
CITI Technical Report 98−4

Implementation of a Provably Secure, Smartcard-based
Key Distribution Protocol

Rob Jerdonek
Peter Honeyman
Kevin Coffman

Jim Rees
Kip Wheeler1

ABSTRACT

We describe the implementation of the Shoup-Rubin key distribution protocol. This pro-
tocol stores long-term keys on a smartcard and uses the cryptographic capability of the
card to generate and distribute session keys securely. The designers of the protocol pro-
vide a mathematical proof of its security, using techniques pioneered by Bellare and
Rogaway. Combining this theoretical strength with our implementation on tamper resis-
tant hardware results in practical and powerful middleware functionality, useful in appli-
cations that demand strong authentication and confidentiality.

June 24, 1998

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



Implementation of a Provably Secure, Smartcard-based
Key Distribution Protocol

Rob Jerdonek
Peter Honeyman
Kevin Coffman

Jim Rees
Kip Wheeler1

1. Introduction

The Center for Information Technology Integra-
tion is a research laboratory that addresses near-
and intermediate-term challenges to the Univer-
sity of Michigan’s information technology
environment. It does this by establishing colla-
borative relationships with industrial partners to
explore and develop enterprise-scale information
technology solutions. From the start, CITI’s
focus has been on middleware. In recent years,
increasing amounts of attention have been
focused on computer and network security.

Early in 1996, CITI began exploring ways to
implement special functionality in smartcards to
improve secure access to distributed services.
The most prominent flaw in the University of
Michigan computing environment (UMCE) is its
reliance on the strength of user-selected pass-
words. UMCE makes heavy use of Kerberos IV
for many secure services, such as login authenti-
cation, filing, email, and web access; regrettably,
Kerberos IV admits an offline dictionary attack
that is difficult to detect and defeat. Such an
attack is likely to succeed any time users are
responsible for selecting their own passwords or
pass phrases [1]; indeed, it has long troubled CITI
to confirm that many weak passwords are in daily
use in the UMCE.2

Our goal is to replace password-based authentica-
tion with stronger means. Smartcards bear partic-
ular attraction, as they are able to store securely
moderate amounts of information, such as crypto-
graphic keys; offer good tamper-resistance; and
hhhhhhhhhhhhhhhhhh
1 Personal Cipher Card Corporation, Lakeland, FL,
smartcard1@compuserve.com

2 Although it is somewhat soothing to discover that the
most common password is love.

can even perform cryptographic calculations with
modest performance.

Establishment of a session key is central to the
goal of mutual authentication of cooperating prin-
cipals in a security domain. Principals establish a
security context by agreeing on a shared secret,
which is used to authenticate or secure subse-
quent communications. An impractical approach
is to arrange that all principals in a security
domain share mutual secret keys; this arrange-
ment breaks down from quadratic growth in the
number of keys that must be set up in advance
and the concomitant requirement that principals
manage private databases of keys. Needham and
Schroeder observe that a trusted third party can
reduce these complexities by sharing a long-term
key with each of the principals in the security
domain [2]. This has two distinct advantages.
First, O(n) long-term keys are needed, instead of
O(n2). Second, each principal must maintain only
the key that it shares with the third-party, rather
than one key for each of the other principals in
the security domain.

While this reduces the obligations and bookkeep-
ing for principals, it does not eliminate their
responsibilities altogether, nor shield them from
disaster in the event that control over the long-
term key is lost. To assist principals in the secure
management of their keys, Bellcore researchers
Victor Shoup and Avi Rubin devised an innova-
tive key distribution protocol that exploits the
tamper-resistant properties of smartcards to pro-
vide a convenient and secure repository for cryp-
tographic keys [3]. With the help of Personal
Cipher Card Corporation (PC3), CITI imple-
mented the Shoup-Rubin protocol on smartcards
and host workstations.



- 2 -

Shoup-Rubin uses two types of cryptographic
keys. Long-term keys are securely stored on the
card, never leaving its physical boundaries.
These keys are shared with a trusted third-party
and used to establish (short-term) session keys.
Session keys are not (necessarily) stored on
secure, tamper-resistant hardware, so they are
vulnerable to compromise. In contrast, long-term
keys must never be vulnerable.

The details of Shoup-Rubin, outlined in the next
section, are fairly intricate, in part to satisfy the
requirements of an underlying complexity-
theoretic framework [4]. This inconvenience is
balanced by the ability to prove powerful proper-
ties of the protocol. In particular, Shoup and
Rubin are able to prove that the protocol does not
disclose the session key to an adversary. The
combined strength of mathematical proof of secu-
rity and a tamper-resistant implementation lends
good confidence in the overall security of our
approach.

2. Shoup-Rubin Key Distribution Protocol

The Shoup-Rubin key distribution protocol runs
among three parties: the communicating peers,
and a third-party that is trusted to hold long-term
keys securely. Following Schneier [5], we call
them ALICE, BOB, and TRENT, respectively.
ALICE and BOB can each be viewed as a pair of
agents, one responsible for holding long-term
keys, and one with less stringent security require-
ments. The former agent is implemented on a
secure token such as a smartcard, while the latter
runs on an ordinary computer. We rely on the
tamper-resistance inherent in smartcards to pro-
tect the long-term keys used by Shoup-Rubin.
The host computers have less stringent security
requirements; they rely on physical and other
security properties inherent to the secure tokens
holding the long-term keys.

We now describe the Shoup-Rubin session key
distribution protocol, first in general terms, then
in detail. We identify ALICE and BOB’s comput-
ers with ALICE and BOB themselves. We assume
that ALICE’s and BOB’s computers have
smartcard readers attached, and that no computer
other than the one to which it is attached can

communicate with a smartcard reader. Shoup-
Rubin builds on the Leighton-Micali key distribu-
tion protocol [6], an inexpensive symmetric key
distribution protocol. Leighton-Micali uses a
construct known as a pair key to establish a
shared secret between communicating parties.

Let A and B denote unambiguous identifiers for
ALICE and BOB, and let KA and KB be their long
term keys. These keys are shared with TRENT.
DES encryption of message M with key K is
denoted {M}K. ALICE and BOB’s pair key is
defined

ΠAB = {A}KB
⊕ {B}KA

TRENT calculates pair keys on demand; that is
TRENT’s entire role. Because a pair key reveals
nothing about the long-term keys used in its cal-
culation, it can be communicated in the clear.

With pair key ΠAB in hand, ALICE computes
{B}KA

. Combining this with the pair key yields
κ = {A}KB

. BOB can compute κ directly, so once
ALICE has a pair key in hand, she and BOB can
communicate privately using key κ.

Shoup-Rubin extends Leighton-Micali in two
ways:

g κ is computed on ALICE’s and BOB’s
smartcards, freeing ALICE and BOB from the
responsibility of knowing their own long-term
keys.

g ALICE and BOB then use κ to secure the mes-
sages that provide for session key agreement.

Shoup and Rubin use Bellare and Rogaway’s
innovative complexity theoretic techniques [4] to
prove that their key distribution algorithm does
not disclose the session key, even to an extremely
powerful adversary. We now describe the
Shoup-Rubin protocol in detail.

2.1. Details

The following table defines the terms used in the
Shoup-Rubin smartcard-based session key distri-
bution protocol. Integer operands are con-
catenated to other protocol terms with the ‘‘dot’’
operator to satisfy requirements of the Bellare-
Rogaway proof framework.



- 3 -

Term Meaning

A, B Unique identifiers

KA, KB Long-term keys

KAC, KBC Secret card keys

r, s Nonces

ΠAB = {A.0}KB
⊕ {B.1}KA

Pair key

α = {ΠAB
.B.2}KA

Verifies ΠAB

β = {r.s.1}κ Verifies r and s

γ = {r.1.1}KAC
Verifies r

δ = {s.0.1}κ Verifies s

κ = {A.0}KB
See discussion

σ = {s.0.0}κ Session key

Shoup-Rubin glossary

We now detail the steps of Shoup-Rubin.

From To Message Meaning

ALICE TRENT A, B ALICE wishes to initiate a
session with BOB.

TRENT ALICE ΠAB, α ΠAB is ALICE and BOB’s
pair key. α is a verifier for
ΠAB.

ALICE asks TRENT for the ALICE/BOB pair key.
TRENT also returns a verifier, which ALICE’s
card uses to prevent masquerading.

From To Message Meaning

ALICE CardA — ALICE requests a nonce to
verify subsequent commun-
ication with BOB.

CardA ALICE r, γ r is a nonce, γ is a verifier
for r.

ALICE’s first card operation

ALICE initiates the protocol with BOB by request-
ing a nonce from her smartcard. ALICE retains
the verifier for later use.

From To Message Meaning

ALICE BOB A, r BOB will use r to assure
ALICE of his correct
behavior.

By sending a nonce to BOB, ALICE requests
establishment of a fresh session key.

From To Message Meaning

BOB CardB A, r BOB instructs his smartcard
to construct a session key,
and provides ALICE’s
nonce for her subsequent
verification.

CardB BOB s, σ, β,
δ

s is a nonce used to con-
struct the session key. σ is
the session key. β is
ALICE’s verifier for r and s.
δ is BOB’s verifier for s.

BOB’s card operation

BOB sends ALICE’s identity and her nonce to his
smartcard. BOB’s card calculates κ, then gen-
erates a nonce and a session key. BOB’s card
also generates two verifiers; one is used by
ALICE’s card to verify both nonces, the other is
used by BOB to verify ALICE’s subsequent ack-
nowledgement. BOB retains the session key and
his verifier.

From To Message Meaning

BOB ALICE s, β ALICE needs s to construct
the session key, and β to
verify r and s. BOB retains
σ, the session key, and δ, a
verifier for s.

BOB forwards his nonce, from which ALICE’s
card constructs the session key.

From To Message Meaning

ALICE CardA B, r, s,
ΠAB, α,
β, γ

Verify: ΠAB with α, r with
γ, and BOB’s use of r and s
with β. Use ΠAB and s to
construct the session key.

CardA ALICE σ, δ σ is the session key. δ is
sent to BOB to confirm
ALICE’s verification of s.

ALICE’s second card operation

ALICE sends everything she has to her smartcard:
BOB’s identity, the pair key and its verifier, her
nonce and its verifier, and BOB’s nonce and its
verifier. ALICE’s card validates all the verifiers.
If everything checks out, ALICE’s smartcard
derives κ, then constructs the session key from
BOB’s nonce and uploads it to ALICE along with
a verifier to assure BOB that ALICE is behaving
properly.



- 4 -

From To Message Meaning

ALICE BOB δ Confirm

ALICE sends the verifier to BOB. BOB compares
it to his retained verifier.

2.2. Implementation

To implement Shoup-Rubin, CITI turned to PC3.
PC3 extended SCOS, a proprietary cryptographic
smartcard operating system, to support four new
operations, KeyDist1, KeyDist2, KeyDist3a, and
KeyDist3b, and supplied CITI with SCOS cards
that implement these operations. CITI tested the
cards extensively, both for correctness and for
performance. Performance is of interest because
it affects usability of the implementation. If card
operations take too many seconds, the user
experience is adversely affected.

To gauge performance, CITI built SCOS drivers
for UNIX, Windows 95, and NT that record com-
munication time and elapsed time. The differ-
ence between elapsed time and I/O time is
accounted to card processing time. For Shoup-
Rubin operations that require more than one
SCOS command, we also measure host process-
ing time, but this is negligible in all cases.3

Although this paper reports only UNIX perfor-
mance, NT performance is comparable. We
encountered timer granularity problems on Win-
dows 95 that affected performance adversely.

ALICE’s first card operation is implemented
directly by KeyDist1. This requires two I/O
operations: one to send an SCOS command
string, and one to read results from the card.

SCOS does not send both values and results in a
single command, so BOB’s card operation is bro-
ken into two SCOS commands: one to send the
command and values, and one to read the results
from an output buffer.

ALICE’s second card operation also has values
and results, requiring multiple SCOS commands.
SCOS can send up to 64 bytes in one command,
but this operation sends 72 bytes to the card, so
we use three SCOS operations to effect KeyDist3:
KeyDist3a sends the first 64 bytes of values and
KeyDist3b sends the remaining 8 bytes. Then an
SCOS read command recovers the results from an
output buffer.
hhhhhhhhhhhhhhhhhh
3 < 1 msec

2.3. Performance

PC3’s implementation of Shoup-Rubin runs on
the SGS-Thomson ST16F48 card, which is based
on an MC68HC05 microprocessor clocked at
3.57 Mhz, with 8 KB EEPROM, 16 KB ROM,
and 384 bytes RAM. Version PC64T4 of SCOS
uses 128 bytes of EEPROM, 6K of ROM, and
128 bytes of RAM. The Shoup-Rubin extensions
to SCOS are written in 250 lines of Motorola
6805 assembler. This assembles to 430 bytes of
code, which is stored in an executable EEPROM
file.

ALICE runs on a 200 MHz Pentium running
OpenBSD 2.2 and BOB runs on a 122 Mhz
PowerPC running AIX 4.2. Serial communica-
tion with the card is 9600 bps.

The following table summarizes the number of
bytes transmitted, and host, card, and communi-
cation times for the three card operations. Each
figure represents the average of 10 time trials.
Variance among the trials is negligible. All times
are in msec.

operation cmds bytes comm card clock

KeyDist1 1 32 32 63 95
KeyDist2 2 80 306 147 454
KeyDist3 3 112 133 241 374

Total time from the start of KeyDist1 to the com-
pletion of KeyDist3 is 3.1 sec. Most of the time
is spent in network communications and protocol
processing.

Our UNIX drivers write a byte at a time. Evi-
dently OpenBSD handles this well, averaging
slightly more than the expected msec per byte,
while AIX is apparently tuned for larger transfers.

3. Discussion

To demonstrate the capabilities of our smartcard-
based Shoup-Rubin implementation, we wrapped
it in a GSS API interface library [7] on which we
built a secure videoconferencing application [8].
While implementing in SCOS was a successful
strategy, an approach that gives CITI more direct
control over card programming would be more
satisfactory.4 But even at this writing, it is not
easy for University developers to obtain cards and
documentation for programmable smartcards
capable of general-purpose cryptographic appli-
cations. For example, first generation JavaCards
lack cryptography.
hhhhhhhhhhhhhhhhhh
4 To CITI.



- 5 -

Yet more frustrating, on several occasions, CITI
has been offered programmable cryptographic
smartcards with embedded DES capability, only
to find the DES engine ‘‘crippled’’ by key length
or other limitations intended to satisfy US export
regulations. (More than once, CITI has pled with
manufacturers to consult an atlas.) These
difficulties aside, this is an exciting time to be
working with secure tokens: new companies and
products are making custom programming of
secure tokens fast and easy with user-friendly
development kits that support high-level
languages and rapid prototyping.

Acknowledgements

We thank Brahm Windeler for help in collecting
the timings. This work was partially supported by
a grant from Bellcore.

References

1. Robert Morris and Ken Thompson, ‘‘Pass-
word Security: A Case History,’’ Communi-
cations of the ACM 22(11) (November, 1979).

2. R.M. Needham and M.D. Schroeder, ‘‘Using
Encryption for Authentication in Large Net-
works of Computers,’’ Communications of the
ACM 21(12) (December, 1978).

3. V. Shoup and A.D. Rubin, ‘‘Session Key Dis-
tribution Using Smart Cards,’’ in Proc. of
Eurocrypt ’96 (May, 1996).

4. M. Bellare and P. Rogaway, ‘‘Provably
Secure Session Key Distribution: The Three
Party Case,’’ in Proc. ACM 27th Ann. Symp.
on the Theory of Computing (1995).

5. B. Schneier, Applied Cryptography, Second
Edition, John Wiley & Sons, Inc. (1996).

6. T. Leighton and S. Micali, ‘‘Secret-Key
Agreement Without Public-Key Cryptogra-
phy,’’ pp. 456−479 in Proc of Crypto ’93,
Santa Barbara (1993).

7. J. Linn, ‘‘Generic Security Service Applica-
tion Program Interface, Version 2,’’ RFC
2078 , USC/Information Sciences Institute
(January, 10, 1997).

8. Peter Honeyman, Andy Adamson, Kevin
Coffman, Janani Janakiraman, Rob Jerdonek,
and Jim Rees, ‘‘Secure Videoconferencing,’’
pp. 123−130 in Proc. 7th USENIX Security
Symp., San Antonio (January, 1998).


