbsd

bind 10.1.0.3 to fxp0

Figure 6: An example configuration for Honeyd. The configuration language is a context-free grammar. This
example creates a virtual routing topology and defines two templates: a router that can be accessed via telnet
and a host that is running a web server. A real system is integrated into the virtual routing topology at IP address
10.1.0.3.

We can split the routing topology using GRE
to tunnel networks. This allows us to load bal-
ance across several Honeyd installations by delegat-
ing parts of the address space to different Honeyd
hosts. Using GRE tunnels, it is also possible to
delegate networks that belong to separate parts of
the address space to a single Honeyd host. For the
reverse route, an outgoing tunnel is selected based
both on the source and the destination IP address.
An example of such a configuration is described in
Section 5.

3.5 Configuration

A virtual honeypot is configured with a template,
a reference for a completely configured computer sys-
tem. New templates are created with the create com-
mand.

The set and add commands change the configu-
ration of a template. The set command assigns a
personality from the Nmap fingerprint file to a tem-
plate. The personality determines the behavior of
the network stack, as discussed in Section 3.3. The
set command also defines the default behavior for
the supported network protocols. The default be-
havior is one of the following values: block, reset,
or open. Block means that all packets for the speci-
fied protocol are dropped by default. Reset indicates
that all ports are closed by default. Open means

that they are all open by default. The latter set-
tings make a difference only for UDP and TCP.

We specify the services that are remotely accessi-
ble with the add command. In addition to the tem-
plate name, we need to specify the protocol, port
and the command to execute for each service. In-
stead of specifying a service, Honeyd also recognizes
the keyword proxy that allows us to forward network
connections to a different host. The framework ex-
pands the following four variables for both the ser-
vice and the proxy statement: $ipsrc, $ipdst, $sport,
and $dport. Variable expansion allows a service to
adapt its behavior depending on the particular net-
work connection it is handling. It is also possible
to redirect network probes back to the host that is
doing the probing.

The bind command assigns a template to an IP
address. If no template is assigned to an IP address,
we use the default template. Figure 6 shows an ex-
ample configuration that specifies a routing topology
and two templates. The router template mimics the
network stack of a Cisco 7206 router and is accessible
only via telnet. The web server template runs two
services: a simple web server and a forwarder for
SSH connections. In this case, the forwarder redi-
rects SSH connections back to the connection initia-
tor. A real machine is integrated into the virtual
routing topology at IP address 10.1.0.3.



$ traceroute -n 10.3.0.10

traceroute to 10.3.0.10 (10.3.0.10), 64 hops max

1 10.0.0.1 0.456 ms 0.193 ms 0.93 ms

2 10.2.0.1 46.799 ms 45.541 ms 51.401 ms

3 10.3.0.1 68.293 ms 69.848 ms 69.878 ms

4 10.3.0.10 79.876 ms 79.798 ms 79.926 ms

Figure 7: Using traceroute, we measure a routing path
in the virtual routing topology. The measured latencies
match the configured ones.

3.6 Logging

The Honeyd framework supports several ways of
logging network activity. It can create connection
logs that report attempted and completed connec-
tions for all protocols. More usefully, information
can be gathered from the services themselves. Ser-
vice applications can report data to be logged to
Honeyd via stderr. The framework uses syslog to
store the information on the system. In most situ-
ations, we expect that Honeyd runs in conjunction
with a NIDS.

4 Evaluation

This section presents an evaluation of Honeyd’s
ability to create virtual network topologies and to
mimic different network stacks as well as its perfor-
mance.

4.1 Fingerprinting

We start Honeyd with a configuration similar to
the one shown in Figure 6 and use traceroute to find
the routing path to a virtual host. We notice that
the measured latency is double the latency that we
configured. This is correct because packets have to
traverse each link twice.

Running Nmap 3.00 against IP addresses
10.0.0.1 and 10.1.0.2 results in the correct iden-
tification of the configured personalities. Nmap re-
ports that 10.0.0.1 seems to be a Cisco router and
that 10.1.0.2 seems to run NetBSD. Xprobe iden-
tifies 10.0.0.1 as Cisco router and lists a number
of possible operating systems, including NetBSD, for
10.1.0.2.

To fully test if the framework deceives Nmap, we
set up a B-class network populated with virtual hon-
eypots for every fingerprint in Nmap’s fingerprint
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Figure 8: The graphs shows the aggregate bandwidth
supported by Honeyd for different packet sizes and dif-
ferent destination IP addresses.

file. After removing duplicates, we found 600 dis-
tinct fingerprints. The honeypots were configured so
that all but one port was closed; the open port ran
a web server. We then launched Nmap 3.00 against
all configured IP addresses and checked which oper-
ating systems Nmap identified. For 555 fingerprints,
Nmap uniquely identified the operating system sim-
ulated by Honeyd. For 37 fingerprints, Nmap pre-
sented a list of possible choices that included the
simulated personality. Nmap failed to identify the
correct operating system for only eight fingerprints.
This might be a problem of Honeyd, or it could be
due to a badly formed fingerprint database. For ex-
ample, the fingerprint for a SMC Wireless Broad-
band Router is almost identical to the fingerprint for
a Linksys Wireless Broadband Router. When eval-
uating fingerprints, Nmap always prefers the latter
over the former.

Currently available fingerprinting tools are usu-
ally stateless because they neither open TCP con-
nections nor explore the behavior of the TCP state
machine for states other than LISTEN or CLOSE.
There are several areas like congestion control and
fast recovery that are likely to be different between
operating systems and are not checked by finger-
printing tools. An adversary who measures the dif-
ferences in TCP behavior for different states across
operating system would notice that they do not dif-
fer in Honeyd and thus be able to detect virtual hon-
eypots.

Another method to detect virtual honeypots is
to analyze their performance in relation to other
hosts. Sending network traffic to one virtual hon-
eypot might affect the performance of other virtual
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Figure 9: The graph shows the per-packet process-
ing time depending on the number of virtual honey-
pots. For one thousand randomly chosen destination
addresses, the processing time is about 0.022 ms per
packet. For 250,000 destination addresses, it increases
to about 0.032 ms.

honeypots but would not affect the performance of
a real host. In the following section, we present a
performance analysis of Honeyd.

4.2 Performance

We analyze Honeyd’s performance on a 1.1 GHz
Pentium III over an idle 100 MBit/s network. To de-
termine the aggregate bandwidth supported by Hon-
eyd, we configure it to route the 10/8 network and
measure its response rate to ICMP echo requests
sent to IP addresses at different depths within a vir-
tual routing topology. To get a base of comparison,
we first send ICMP echo requests to the IP address
of the Honeyd host because the operating system
responds to these requests directly. We then send
ICMP echo requests to virtual IP addresses at dif-
ferent depths of the virtual routing topology.

Figure 8 shows the fraction of returned ICMP
echo replies for different request rates. The upper
graph shows the results for sending 400 byte ICMP
echo request packets. We see that Honeyd starts
dropping reply packets at a bandwidth of 30 MBit/s.
For packets sent to Honeyd’s entry router, we mea-
sure a 10% reply packet loss. For packets sent to
IP addresses deeper in the routing topology, the loss
of reply packets increases to up to 30%. The lower
graph shows the results for sending 800 byte ICMP
echo request packets. Due to the larger packet size,
the rate of packets is reduced by half and we see
that for any destination IP address, the packet loss
is only up to 10%.

To understand how Honeyd’s performance de-
pends on the number of configured honeypots, we
use a micro-benchmark that measures how the pro-
cessing time per packet changes with an increasing

number of configured templates. The benchmark
chooses a random destination address from the con-
figured templates and sends a TCP SYN segment
to a closed port. We measure how long it takes
for Honeyd to process the packet and generate a
TCP RST segment. The measurement is repeated
80,000 times. Figure 9 shows that for one thousand
templates the processing time is about 0.022 ms per
packet which is equivalent to about 45,000 packets
per second. For 250,000 templates, the processing
time increases to 0.032 ms or about 31,000 packets
per second.

To evaluate Honeyd’s TCP end-to-end perfor-
mance, we create a simple internal echo service.
When a TCP connection has been established, the
service outputs a single line of status information
and then echos all the input it receives. We mea-
sure how many TCP requests Honeyd can support
per second by creating TCP connections from 65536
random source IP addresses in 10.1/16 to 65536
random destination addresses in 10.1/16. To de-
crease the client load, we developed a tool that cre-
ates TCP connections without requiring state on the
client. A request is successful when the client sees its
own data packet echoed by the echo service running
under Honeyd. A successful transaction between a
random client address Cr and a random virtual hon-
eypot Hr requires the following exchange:

1. Cr → Hr: TCP SYN segment

2. Hr → Cr: TCP SYN|ACK segment

3. Cr → Hr: TCP ACK segment

4. Hr → Cr: banner payload

5. Cr → Hr: data payload

6. Cr → Hr: TCP ACK segment (banner)

7. Hr → Cr: TCP ACK segment (data)

8. Hr → Cr: echoed data payload

9. Cr → Hr: TCP RST segment

The client does not close the TCP connection via
a FIN segment as this would require state. Depend-
ing on the load of the Honeyd machine, it is possible
that the banner and echoed data payload may arrive
in the same segment.

Figure 10 shows the results from our TCP per-
formance measurement. We repeated our measure-
ments at least five times and show the average re-
sult including standard deviation. The upper graph
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Figure 10: The two graphs show the number of TCP
transactions per second that Honeyd can support for
different configurations. The upper graph shows the
performance when using the default template for all
honeypots and when using an individual template for
each honeypot. Performance decreases slightly when
each of the 65K honeypots is configured individually.
The lower graph shows the performance for contacting
honeypots at different levels of the routing topology.
Performance decreases for honeypots with higher la-
tency.

shows the performance when using the default tem-
plate for all honeypots compared to the performance
when using an individual template for each honey-
pot. Performance decreases slightly when each of
the 65K honeypots is configured individually. In
both cases, Honeyd is able to sustain over two thou-
sand TCP transactions per second. The lower graph
shows the performance for contacting honeypots at
different levels of the routing topology. The perfor-
mance decreases most noticeably for honeypots that
are three hops away from the sender. We do not
have a convincing explanation for the drop in per-
formance around six hundred requests per second.

Our measurements show that a 1.1 GHz Pen-
tium III can simulate thousands of virtual honey-
pots. However, the performance depends on the
complexity and number of simulated services avail-
able for each honeypot. The setup for studying
spammers described in Section 5.3 simulates two C-
class networks on a 666 MHz Pentium III.

5 Applications

In this section, we describe how the Honeyd
framework can be used in different areas of system

security.

5.1 Network Decoys

The traditional role of a honeypot is that of a
network decoy. Our framework can be used to in-
strument the unallocated addresses of a production
network with virtual honeypots. Adversaries that
scan the production network can potentially be con-
fused and deterred by the virtual honeypots. In con-
junction with a NIDS, the resulting network traffic
may help in getting early warning of attacks.

5.2 Detecting and Countering Worms

Honeypots are ideally suited to intercept traffic
from adversaries that randomly scan the network.
This is especially true for Internet worms that use
some form of random scanning for new targets [25],
e.g. Blaster [5], Code Red [15], Nimda [4], Slam-
mer [16], etc. In this section, we show how a vir-
tual honeypot deployment can be used to detect
new worms and how to launch active countermea-
sures against infected machines once a worm has
been identified.

To intercept probes from worms, we instrument
virtual honeypots on unallocated network addresses.
The probability of receiving a probe depends on the
number of infected machines i, the worm propaga-
tion chance and the number of deployed honeypots
h. The worm propagation chance depends on the
worm propagation algorithm, the number of vulner-
able hosts and the size of the address space. In gen-
eral, the larger our honeypot deployment the earlier
one of the honeypots receives a worm probe.

To detect new worms, we can use the Honeyd
framework in two different ways. We may deploy
a large number of virtual honeypots as gateways in
front of a smaller number of high-interaction hon-
eypots. Honeyd instruments the virtual honeypots.
It forwards only TCP connections that have been
established and only UDP packets that carry a pay-
load that fail to match a known fingerprint. In such
a setting, Honeyd shields the high-interaction hon-
eypots from uninteresting scanning or backscatter
activity. A high-interaction honeypot like ReVirt [7]
is used to detect compromises or unusual network
activity. Using the automated NIDS signature gen-
eration proposed by Kreibich et al. [14], we can then
block the detected worm or exploit at the network
border. The effectiveness of this approach has been
analyzed by Moore et al. [17]. To improve it, we can
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Figure 11: The graphs show the simulated worm propagation when immunizing infected hosts that connect to
a virtual honeypot. The left graph shows the propagation if the virtual honeypots are activated one hour after
the worm starts spreading. The right graph shows the propagation if the honeypots are activated after twenty
minutes. The first row in each graph shows the result when no honeypots have been deployed, the second row
shows the results for four thousand honeypots, the third for sixty five thousand honeypots and the fourth for
262,000 honeypots.

configure Honeyd to replay packets to several high-
interaction honeypots that run different operating
systems and software versions.

On the other hand, we can use Honeyd’s subsys-
tem support to expose regular UNIX applications
like OpenSSH to worms. This solution is limiting
as we are restricted to detecting worms only for the
operating system that is running the framework and
most worms target Microsoft Windows, not UNIX.

Moore et al. show that containing worms is not
practical on an Internet scale unless a large frac-
tion of the Internet cooperates in the containment
effort [17]. However, with the Honeyd framework, it
is possible to actively counter worm propagation by
immunizing infected hosts that contact our virtual
honeypots. Analogous to Moore et al. [17], we can
model the effect of immunization on worm propaga-
tion by using the classic SIR epidemic model [13].
The model states that the number of newly infected
hosts increases linearly with the product of infected
hosts, fraction of susceptible hosts and contact rate.
The immunization is represented by a decrease in
new infections that is linear in the number of in-
fected hosts:

ds

dt
= −β i(t)s(t)

di

dt
= β i(t)s(t)− γ i(t)

dr

dt
= γ i(t),

where at time t, i(t) is the fraction of infected hosts,
s(t) the fraction of susceptible hosts and r(t) the
fraction of immunized hosts. The propagation speed
of the worm is characterized by the contact rate β
and the immunization rate is represented by γ.

We simulate worm propagation based on the pa-
rameters for a Code-Red like worm [15, 17]. We
use 360,000 susceptible machines in a 232 address
space and set the initial worm seed to 150 infected
machines. Each worm launches 50 probes per sec-
ond and we assume that the immunization of an an
infected machine takes one second after it has con-
tacted a honeypot. The simulation measures the
effectiveness of using active immunization by vir-
tual honeypots. The honeypots start working after
a time delay. The time delay represents the time
that is required to detect the worm and install the
immunization code. We expect that immunization
code can be prepared before a vulnerability is ac-
tively exploited. Figure 11 shows the worm prop-
agation resulting from a varying number of instru-
mented honeypots. The graph on the left shows the
results if the honeypots are brought online an hour
after the worm started spreading. The graph on the
right shows the results if the honeypots can be ac-
tivated within twenty minutes. If we wait for an
hour, all vulnerable machines on the Internet will
be infected. Our chances are better if we start the
honeypots after twenty minutes. In that case, a de-
ployment of about 262,000 honeypots is capable of
stopping the worm from spreading to all susceptible



hosts. Ideally, we detect new worms automatically
and immunize infected machines when a new worm
has been detected.

Alternatively, it would be possible to scan the In-
ternet for vulnerable systems and remotely patch
them. For ethical reasons, this is probably unfea-
sible. However, if we can reliably detect an infected
machine with our virtual honeypot framework, then
active immunization might be an appropriate re-
sponse. For the Blaster worm, this idea has been
realized by Oudot et al. [18].

5.3 Spam Prevention

The Honeyd framework can be used to under-
stand how spammers operate and to automate the
identification of new spam which can then be sub-
mitted to collaborative spam filters.

In general, spammers abuse two Internet services:
proxy servers [10] and open mail relays. Open prox-
ies are often used to connect to other proxies or to
submit spam email to open mail relays. Spammers
can use open proxies to anonymize their identity to
prevent tracking the spam back to its origin. An
open mail relay accepts email from any sender ad-
dress to any recipient address. By sending spam
email to open mail relays, a spammer causes the
mail relay to deliver the spam in his stead.

To understand how spammers operate we use
the Honeyd framework to instrument networks with
open proxy servers and open mail relays. We make
use of Honeyd’s GRE tunneling capabilities and tun-
nel several C-class networks to a central Honeyd
host.

We populate our network space with randomly
chosen IP addresses and a random selection of ser-
vices. Some virtual hosts may run an open proxy
and others may just run an open mail relay or a
combination of both.

When a spammer attempts to send spam email
via an open proxy or an open mail relay, the email is
automatically redirected to a spam trap. The spam
trap then submits the collected spam to a collabo-
rative spam filter.

At this writing, Honeyd has received and pro-
cessed more than six million spam emails from over
1, 500 different IP addresses. A detailed evaluation
is the subject of future work.

Figure 12: Using the Honeyd framework, it is possible
to instrument networks to automatically capture spam
and submit it to collaborative filtering systems.

6 Related Work

Cohen’s Deception Toolkit provides a framework
to write services that seem to contain remotely ex-
ploitable vulnerabilities [6]. Honeyd operates one
level above that by providing a framework to create
virtual honeypots that can run any number of ser-
vices. The Deception Toolkit could be one of the
services running on a virtual honeypot.

There are several areas of research in TCP/IP
stack fingerprinting, among them: effective methods
to classify the remote operating system either by ac-
tive probing or by passive analysis of network traffic,
and defeating TCP/IP stack fingerprinting by nor-
malizing network traffic.

Fyodor’s Nmap uses TCP and UDP probes to
determine the operating system of a host [9]. Nmap
collects the responses of a network stack to different
queries and matches them to a signature database to
determine the operating systems of the queried host.
Nmap’s fingerprint database is extensive and we use
it as the reference for operating system personalities
in Honeyd.

Instead of actively probing a remote host to deter-
mine its operating systems, it is possible to identify
the remote operating system by passively analyzing
its network packets. P0f [29] is one such tool. The
TCP/IP flags inspected by P0f are similar to the
data collected in Nmap’s fingerprint database.

On the other hand, Smart et al. show how to de-
feat fingerprinting tools by scrubbing network pack-
ets so that artifacts identifying the remote operat-
ing system are removed [22]. This approach is sim-
ilar to Honeyd’s personality engine as both systems



change network packets to influence fingerprinting
tools. In contrast to the fingerprint scrubber that re-
moves identifiable information, Honeyd changes net-
work packets to contain artifacts of the configured
operating system.

High-interaction virtual honeypots can be con-
structed using User Mode Linux (UML) or
Vmware [27]. One example is ReVirt which can re-
construct the state of the virtual machine for any
point in time [7]. This is helpful for forensic analy-
sis after the virtual machine has been compromised.
Although high-interaction virtual honeypots can be
fully compromised, it is not easy to instrument thou-
sands of high-interaction virtual machines due to
their overhead. However, the Honeyd framework
allows us to instrument unallocated network space
with thousands of virtual honeypots. Furthermore,
we may use a combination of Honeyd and virtual
machines to get the benefit of both approaches. In
this case, Honeyd provides network facades and se-
lectively proxies connections to services to backends
provided by high-interaction virtual machines.

7 Conclusion

Honeyd is a framework for creating virtual hon-
eypots. Honeyd mimics the network stack behavior
of operating systems to deceive fingerprinting tools
like Nmap and Xprobe.

We gave an overview of Honeyd’s design and ar-
chitecture and showed how Honeyd’s personality en-
gine can modify packets to match the fingerprints of
other operating systems and how it is possible to
create arbitrary virtual routing topologies.

Our performance measurements showed that a
single 1.1 GHz Pentium III can simulate thousands
of virtual honeypots with an aggregate bandwidths
of over 30 MBit/s and that it can sustain over two
thousand TCP transactions per second. Our experi-
mental evaluation showed that Honeyd is effective in
creating virtual routing topologies and successfully
fools fingerprinting tools.

We showed how the Honeyd framework can be
deployed to help in different areas of system secu-
rity, e.g., worm detection, worm countermeasures,
or spam prevention.

Honeyd is freely available as source code and can
be downloaded from http://www.citi.umich.edu/
u/provos/honeyd/.
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