Kerberized Credential Translation:
A Solution to Web Access Control

Olga Kornievskaia
Peter Honeyman

Bill Doster
Kevin Coffman

Center for Information Technology Integration
Unwversity of Michigan
Ann Arbor

{aglo,honey,billdo,kwc}@citi.umich.edu

Abstract

Kerberos, a widely used network authentication mecha-
nism, 1s integrated into numerous applications: UNIX
and Windows 2000 login, AFS, Telnet, and SSH to name
a few. Yet, Web applications rely on SSL to establish au-
thenticated and secure connections. SSL provides strong
authentication by using certificates and public key chal-
lenge response authentication. The expansion of the In-
ternet requires each system to leverage the strength of the
other, which suggests the importance of interoperability
between them.

This paper describes the design, implementation, and
performance of a system that provides controlled access
to Kerberized services through a browser. This system
provides a single sign-on that produces both Kerberos and
public key credentials. The Web server uses a plugin that
translates public key credentials to Kerberos credentials.
The Web server’s subsequent authenticated actions taken
on a user’s behalf are limited in time and scope. Perfor-
mance measurements show how the overhead introduced
by credential translation is amortized over the login ses-
sion.

1 Introduction

Access control for Web space is often viewed in terms
of gating access to Web pages where the job of the
Web server is limited to simple file reads. The func-
tionality provided by Web servers has grown consid-

erably making it the most popular technology on the
Internet. With the expansion of the Internet, many
new kinds of services are accessible from the Web,
increasing Web servers’ importance and scope. For
example, a Web server may serve information stored
in backend databases. A Web interface to backend
services is considered to be more user-friendly and
accessible compared to predominant text-based in-
terfaces.

The possibilities opened by the use of a Web server
to access a variety of backend services pose chal-
lenging questions on how to retain access control of
backend services. A Web server could potentially be-
come another access control decision point, increas-
ing the burden on the server and its administrators.
It would have to comply with the same security re-
quirements as all of the backend services it fronts,
increasing its potential as a place for system com-
promise.

A solution that provides end-to-end authorization
would allow the end service to retain control over the
authorization decisions. Furthermore, it would obvi-
ate constructing and maintaining consistent replicas
of authorization policies.

In practice, authorization mechanisms are tied to au-
thentication mechanism: end-to-end authorization
requires end-to-end authentication. A mismatch in
authentication mechanisms prevents a Web server
from using authorization mechanisms provided by
backend servers. While Web servers support SSL au-
thentication with certificates, this does not provide

credentials for access to AFS file servers, LDAP direc-
tory servers, and KPOP/IMAP mail servers, which
use Kerberos for client authentication. To provide
end-to-end authorization, we address the problem of
end-to-end authentication.

We motivate the end-to-end authentication problem
by considering the following scenario:

Alice attends the University of Michigan, where she en-
joys access to a variety of computing services. One of the
most commonly used services is AFS file service, which is
protected by Kerberos. Alice, being a very private person,
doesn’t want others to have access to her files. Through
the access control mechanisms provided by AFS, she lim-
its access to specific users. But if these users prefer to
access Alice’s files through the Web, then the flexibility
of AFS access controls disappear.

Web presence for other Kerberized services also suffers.
For example, Alice would like to manage her umich.edu
X.500 directory entry from a browser. The directory is
stored in an LDAP directory that uses Kerberos authenti-
cation to control read and write access. Alice would also
like to read mail from a browser; this too requires that
the Web server authenticates as Alice to the Kerberized
mail server.

If an AFS client is running on Alice’s workstation,
a simple solution presents itself. Instead of making
an HTTP request, a user can access AFS file space
directly with file://localhost/afs/- --. But it is fair
to say that most machines do not run AFS. Also,
the solution fails to provide a general mechanism for
accessing services from the Web; browsers can not
anticipate all possible service access types.

In this scenario, end-to-end authentication presents
the question of how to convey Kerberos credentials
to the Web server. One solution is for the client
to acquire the needed credentials and delegate them
to the Web server. A frequently used solution is to
send a Kerberos identity and password through SSL,
but this gives unlimited power to the Web server
to impersonate users, a significant risk. It is also
hazardous to expect a user to know when it is safe
to give her password to a Web server.

Kerberos supports a mechanism for delegation of
rights. However, browsers do not support any form
of delegation. A practical solution is needed that
works with existing software and is easy to deploy,
administer, and maintain. The process should de-
mand minimal interaction with a user, providing
transparent access to resources. To limit misuse

of user’s credentials, the Web server must be con-
strained in its actions. Furthermore, a central, easily
administered location for enforcing security policies
controlling the Web server’s actions is required.

This paper describes the design, implementation and
performance of a system that provides controlled
access to Kerberized services through conventional
browsers. The system provides a single sign-on
through Kerberos authentication: users authenti-
cate once and are given Kerberos and PK creden-
tials. The latter are used for Web authentication.
Our system includes a Web server plugin that trans-
lates users’ PK credentials to Kerberos credentials.
Our design assures that Web server actions taken on
a user’s behalf are limited in time and scope.

The remainder of this paper is organized as fol-
lows. Section 2 provides background material and
discusses related work. Section 3 presents an ar-
chitecture for access to Kerberized services through
a browser. Section 4 gives implementation details.
Section 5 describes performance. Section 6 summa-
rizes and presents directions for future work.

2 Background

First, we review Kerberos, a popular network au-
thentication system based on symmetric key cryp-
tography. Its success stories come from environ-
ments with well defined administrative boundaries.
We then provide an overview of SSL, a security pro-
tocol based on public key cryptography that is uni-
versally supported on the Web. The Internet spans
many Kerberos realms and requires security solu-
tions that do not have centralized management. SSL
provides authenticated and secure connections be-
tween any two nodes in the Internet.

We conclude the section with an overview of related
work.

2.1 Overview of Kerberos

Kerberos [19] is a network authentication system
based on the Needham-Schroeder protocol [17]. Ker-
beros authentication is illustrated in Figure 1. Au-
thentication is achieved when one party proves
knowledge of a shared secret to another. To avoid

LOGIN PHASE:

1. Alice - KDC:

2. KDC — Alice:

A CCESSING SERVICES:
3. Alice —» TGS:

4. TGS — Alice:

5. Alice — Bob:

ONCE PER SESSION

“Hi, I'm Alice”

TGT = {Alice, TGS, KA,TGS}KTGS: {KA,TG'S, T}KA
EVERY TIME BEFORE TALKING TO A SERVICE

Alice, Bob, TGT, {T}k, rcs

TKT = {Alice, BOb, KA,B}KB; {KA,B; T}KA,TGS
“Hi, P'm Alice”, TKT, {T} ., ,

Figure 1: Kerberos authentication. Two phases are shown: initial authentication and service ticket acquisition.
KDC is the Kerberos Key Distribution Center. TGS is the Ticket Granting Service. Most implementations combine
these services. Krgs is a key shared between the TGS and KDC. K4 is a key shared between Alice and the KDC,
derived from Alice’s password. Ka,ras is a session key for Alice and TGS. K4, is a session key for Alice and Bob.

T is a timestamp used to prevent replay attacks.

quadratic explosion of key agreement requirements,
Kerberos relies on a trusted third party, referred to
as a Key Distribution Center (KDC). Alice, a Ker-
beros principal, and Bob, a Kerberized service, each
establish a shared secret with the KDC.

At login, Alice receives a ticket granting ticket, TGT,
from the KDC. She uses her password to retrieve a
session key encrypted in the reply. The TGT al-
lows Alice to obtain tickets from a Ticket Granting
Service for other Kerberized services. To access a
Kerberized service, Alice presents her TGT and re-
ceives a service ticket, {Alice, Bob, K4 g}k, To
authenticate to Bob, Alice constructs a timestamp
based authenticator, {T}xk, 5, proving to Bob that
she knows the session key inside of the service ticket.

2.2 Overview of SSL/TLS

Secure Socket Layer ! [12, 13] is a protocol that
provides secure connections, addressing the need for
entity authentication, confidentiality, and integrity
of messages on the Internet. SSL uses public key
cryptography, in particular certificates, to accom-
plish authentication and secret key cryptography to
provide confidentiality and integrity of the communi-
cation channel. Support for SSL is universal among

1SSL is renamed by IETF as Transport Layer Security,
TLS [6]

Web browsers and servers.

SSL consists of two sub-protocols: the SSL record
protocol and the SSL handshake protocol. The SSL
record protocol defines the format used to transmit
data. The SSL handshake protocol uses the record
protocol to negotiate a security context for a ses-
sion. SSL supports numerous encryption and digest
mechanisms that the client and the server negotiate
during the SSL handshake.

Figure 2 shows the exchange of messages in the
handshake, details of which are discussed in Sec-
tion 3.2. Authentication is based on a public key
challenge-response protocol [7, 22] and X.509 [11]
identity certificates.

SSL supports mutual authentication. First, a user
authenticates the server. The user has the respon-
sibility to assure that it can trust the certificate re-
ceived in the CERTIFICATE message from the server.
That responsibility includes verifying the certificate
signatures, validity times, and revocation status.
The user then sends her public key certificate. The
user must also prove that she possesses the private
key corresponding to the certificate’s public key. For
the proof, the user creates a message that contains
a digitally signed cryptographic hash of information
available to both the user and the server. The server
then verifies the signature to be sure that the user
possesses the appropriate private key.

\J

ClientHello

ServerHello
Certificate

A

Certificate
ClientkKeyExchange

CertificateRequest
ServerHelloDone

\j

CertificateVerify
Finished

A

Application Data

Finished

Application Data

Figure 2: SSL handshake protocol. CLIENTHELLO carries a version, random value (part of which is a timestamp),
and session id (which allows a user to resume a previous session). A timestamp is used to guarantee the uniqueness
of the random value. SERVERHELLO confirms the version and session id. Server sends its CERTIFICATE and requests
the user’s in CERTIFICATEREQUEST. SERVERHELLODONE specifies the end of a negotiation phase. Client sends her
public key certificate in CERTIFICATE. Client sends session information (encrypted with the server’s public key) in
CLIENTKEYEXCHANGE. Client sends CERTIFICATEVERIFY which contains a signed digest of messages exchanged
upto this pointed. The server uses the public key from the client’s certificate to verify the client’s identity. FINISHED
messages serve to end the negotiation process. Secured APPLICATION DATA messages follow. Optional SSL messages

are omitted.

To reduce the risk of key compromise, the SSL pro-
tocol supports renegotiation of the security context.
A client initiates a new handshake by sending a
CLIENTHELLO message. If the server wishes to ini-
tiate a handshake, it sends an empty SERVERHELLO
message to the client and the client responds with a
new CLIENTHELLO.

Establishing an SSL session requires sophisticated
cryptographic calculations and numerous protocol
messages. To minimize the overhead of these cal-
culations and messages, SSL provides a mechanism
by which two parties can reuse previously negotiated
SSL parameters. With this method, the parties do
not repeat the cryptographic operations, they sim-
ply resume an earlier session. The user proposes
to resume a previous session by including that ses-
sion’s SessionID value in CrLieENTHELLO. It is up to
the server to decide whether to allow the reuse of
the session. We call this a partial SSL handshake.

2.3 Related Work

This section describes related work on distributed
authorization and interoperability among authenti-
cation mechanisms. Many efforts have focused on
creating formal systems that allow reasoning about
delegated (restricted) rights and express (general)
authorization statements. Many researchers have

focused on creating powerful and expressive lan-
guages for making and verifying security assertions
efficiently. Among them are SPKI/SDSI [5, 10, 21],
PolicyMaker, and its successor KeyNote [2, 3, 4],
GAA API [23], Akenti [28], and Neuman’s proxied
authorization [18]. Applications that lack an autho-
rization mechanism of their own greatly benefit from
these mechanisms. However, our goal is to make use
of already existing authorization mechanisms at the
backend services.

There has been work on interoperability of Kerberos
and PKI. PKINIT [30] allows a user to use a digi-
tal certificate in the initial Kerberos authentication.
Public key distributed authentication (PKDA) [24]
goes a step further and proposes for Kerberized ser-
vices to support PK authentication mechanisms. For
both PKINIT and PKDA, it is assumed that the user
is in direct communication with the server without
an interposed Web server.

There is a simple alternative solution to enable the
Web server to act on a user’s behalf. A user can
send his password (securely, of course) to the Web
server. The solution has been implemented as an
Apache module [1, 27, 25]. In this case, the Web
server is given an unlimited power to impersonate
users, a significant security risk.

There are several projects that propose to use Ker-
beros for Web authentication without sending user

passwords. Minotaur [9] depends on a client side
plugin in to acquire a service ticket for a Web server.
However, it has been shown that, in its current de-
sign, Minotaur’s handling of HT'TP POST is insecure.
Another system, called SideCar [20], achieves Ker-
beros authentication by talking to a dedicated pro-
cess on a client’s machine. Failure to start the dae-
mon process prevents the client from being able to do
Web authentication. Yet another solution makes use
of the extension to TLS cipher suites that includes
Kerberos as an authentication mechanism [14].

Kerberos authentication to a Web server is not
enough for end-to-end authorization. There must
be support for delegating Kerberos credentials after
the client authenticates to the Web server, which
is addressed by Jackson et al. in their proposal
on how to delegate credentials (currently, Kerberos
and X509 certificates) in TLS [15]. There are a few
problems with considering this approach as a solu-
tion. First, no browsers currently support Kerber-
ized TLS. There is an implementation of Kerberized
TLS [26] that relies on a local proxy, but browsers
are often limited to a single proxy, complicating sys-
tem management. Furthermore, the description of
the exact content of the protocol is vague, making it
hard to validate the security of the protocol.

Tuecke et al. [29] propose a specific delegation mech-
anism that allows a user to delegate an identity cer-
tificate to a third party. The receiver must engage in
a special verification process that validates these cer-
tificates to identify the real sender. Authentication
to a commodity server with these certificates cannot
be considered secure, as each entity in the delegated
path serves as a certification authority and can cre-
ate a certificate under whatever identity it pleases.

The problem with delegation is that the client may
be tricked into requesting a ticket by a rogue server.
It has been repeatedly demonstrated that we can
not always trust a valid server’s certificate, most re-
cently by the Microsoft/VeriSign debacle [16]. Del-
egation places a large administrative burden on the
client. First, a client must be able to understand
and apply security policies to determine whether or
not to forward his credentials. To avoid the hassle,
users frequently allow for unlimited and unchecked
delegation. It is not reasonable to assume that for
each compromised Web server each user will up-
date her security policy to address the problem.
Lastly, browser support for restricted delegation al-
ways leaves us wishing for more.

3 Design

Our goal is to design, implement, and deploy a sys-
tem that allows users access to Kerberized services
through a Web server while making use of existing
infrastructures and security policies.

The following considerations guide our design.

e The system must use off-the-shelf software
whenever possible: conventional Web browsers
and servers, Kerberos authentication mecha-
nism, unmodified backend services.

e The solution must not introduce a large bur-
den on system administrators. Administration
and management of software is difficult and fre-
quently results in security compromise of the
very systems that administrators are trying to
protect.

e The solution must not introduce a large burden
on the user. The system must be easy to use.
Added features should not require user interac-
tion. For example, uses should not be forced to
obtain additional credentials.

e The Web server is vulnerable to attacks, so it
must be constrained in the actions it is allowed
to take on a user’s behalf.

e The system must provide a central, easily ad-
ministered location for policy decisions regard-
ing Web server’s actions.

We make the following security assumptions.

e The Web server has adequate physical security.

e The Kerberized Credential Translator, de-
scribed in Section 3.3, has physical security
comparable to the KDC.

e We depend on minimal PKI functionality. We
are not trying to solve PKI problems such as
reliable and efficient key revocation. This leads
to the following additional assumptions.

e We assume the ability to instantiate a root cer-
tification authority, be it a self-signed CA cer-
tificate or one signed by an acknowledged root
CA, such as Versign.

o We assume the CA certificate can be distributed
efficiently and securely. All the client machines
need to have such a certificate installed in their
Web browser CA certificate list (unless the cer-
tificate is signed by one of the well acknowl-
edged root CAs). All other servers in the system
need to possess the CA certificate.

e We assume the root certificate can be revoked.?
A mechanism is needed that notifies all clients
and servers.

e We assume the (long-lived) certificates issued to
the services can be revoked.

Our system consists of components that we describe
in detail in the sections below. Section 3.1 describes
KX.509, a single sign-on mechanism that produces
both Kerberos and PK credentials and creates a
binding between them. Section 3.2 discusses client
authentication and the Web server’s responsibilities
in meeting user requests. Section 3.3 introduces our
Kerberized Credential Translator, an extension to
TGS that converts PK credentials to Kerberos tick-
ets.

3.1 KX.509

In this section, we briefly describe KX.509, a Kerber-
ized service that creates a short-lived X.509 certifi-
cate. Doster et al. describe details of the protocol

[8).

The exchange of messages and other details of the
protocol are shown in Figure 3. As in Kerberos,
Alice gets a TGT from the KDC. To acquire an
X.509 certificate, she first requests a service ticket
for a Kerberized Certification Authority, KCA. At
the same time, Alice generates a public/private key
pair and prepares a message for the KCA. Along with
the public key, she sends the KCA service ticket,
{Alice, KCA, K4, kcA}Kxeo4, and an authenticator,
{T} K4 xca- To ensure that the public key has not
been tampered with, the HMAC of the key is sent
in the same message. The session key, K4 kca, is
used to compute the HMAC of the key.

The KCA authenticates Alice by checking the va-
lidity of the ticket and the authenticator. It verifies
that the public key has not been modified. The KCA
then generates an X.509 certificate and sends it back

2We know it usually can’t.

to Alice. The certificate is sent in the clear; to pre-
vent tampering, the HMAC of the reply is attached.
The lifetime of the certificate is set to the lifetime of
the user’s Kerberos credentials. The user’s Kerberos
identity is included inside the certificate, creating
the necessary binding.

3.2 Web Server

This section describes the Web server’s role in pro-
cessing a request for a Kerberized service. Our goal
is to provide the Web server with a means to access
resources on a user’s behalf. We built a Web server
plugin that engages in proxy authentication by per-
forming the following actions: (i) authenticate the
user, (ii) request Kerberos credentials from a cre-
dential translator, and (iii) fulfill the user’s request
by accessing a Kerberized service.

In the first step, client authentication takes place
in the SSL handshake. We assume Alice possesses
a certificate verifiable by the Web server, i.e., the
certificate must be issued by a certification authority
trusted by the Web server. The client authentication
step in SSL requires the user to sign a digest of all
the handshake messages prior to CERTIFICATEVERIFY
with her private key. SSLv3 uses a keyed digest with
the SSL session key. The signature is included in
CERTIFICATEVERIFY.

In the second step, the Web server records a tran-
script of the handshake, details of which are shown
in Figure 4. Then, the Web server presents the cap-
tured transcript and the SSL session key to a Kerber-
ized Credential Translator (described in Section 3.3)
for verification.

In the third step, the Web server uses received cre-
dentials to access a Kerberized service. Revealing
the SSL session key in the previous step gives the
credential translator the power to eavesdrop, so we
require the Web server to request renegotiation to
establish a new session key, one that is not known
to the KCT. This is a trade-off between security and
performance. 3

The user’s Kerberos credentials are cached by the
Web server to improve performance. The lifetime

30ne could argue that because the KCT is as powerful as
the KDC and can impersonate any user, then the KCT itself
can place a request to a Kerberized service, and, thus, the
KCT can be trusted with the knowledge of the SSL session
key.

KCA

1-4 Kerberos login

5. Alice - KCA: TKT, Auth, Public Key, HMAC, 4, (Public Key)
6. KCA — Alice: X.509 certificate, HMACk , ., (X.509 certificate)

Figure 3: KX.509 protocol. Steps 1-4 from Kerberos are not shown. Steps 5 and 6 give the details of messages
in KX.509. Alice sends a service ticket, an authenticator, a public key, and its HMAC. A keyed digest is based on
the session key, Ka,xkca and prevents modification of the data.

SSL transcript

1. Client — Server: CLIENT HELLO:
Version = VC, Random Num = RNC, Session ID = IDC
2. Server — Client: SERVER HELLO:
Version = VS, Random Num = RNS, Session ID = IDS
3. Server — Client: SERVER CERTIFICATE:
X.509 certificate = SCert
4. Server — Client: SERVER CERTIFICATE REQ:
Cert Type = CT, CA chain = CAC
5. Client — Server: CLIENT CERTIFICATE:
X.509 certificate = CCert
6. Client — Server: CLIENT KEY EXCHANGE:
[Key material] k¢ px
6. Client — Server: CERTIFICATE VERIFY (SSLv3):
[Hashg,,, (VC, RNC, IDC, VS, RNS, CAC, TS, IDS, SCert, CCert)]x

private

Figure 4: SSL transcript. The messages listed constitute an SSL transcript. CLIENTHELLO carries a version,
random number (first four bytes occupied by a timestamp), and session id, which allows the user to resume a
previous session. SERVERHELLO confirms the version and session id. A server sends its CERTIFICATE and requests
the user’s in CERTIFICATEREQUEST. SERVERHELLODONE specifies the end of the negotiation phase. A client sends
her public key certificate in CERTIFICATE. A client sends the session information (encrypted with the server’s
public key, Kwspk) in CLIENTKEYEXCHANGE. Key material included in this message depends on the key exchange
protocol. For example, in the case of RSA, a client generates a premaster secret that both parties use to generate key
(encryption and digest) material, including Karx. A client sends CERTIFICATEVERIFY, which includes a key-based
digest of all the messages prior to this one signed with the client’s private key. The server uses the public key from
the client’s certificate to verify the client’s identity. Karx is the key generated from the key material sent by the
client in CLIENTKEYEXCHANGE. We call it the SSL session key. Kprivate is the user’s private key. A timestamp in
CLIENTHELLO is used to verify freshness of the handshake.

of the service ticket issued by the credential trans-
lator should be short, minimizing potential misuse
of credential. At the same time, the service ticket
should have a lifetime long enough that multiple re-
quests from the user do not incur the cost of get-
ting a service ticket each time. A compromise of
the Web server enables the intruder to use the cur-
rently cached credentials and to acquire credentials
on the user’s behalf for any of the requests to this
compromised Web server.

3.3 Kerberized Credential Translator

We define a Credential Translator (CT) as a service
that converts one type of credential into another.
In this section, we introduce a Kerberized creden-
tial translator (KCT) that converts PK credentials
to Kerberos credentials.

Figure 5 shows the KCT protocol. First, the Web
server authenticates to the KCT by presenting a
service ticket, { Web Server, KCT, Kws kot kger
and the corresponding authenticator, {T} ks xor-
Along with its Kerberos credentials, the Web server
sends the SSL transcript, the name of the service
ticket being requested, and the SSL session key. Af-
ter validating the Web server’s credentials, the KCT
performs the following steps:

e Validates user and server certificates and checks
that each was signed by a trusted CA.

e Verifies client’s signature in CERTIFICATEVERIFY
by recomputing the hash of the handshake mes-
sages up to CERTIFICATEVERIFY and comparing
it to the corresponding part of the SSL hand-
shake.

e Verifies that the identity inside of the server’s
certificate matches the Kerberos identity. This
step is needed to ensure that the Web server
participated in the SSL handshake.

e Assures the freshness of the transcript, by
checking the freshness of timestamps or nonces
present in the hello messages. In the latter case,
the Web server acquires a nonce from the KCT
and includes it in SERVERHELLO.

e Generates a service ticket for the user.

e Encrypts the session key included in the ser-

vice ticket under the Web server’s session key,
Kws,kcr.

e Returns the ticket, authenticator, and en-
crypted session key to the Web server.

e Logs the transaction for postmortem auditing.

We see that the KCT needs access to the database
of keys maintained by the KDC. Consequently, the
KCT requires the same physical security as the KDC.
In practice, we run the KCT on the same hardware
as the KDC, which achieves the physical security re-
quirement and sidesteps the challenge of consistent
replication of the Kerberos database.

4 WebAFS Prototype

We have implemented a prototype that allows a user
to submit requests to a Web server that accesses a
Kerberized AFS file server on the user’s behalf. An
overview of the system is shown in Figure 6. In the
remainder of this section, we provide details about
the implementation of each of the components in-
volved in the system.

4.1 KX.509

We implemented the KX.509 protocol to work for
both Netscape Navigator (on UNIX, Windows, and
MacOS) and Internet Explorer (on Windows). The
kx509 client and the KCA server are the two ba-
sic components involved in issuing users certificates.
Additional details about the implementation can be
found in a related technical report [8].

Navigator maintains a private cache of certificates,
but the implementation is platform dependent, un-
documented, and version dependent. Thus, we elect
to save certificates in user’s Kerberos ticket cache,
which requires the user to add a cryptographic mod-
ule to the browser. No such modification is required
for Explorer.

Typically, a ticket cache stores a user’s TGT and ser-
vice tickets. MIT’s implementation of Kerberos on
UNIX allows for variable size tickets, allowing us to
store any data of size up to 1250 bytes, which is suf-
ficient to store a certificate and a private key. Figure

6
1-4 Original Kerberos done once per lifetime of a session

5. Web Server - KCT: TKT, Auth, SSL transcript, {MK, Service}ky s xcr
6. KCT — Web Server: TKT={Alice, Service, Kws Service} Kservices 1KWS,Services T} Kws.xer

Figure 5: Credential translation protocol. Steps 1-4, not shown, indicate Kerberos authentication of the Web
server. They are performed once per the lifetime of a service ticket for the KCT service. Steps 5 and 6 show the
conversation with the KCT. Service is the requested backend service. Depending on the version of SSL, an SSL
secret key, MK is included in the request to the KCT.

Web browser | o | Web server
kpkes11 SSL kct_module
o handshake

kinit kx509

Ticket Token
cache cache

Figure 6: WebAFS architecture. We show details of architectural components present in the implementation
of the proposed system. The new components are: kpkcsll, kx509, KCA, kct_module, and KCT. The first three
components are for credential translation from Kerberos to PK credentials. The last two effect translation in the

other direction.

7 shows the output of the k1ist command, which
displays the current contents of a ticket cache.

The entry cert.x509/umich.edu@umich.edu
is the service ticket for the KCA.
cert.kx509/umich.edu@umich.edu contains

the user’s certificate and private key.

As we mentioned, Navigator needs help to find our
certificates. To this end, we use the browser’s stan-
dard interface to add a cryptographic module that
we call kpkcs1l. When client authentication is re-
quired, kpkcs11 looks up a certificate in the ticket
cache and gives it to Navigator.

In our implementation, the user identity informa-
tion that KCA includes in the certificate is retrieved
from a naming service (an X.500 directory). Given
a Kerberos principal, KCA looks up the user’s first
and last name. Additionally, at the end of the dis-
tinguished name we attach an email field with the
principal name in the local part and the realm in the
remote part, for example, aglo@UMICH.EDU.

4.2 Web Server

To enable the server to act on a user’s behalf, we
added a module to the Apache Web server, under
2000 lines of code. The module relies on a version of
the openssl (0.9.5) library modified to save the SSL
transcript. Modifications to the library are minimal
(under 200 lines of code) and include a new data
structure and calls to a function that saves the in-
coming and outgoing handshake messages.

We now look more closely at the problems that arise
from differences in the SSL protocol specifications
and implementations, and from harsh browser re-
alities, which make the solution more complex and
introduce delays.

In our prototype, we use timestamps present in SSL
handshake to check the freshness of the handshake.
Unfortunately, SSLv2 does not include timestamps
in the hello messages. Worse yet, Navigator by
default starts the SSL handshake with an SSLv2
CriENTHELLO message. Only after receiving the re-
ply from the Web server suggesting the use of SSLv3
does the browser switch to the higher version. The
resulting handshake is overall a valid handshake, but
lacks an SSLv3 client timestamp. To get the times-
tamp, we require the Web server to request renego-
tiation. SSL specifications allow renegotiation only

after the ongoing handshake is complete, so two full
SSL handshakes must take place.

One feature of the SSL protocol, called a partial
handshake, requires special attention. When a par-
tial SSL handshake happens, the Web server checks
if AFS credentials are cached; if so, then the server
proceeds with the AFS request. Otherwise, the Web
server forces an SSL renegotiation followed by a full
SSL handshake. After creating a transcript, the Web
server, as before, submits a request to the KCT for
an AFS service ticket.

4.3 Kerberized Credential Translator

The responsibilities of the KCT are to verify the va-
lidity of the request and issue an AFS ticket on the
user’s behalf. To fulfill this role the KCT must have
special privileges: it must be able to read the KDC
database and use the key of the AFS Kerberos prin-
cipal. Currently, tickets are issued only for AFS. In
deployment, the Web server will specify the service
for which it needs a ticket, at which point the KCT
will need a security policy to make authorization de-
cisions about who can ask for what.

As of this writing, the MIT Kerberos libraries are
not thread-safe, so the KCT cannot be implemented
as a multithreaded application. To improve perfor-
mance, we spawn a process to handle incoming re-
quests. To achieve the required physical security,
we run the KCT on the same hardware as the KDC.
Implementation of the KCT is under 2000 lines of
code.

5 Performance

In this section we discuss the performance of the sys-
tem by examining the cost of making a request to a
Web server, which, in turn, requests a service from a,
backend server on a user’s behalf. The experiments
described in this section were performed on an un-
loaded Intel 133MHz Pentium workstation running
RedHat Linux 6.2 (kernel version 2.2). Our focus is
on understanding overhead induced by the system,
so all the components were executed on the same
hardware to avoid network and file access delays.

The software was

tested against commodity

$: klist
Kerberos 4 ticket cache: /tmp/tkt500
Principal: agloQUMICH.EDU

Issued Expires Principal

01/19/01 13:39:56 01/19/01 23:39:56 krbtgt.UMICH.EDUQUMICH.EDU
01/19/01 13:40:07 01/19/01 23:39:56 cert.x509QUMICH.EDU
01/19/01 13:40:07 01/19/01 23:39:56 cert.kx509QUMICH.EDU

Figure 7: Output of klist. KX.509 certificate and the private key are stored in the Kerberos IV ticket cache under

the service names of cert.kx509. cert.x509 is the service ticket for the KCA. the other entry is the service ticket
for the TGS.

V7] ssL handshake AN Partial SSL handshake @ TGS+ request

- SSL renegotiation |:| TGT/TKT request |:| AFS request
SSLv2 SSLv3 SSLv3

= IE = =l il =acva~va Numnl |
SSLv3 SSLv3

= wl=a~wg~wa Nummll = |

TLSv1

=] =N]

PSSL

——— TIMELINE

Figure 8: Timelines for WebAFS requests. We show the components of a user request in four scenarios
illustrated as timelines. The legend identifies each of the components involved. We consider all the different versions
of an SSL protocol, v2, v3, TLSv1, and a partial handshake. Access to an AFS file server is used as an example.

browsers, but it is hard to glean detailed mea-
surements from commercial software, so we used
openssl tools to mimic the browser’s actions.
We used openssl’s generic SSL/TLS client, called
s_client. All requests were made for a 1K file. For
each of the test cases 30 trials were measured and
averaged.

We define a browser session to be the time from
launch to termination of the browser application.
We define a server session to be the time from the
first request to a Web server until the termination
of the browser application. Within a browser ses-
sion a user starts multiple server sessions. Requests
for different files from the same Web server fall into
a single server session. Requests to different Web
servers are associated with different server sessions.

Figure 8 shows the breakdown of a user’s request into
the basic components. Four scenarios are illustrated
as timelines. A typical request consists of some of
the following stages:

SSLv2 handshake (or a partial SSL handshake)
Request renegotiation

SSLv3 handshake

Refresh Web server’s Kerberos credentials
Request Kerberos credentials from KCT
Request renegotiation

SSLv3 handshake

N ok W

Components | Delay(s) |

1 handshake 1.25
2 handshakes 2.50
TGT/KCT_TKT 0.03
KCT request 0.26
Partial SSL 0.02

Table 1: Delays of basic components. The first row
shows SSL handshake latency. The second row shows
the delays seen after two consecutive SSL handshakes
with a request to renegotiate in between. The third row
shows the time for the Web server to refresh Kerberos
credentials. The fourth row shows delays associated with
the KCT request/reply. The last row shows the latency
for a partial SSL handshake. Rows 1, 2, and 5 reflect end-
to-end delays seen by the user. Rows 3 and 4 measure
latencies seen by the Web server while talking to the
KDC and KCT.

We divide a user’s request into different components,
for example an SSL handshake, and measured each of
the components individually. Table 1 shows the de-
lays associated with the basic components involved
in a user’s request.

| End-to-End | Time(s) |
SSLv2 hello no TGT 4.08
SSLv2 hello 1st request 4.04
SSLv2 cached creds 2.50
SSLv3 hello no TGT 2.86
SSLv3 hello request 2.80
SSLv3 cached creds 1.25

Table 2: End-to-end delays. Each of the scenarios
represents a possible user request. We measured end-to-
end latency seen by the user.

Table 2 shows the end-to-end delays seen by the user
for different types of requests. We describe each of
the scenarios in detail and point out which ones are
more common. We divide requests into two groups,
depending on whether user’s credentials are cached
at the Web server.

e No cached credentials. First, we consider the
cases where user’s credentials are not cached. This
happens when a user is making the first request to
the Web server or when her credentials have been
evicted from the Web server’s LRU cache.

e Once a day: SSLv2 hello no TGT and SSLv3
hello no TGT. In these two scenarios, the Web
server has stale credentials so the user’s re-
quest gets penalized by the time needed by
the Web server to get new Kerberos creden-
tials. The lifetime of our Web server’s TGT is
24 hours.

e Once per server session: SSLv2 hello 1st
request. When contacting a Web server for
the first time, the default behavior of Naviga-
tor is to start with an SSLv2 CLIENTHELLO
message. Until the browser is restarted, all
subsequent requests will start with an SSLv3
CLIENTHELLO. This scenario measures the
overhead of the three handshakes and a KCT
request. The first additional handshake pro-
duces a valid timestamp in the CLIENTHELLO
message. The second additional handshake
renegotiates the SSL session key, which was
revealed to the KCT.

e Most common request: SSLv3 hello re-
quest. Explorer starts with an SSLv3 CLIEN-
THELLO. Any requests from this browser fall
either into this category or the partial hand-
shake.

e Cached credentials. We now review the scenar-
ios where the user’s credentials are cached at the
Web server. Caching is important because it saves

the overhead of getting Kerberos credentials. Fur-
thermore, no SSL renegotiation plus handshake is
needed at the end. The only overhead the system
imposes is that associated with token management.

e Frequent: Partial handshake cached creden-
tials. The lifetime of the session key negoti-
ated in the full handshake is configurable by
the web server. If more than one request is
made within five minutes of a full handshake,
a partial handshake takes place. (Five min-
utes is a default value used by Apache Web
servers). We can safely assume that user’s cre-
dentials are already cached at that point. The
time required for a partial handshake is con-
siderably smaller than for a full handshake.
The frequency of these requests depends on
the user’s access pattern.

e Common: SSLv3/TLSvl cached credentials.
Once the user contacts a Web server, her cre-
dentials are cached until they get evicted due
to expired lifetime or lack of space. When
requests to the Web server are separated by
more than five minutes, a user experiences
end-to-end delay presented in last row of
Table 2.

o Unlikely: SSLv2 hello cached credentials.
The browser sends an SSLv2 CLIENTHELLO
message to the Web server if it never con-
tacted it within the current browser session.
However, it is still possible for the user’s cre-
dentials to be cached at the Web server if the
user restarted the browser within the lifetime
of the cached credentials.

To summarize, an SSL handshake costs 1.25 seconds.
Delays associated with refreshing a TGT and mak-
ing KCT requests are small: 0.02 and 0.26 seconds,
respectively.

In the most common case, credentials are cached
and SSLv3 connections are used, so the system in-
curs negligible overhead. Further testing in more
complex environments is necessary and will be done
in the future. However, these preliminary results are
encouraging.

6 Discussion

In this paper we described a system that provides
users with access to Kerberized services through a

browser. In this section we summarize the function-
ality of each of the components involved in the sys-
tem and point out the issues that require further
research.

While many backend services use Kerberos for au-
thentication, Web servers use SSL to authenticate
with public key cryptography. We address the
mismatch of authentication credentials between the
Web server and Kerberized service by introducing a
new service that translates PK credentials to Ker-
beros tickets. The Web server engages in proxy au-
thentication. The process consists of SSL client au-
thentication, a request to a credential translation
service, and finally authentication to the Kerberized
service on a user’s behalf.

We built a single sign-on mechanism that allows
users to obtain X.509 certificates in addition to their
Kerberos credentials. Through the KX.509 protocol,
we create a binding between a user’s Kerberos and
PK identities. The issues surrounding this binding
are quite broad and require further study.

A client uses her certificate to establish an authen-
ticated and secured channel to a Web server. The
Web server logs the SSL transcript and makes an au-
thenticated request to a new service that translates
the user’s PK credentials to Kerberos credentials.

The authorization model of the credential translator
is primitive and is the focus of our future work. The
current model supports generic access control lists:
for each Web server there is an entry listing the Ker-
berized services for which it can request tickets. We
are looking into integrating Akenti [28] access con-
trol mechanisms into the system.

We built a prototype, WebAFS, that allows users to
access restricted AFS files through browsers. It re-
quires minor modifications to existing software, such
as a plugin module to Navigator and modifications
to the openssl library. We wrote four components:
kx509 and KCA take care of issuing user’s certifi-
cate, an Apache module services requests, and KCT
translates between two types of credentials.

We measured the overhead introduced by our sys-
tem. We showed the delays associated with the
building blocks of a user’s request. The results show
that a substantial amount of time is spent in es-
tablishing an SSL connection, but that requesting
credentials for the server is nicely amortized over a
browser session.

Credential translation need not apply only to Web
traffic. It is extensible to any SSL-enabled client
and SSL-enabled server communication. Further-
more, credential translation need not be limited to
producing Kerberos credentials. Consider a remote
login application such as an SSL-enabled Telnet. As-
suming a user has a certificate on his local computer,
we can obviate the need to send his password over
the network. A user can use his certificate, mutually
authenticate with the remote host, and empower it
to act on his behalf. We are considering these and
other extensions in our future work.

7 Acknowledgments

We thank the anonymous reviewers for their helpful
comments. We also thank CITI staff for their partic-
ipation in the project and their valuable comments.
Our special thanks go to Dr. Naomaru Itoi for many
insights and constant encouragement.

References

[1] Apache Software Foundation.
server. http://www.apache.org.

Apache web

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The KeyNote trust managment
system version 2, September 1999. RFC 2704.

[3] M. Blaze, J. Feigenbaum, and A. Keromytis.
Keynote: Trust management for public-key
infrastructure. In Proceedings Cambridge
1998 Security Protocols International Work-
shop, 1998.

[4] M. Blaze, J. Feigenbaum, and M. Strauss. Com-
pliance checking in the PolicyMaker trust man-
agement system. In Proceedings of Second In-
ternational Conference on Financial Cryptogra-
phy, 1998.

[5] D. Clarke, J. Elien, C. Ellison, F. Morcos,
and R. Rivest. Certificate chain discovery in
SPKI/SDSI. Draft Paper, November 1999.

[6] T. Dierks and C. Allen. The TLS protocol ver-
sion 1.0, January 1999. RFC 2246.

[7] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Transaction on Informa-
tion Theory, 22:644-654, November 1976.

[8] W. Doster, M. Watts, and D. Hyde. The
KX.509 protocol. CITI Technical Report 01-2,
February 2001.

[9] P. Dousti. Project Minotaur: Kerberizing the
Web, software at Carnegie Mellon University.
http://andrew2.andrew.cmu.edu/minotaur.

[10] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI certificate
theory, September 1999. RFC 2693.

[11] ITU-T (formerly CCITT) Information technol-
ogy Open Systems Interconnection. Recom-
mendation X.509: The directory authentication
framework, December 1988.

[12] A. Freier, P. Karton, and P. Kocher. Secure
Socket Layer 3.0, March 1996. Internet draft.

[13] A. Freier, P. Karton, and P. Kocher. The SSL
protocol version 3.0, March 1996. Netscape
Communications Corporation.

[14] M. Hur and A. Medvinsky. Kerberos cipher
suites in Transport Layer Security (TLS), May
2001. Internet draft.

[15] K. Jackson, S. Tuecke, and D. Engert. TLS del-
egation protocol, February 2001. Internet draft.

[16] Microsoft Security Bulletin MS01-017. Erro-
neous VeriSign-issued digital certificates pose
spoofing hazard, March 2001.

[17] R. Needham and M. Shroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993 — 999, December 1978.

[18] C. Neuman. Proxy-based authorization and ac-
counting for distributed systems. In Proceedings
of the 13th International Conference on Dis-
tributing Computing Systems, May 1993.

[19] C. Neuman and T. Ts’o. Kerberos: an authen-
tication service for computer networks. IEFEE
Communications, 32(9):33-38, September 1994.

[20] SideCar project. Software at Cornell Uni-
versity. http://www.cit.cornell.edu/
kerberos/sidecar.html.

[21] R. Rivest and B. Lampson. SDSI — A simple
distributed security infrastructure. Presented
at CRYPTO’96 Rump session, 1996.

[22] R. Rivest, A. Shamir, and L. Adleman. A
method of obtaining digital signatures and pub-
lic key cryptosystems. Communications of the
ACM, 21:120-126, February 1978.

[23] T. Ryutov and C. Neuman. Representation and
evaluation of security policies for distributed
system services. In Proceedings of the DISCEX,
January 2000.

[24] M. Sirbu and J. Chuang. Distributed authenti-
cation in Kerberos using public key cryptogra-
phy. In Symposium On Network and Distributed
System Security, 1997.

[25] D. Song. Kerberized WWW access.
http://wuw.monkey.org/~dugsong/krb-www.

[26] V. Staats. Kerberized TLS, June 2000. Private
communication.

[27] Stone Cold Software. Apache Kerberos Module.
http://stonecold.unity.ncsu.edu.

[28] M. Thompson, W. Johnson, S. Mudumbai,
G. Hoo, K. Jackson, and A. Essiari. Certifi-
cate based access control for widely distributed
resources. In Proceedings of the 8th USENIX
Security Symposium, August 1999.

[29] S. Tueke, D. Engert, and M. Thompson. Inter-
net X.509 public key infrastructure imperson-
ation certificate profile, February 2001. Internet
draft.

[30] B. Tung, C. Neuman, and J. Wray. Public key
cryptography for initial authentication in Ker-
beros, April 2000. Internet draft.

