CITI Technical Report 98-3

Performance Measurement of the PeopleSoft
Multi-Tier Remote Computing Application

Yi-Chun Chu
ycchu@citi.umich.edu

Charles J. Antonelli
cja@citi.umich.edu

Toby J. Teorey
teorey@eecs.umich.edu

ABSTRACT

The Center for Information Technology Integration has undertaken a study of the poten-
tial impact of PeopleSoft software on U-M production computing environments, focusing
on the measurement and modeling of the Peoplesoft 6 architecture in order to provide re-
sults useful in sizing various components of the M-Pathways campus deployment.

This report describes several experiments designed to evaluate the performance of Peo-
pleSoft 6 remote computing applications being implemented at the University of Michi-
gan. The purpose of these experiments is to develop a proper measurement methodology
for quantifying the resource requirements of PeopleSoft OLTP transactions in a three-tier
architecture consisting of client WinStations, WinFrame servers, and Oracle database
servers. The measurement results are applied to an analytic three-tiered performance
model and can be used to generate sizing estimates for production system components.

June 1998

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Executive Summary

In the previous phase of work we have developed a Queueing Network Model for a two-tiered People-
Soft 6 (PPS6) client-server system, built a performance modeling tool to evaluate the model via Mean
Value Analysis, and developed Stress, a load generator that exercises Oracle database servers. The model
outputs closely matched the measured values in those cases where the Oracle CPU and disk service de-
mands remained constant; however, in several cases the Oracle service demands were found to vary with
the number of clients, causing major discrepancies.

In this second phase of work, we address the problem of varying Oracle service demands by developing
a new measurement methodology based on the Oracle’s dynamic performance tables. We separate the Ora-
cle CPU service demand into the CPU service times of Oracle server processes, Oracle background pro-
cesses, and the OS overhead. More importantly, we also decompose the Oracle disk service demand into
three smaller components: data block read time, data block write time, and redo log time. While exercising the
new measurement methodology with the Stress program in the CITI testbed, we determined that only the
CPU service demand of Oracle server processes and the redo log time cause the varying Oracle service
demands.

In order to consider the decomposed Oracle service demands measured with our new measurement
methodology, we have also refined the two-tiered analytic model into a Layered Queueing Model (LQM).
Validating this model via the Stress program, we find that the model outputs predict the request comple-
tion time within a 5% error range, and the Oracle CPU and disk utilizations within 10%.

We have further extended the measurement methodology to incorporate the remote computing model of
PPS6 in the U-M production environment. The measurement extension allows us to collect the CPU us-
ages on WinStations and WinFrame servers as well as the ICA traffic generated for individual WinStation
users. The performance measures collected with the extended measurement methodology can be associ-
ated with the corresponding Oracle resource usages and converted into model parameters. This allows us
to extend the two-tiered LQM into a three-tiered LQM for modeling the remote computing of PPS6.

We have not been able to obtain an accurate characterization of typical PPS6 application workloads for
inclusion in this study because of our inability to access real PeopleSoft applications running against real
databases in the U-M production environment. To address the problem, we have installed the PPS6 appli-
cation, the PeopleSoft Financials 6 for Public Sector suite, and a demonstration version of PPS6 application
databases in the CITI testbed. In the next phase of work we plan to measure this PeopleSoft application
and to record client, network, and server utilizations, as well as the number of PeopleSoft transactions
generated by each PeopleSoft panel. These performance measures can be converted into model parame-
ters very close to those of the real PPS6 in the U-M production environment.

Center for Information Technology Integration

Performance Measurement of the PeopleSoft
Multi-Tier Remote Computing Application

Yi-Chun Chu, Charles J. Antonelli, and Toby J. Teorey

June 1998

1. Introduction

The Center for Information Technology Integration has undertaken a study of the potential impact of Peo-
pleSoft software on production computing environments at the University of Michigan. In previous
work, we have constructed a closed queueing network model of a two-tiered PeopleSoft 6 distributed ap-
plication (henceforth called PPS6) [4]. In evaluating this model, we determined that the model outputs
closely matched the measured values in those cases where service demands remained constant with in-
creasing numbers of clients. However, in several cases the Oracle CPU and disk service demands varied
with the number of clients, causing discrepancies between the model and the system. We also did some
preliminary three-tiered measurement work.

In this work, we continue our efforts to address these issues. First, we have refined the model by decom-
posing the disk service demand into three constituent components, isolating the disk service demand
variance in one of the components. Second, we have conducted performance measurements in our three-
tiered production environment, in particular validating our assumption that the component exhibiting
varying service demands constitutes a small part of the overall system 1/0, and gathering real data to
complement our synthetic workloads. Finally, we have replicated the three-tiered Peoplesoft 6 environ-
ment on our testbed, permitting more detailed measurements with better control of workload than that
possible in our production environment.

The rest of this report is organized as follows: We introduce our performance measurement framework
below. Section 2 introduces the measurement methodology for collecting the Oracle resource usages on
behalf of PeopleSoft transactions in a two-tiered environment. Section 3 extends the measurement meth-
odology to three-tiered PPS6. Section 4 discusses the issues for analytic modeling of PPS6 and how to esti-
mate the Oracle service demands for the analytic models. The conclusion and future work follow in
Section 5.

1.1 The U-M Production Deployment of PPS6

PPS6 is a two-tier client-sever application with “thick” client components [25]. The production deploy-
ment of PPS6 at the University of Michigan is based on Citrix WinFrame servers [6]. This deployment
provides a more secure environment for running PPS6 client programs; it also reduces the administration
effort for distributing the PPS6 client software to individual user desktop machines [4,21]. The deployed
PPS6 hence resembles a generic three-tier client-server architecture: the user desktop machine (called a
WinStation) handles the presentation service; the WinFrame application server executes the PPS6 client

Center for Information Technology Integration 1

Chu/Antonelli/Teorey

programs; and the Oracle server hosts the PPS6 application databases. Figure 1 shows the deployed three-
tiered architecture of PPS6 and the target processes for performance measurement in each tier.

SQL*Net
WinStation Application Server Oracle Server 7.3
(Wing5) (WinFrame 1.7) (AIX 4.2)

| 100 Mbps Ethernet switch
campus network
router

Figure 1. Target processes for performance measurement in the U-M production deployment of PPS6.

ICA

1.2 PeopleSoft Transactions

Performance measurement of database applications defines application workloads in units of transactions
[14,18]. For PPS6, we can define a PeopleSoft transaction as a sequence of SQL statements generated by a
PPS6 client program, called a panel in PeopleSoft terminology, while a user works through a sequence of
dialogues and enters data into various fields in order to complete a business function such as general led-
ger or procurement. We can characterize the PeopleSoft transactions of a PPS6 panel by collecting the
SQL statement traces generated by the panel and identifying the transaction boundary in the SQL state-
ment traces. SQL statement traces can be collected with Oracle SQL_TRACE [12] or PeopleSoft SQL Trace
[26]; both trace reports record a limited set of performance statistics for each SQL statement traced. After
identifying the sequence of SQL statements comprising different PeopleSoft transactions, we can apply
them to build a simulated workload with database stress testing tools.

1.3 Stress Testing Tools

Performance measurement efforts are usually hampered by the problem of setting up test workloads with
enough test users. We can alleviate this problem with special stress testing tools capable of generating le-
gitimate application workloads with minimum human intervention. Examples of such tools for bench-
marking database servers are available in commercial packages, such as Load Runner [19] and PreVue-C/S
[27]. These tools greatly facilitate the performance measurements of PPS6 database servers because they
can be configured to generate simulated workloads with specific mixes of different PeopleSoft transac-
tions.> However, these database stress testing tools cannot generate a legitimate client workload for a
PPS6 panel, which is further complicated by PPS6’s remote computing model.

For stress testing of three-tiered PPS6, an ideal tool would drive the PPS6 panels at WinStations with key-
board and mouse events similar to real users interacting with PPS6 panels. One type of tool requires
hardware to be installed in each client, and is therefore too expensive and does not scale well. A commer-
cial software package, called WinBatch [29], can generate keyboard events for Windows applications, but
it does not handle mouse events well. For these reasons, we have not performed any automated testing,
and have relied on live user testing.

1. We conduct several performance measurements with our own database stress testing tool, called Stress [4]. The
Stress program generates simple database requests, called Stress requests, comprising one or two SQL statements.

Center for Information Technology Integration 2

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

1.4 Performance Measurement Environments

Most performance measurements in this paper were conducted in our testbed environment. We set up an
additional measurement testbed because it provides a controlled environment without external interfer-
ences. The testbed is composed of a WinStation client (Windows NT Workstation 4.0 equipped with a 200
MHz Pentium processor and 32 MB RAM), a WinFrame server (Citrix WinFrame Server 1.6 equipped
with two 200 MHz Pentium processors and 128 MB RAM), and a database server (IBM RS/6000 Model
F30, H/W: 133MHz PowerPC 604 and 256 MB RAM, S/W: AIX 4.2 and Oracle server 7.3.2). These three
machines are attached to a private 10-Mbps Cisco 1900 switch which also provides connectivity to the
campus network.

2. Measurement Methodology for the Oracle Database Server

Analytic modeling of Oracle-based systems uses a set of model parameters, called the Oracle service de-
mands, to specify the CPU time, disk time(s), and SQL*Net traffic for Oracle to service a transaction. The
Oracle service demands require accurate performance measures about system resources consumed by
Oracle. However, accurate measurement techniques applicable to PeopleSoft applications are difficult to
develop because PeopleSoft transactions, unlike general OLTP transactions, actually comprise a long se-
quence of SQL statements. In this section, we describe the measurement techniques for collecting Oracle
resource usages based on Oracle’s dynamic performance tables, known as the v$tables. Since this technique
requires some knowledge about the Oracle internal architecture, we start this section with a short techni-
cal introduction to Oracle database servers.

2.1 Overview of The Oracle7 Server

An Oracle database instance comprises a set of Oracle processes, server and background processes, as well
as the System Global Area (SGA), a group of shared memory structures [22]. Oracle creates server pro-
cesses to handle requests from an Oracle application connected to the database instance. The actual num-
ber of server processes depends on the configuration of an Oracle instance as well as the number of
Oracle user sessions. In a dedicated server configuration, a server process only handles requests from a sin-
gle Oracle user session. In a Multi-Threaded Server (MTS) configuration, a pool of server processes are
shared among all Oracle user sessions to reduce memory usage and process management. Oracle back-
ground processes are created at Oracle startup time to perform system functions as described in Table 2.
We ignore the efforts of all but DBWR and LGWR in our analysis because the rest of background pro-
cesses together consume a very small amount of system resources.

Center for Information Technology Integration 3

Chu/Antonelli/Teorey

Table 2. Functions of Oracle background processes.

Name Description

Process Monitor | PMON performs process recovery when a user process fails; it cleans up the cache and frees

(PMON) resources that the process was using. PMON also restarts failed dispatchers and shared server
processes.

Database Writer | DBWR manages the database buffer cache in SGA and writes modified (dirty) buffers to datafiles on

(DBWR) disk. It manages the buffer cache with an LRU algorithm and guarantees server processes can

always find free buffers. DBWR is signaled to write dirty buffers under the following four
conditions: when the dirty list reaches a threshold length, when a free buffer has not been found after
athreshold limit of buffer scan, when a timeout occurs (every three seconds), and when a checkpoint
occurs. Whenever possible, DBWR writes dirty buffers to disk with a single multiblock write.

Log Writer LGWR writes the redo log buffer in SGA to the online redo log file on disk. LGWR is triggered
(LGWR) during several internal events: it writes a commit record when a user process commits a transaction;
it writes one contiguous portion of the log buffer to disk every three seconds, when the redo log
buffer is one-third full, and when DBWR writes modified buffers to disk. In times of high activity,
LGWR may write to the redo file with group commits which generates less disk writes than writing
each commit record individually.

System Monitor | SMON performs instance recovery during startup, cleans up temporary segments that are no longer
(SMON) in use, recovers dead transactions skipped during crash and instance recovery because of file-read or
off-line errors, and coalesces small chunks of contiguous free space into larger blocks of contiguous
space for easier allocation by Oracle.

Checkpointer The optional CKPT updates the headers of all data files during checkpoint processing. If the init.ora
(CKPT) CHECKPOINT_PROCESS parameter is enabled, this process can improve system performance by
freeing the LGWR to concentrate on the redo log buffer. The CKPT process does not write data
blocks to disk; this is performed by the DBWR.

Recoverer RECO is started when distributed transactions are permitted and the init.ora parameter

(RECO) DISTRIBUTED_TRANSACTIONS is greater than zero. The Oracle distributed option uses the RECO
process to automatically resolve distributed transaction failures.

Archiver ARCH copies online redo log files, once they become full, to a specified storage device or location.

(ARCH) ARCH is present only when the database is started in ARCHIVELOG mode and automatic archiving
is enabled.

The Oracle SGA contains data and control information for a database instance shared by all Oracle pro-
cesses [1,22]. It is implemented as a group of shared memory structures comprising three main compo-
nents:

= Database Buffer Cache: The database buffer cache holds copies of data blocks read from datafiles
on disk. The buffers are organized in two lists: the dirty list and the LRU (least recently used) list.
The dirty list holds modified (dirty) buffers that have not yet been written to disk by DBWR. The
LRU list holds free buffers (buffers that have not been modified), pinned buffers (buffers that are cur-
rently being accessed), and dirty buffers that have not yet been moved to the dirty list.

= Redo Log Buffer: The redo log buffer is a circular buffer that holds redo entries - information about
changes made to the database. Redo entries are copied from the user’s memory space to the redo log
buffer in SGA by Oracle server processes. The background process LGWR writes the redo log buffer
to the online redo log file on disk.

= Shared Pool: The shared pool contains three major areas: library cache, dictionary cache, and control
structures. The library cache is further divided into shared SQL areas (memory areas containing the
parse trees and execution plans of parsed SQL statements), private SQL areas (memory areas contain-
ing bind information and runtime buffers), PL/SQL procedures and packages, and additional con-
trol structures such as locks and library cache handles.

2.2 Performance Measurement Tools

Oracle’s performance monitoring tools record system resource usages consumed by Oracle at the SQL
statement level, the Oracle session level, and the Oracle system level. Since Oracle processes are just user
processes from the OS perspective, performance measurement of Oracle servers usually requires monitor-
ing facilities at the OS level to calibrate measurement data [9,11].

Center for Information Technology Integration 4

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

2.2.1 Collecting Oracle Resource Usages at the SQL Statement Level

The Oracle tools which allow performance monitoring of individual SQL statements are SQL_TRACE
and its companion tool TKPROF; however, they are intended to be used for examining poorly written
SQL statements that are time-consuming or resource-intensive [12,24]. SQL_TRACE records SQL state-
ment traces generated by an Oracle user session; trace files are formatted with TKPROF into a detailed re-
port shown in Table 3.

Table 3. A sample SQL statement in the TKPROF report of PeopleSoft traces

SELECT UNIT_OF_MEASURE, DESCR, DESCRSHORT
FROM
PS_UNITS_TBL WHERE UNIT_OF_MEASURE=EA’' ORDER BY UNIT_OF_MEASURE

call count cpu elapsed disk query current rows

Parse 15 0.01 00 2 0 0 0 0
Execute 15 0.00 00 O 0 0 0 0
Fetch 15 0.04 0.04 24 30 0 15
total 45 0.05 0.06 24 30 0 15

Misses in library cache during parse: 0
Optimizer goal: CHOOSE
Parsing user id: 244

In a TKPROF report, the execution of a SQL statement comprises Oracle internal calls such as parse, exe-
cute, and fetch. The performance statistics are categorized by these calls and their descriptions are listed
below:

count Total number of times a statement was parsed, executed, or fetched.

cpu Total CPU time in seconds for all parse, execute, or fetch calls of the statement.

elapsed Total elapsed time in seconds for all parse, execute, or fetch calls of the statement.

disk Total number of data blocks physically read from datafiles on disk for all parse, execute,
or fetch calls.

query Total number of buffers retrieved in consistent mode for all parse, execute, or fetch calls;

buffers are often retrieved in consistent mode for queries, by SELECT statements.

current Total number of buffers retrieved in current mode; buffers are often retrieved in current
mode for INSERT, UPDATE, and DELETE statements.

rows Total number of rows processed by the SQL statement. For SELECT statements, the num-
ber of rows returned appears for the fetch step. For UPDATE, DELETE, and INSERT state-
ments, the number of rows processed appears for the execution step.

For our analysis, the value of a TKPROF report is in the column marked disk because it can be used to es-
timate how many data blocks are read from disk by the traced SQL statement. A major limitation of
SQL_TRACE and TKPROF is the poor resolution in timing statistics, which is based on Oracle clock ticks
in hundredths of a second. Any operation that takes time less than or equal to an Oracle clock tick may
not be timed accurately. This coarse timing resolution makes it impossible to track the CPU usage of
“short” SQL statements [24].

2.2.2 Collecting Oracle Resource Usages at the Oracle Session Level

V$sesstat is one of the v$tables that records performance statistics at the Oracle session level [1,2,23]. A
session in v$sesstat can be an Oracle application connected to the Oracle instance as well as an Oracle
background process such as DBWR or LGWR. V$sesstat records 161 performance statistics per session
categorized into 8 different classes: user, redo, enqueue, cache, OS, parallel server, SQL, and debug.
Those statistics relevant to the resource usages of individual sessions are:

Center for Information Technology Integration 5

Chu/Antonelli/Teorey

= CPU Usage: For user sessions, v$sesstat records the CPU time for servicing user requests (CPU used
by this session) and the portion of CPU time for parsing SQL statements (parse time cpu). For back-
ground processes, v$sesstat records the CPU time for performing system-wide functions (OS User
time and OS System time).

= Disk Access: For user sessions, v$sesstat records the cumulative number of data blocks physically
read from disk (physical reads). For DBWR, v$sesstat records the cumulative number of data blocks
written to disk (physical writes) and the number of times DBWR is signalled to flush dirty buffers
(write requests). For LGWR, v$sesstat records the number of times LGWR is signalled to write redo
buffers (redo writes), the cumulative number of redo blocks written to disk (redo blocks written), and
the cumulative elapsed time spent on log 170 (redo write time).

= SQL*Net Traffic: For user sessions, v$sesstat records the cumulative number of bytes in SQL*Net
message sent to the client (bytes sent via SQL*Net to client) and received from the client (bytes received
via SQL*Net from client) as well as the total number of round-trip packets exchanged (SQL*Net
roundtrips to/from client).

2.2.3 Collecting Oracle Resource Usages at the Oracle System Level

Several Oracle v$tables record system-wide performance statistics of an Oracle instance from the time it
starts. V$sysstat and v$filestat are two of these that can be used to collect Oracle resource usages at the
Oracle system level. V$sysstat maintain the same 161 performance statistics as v$sesstat but it records
them system-widely. V$filestat records the disk 1/0 statistics of individual datafiles in terms of 6 perfor-
mance statistics:

PHYRDS total number of read requests to a datafile,
PHYWRTS total number of write requests to a datafile,
PHYBLKRD total number of data blocks read from a datafile,
PHYBLKWRT total number of data blocks written to a datafile,
READTIM total disk read time in milliseconds, and
WRITETIM total disk write time in milliseconds.

Since the redo log file is not a datafile, Oracle does not record disk 1/0 statistics about redo logging in
vSfilestat. Instead, Oracle records redo writes, redo blocks written, and redo write time in v$sysstat and in
vsesstat of LGWR. Note that redo blocks are a different size from data blocks and that redo write time is
recorded in Oracle clock ticks; see Section 2.2.1.

2.2.4 Subtle Issues for Collecting Oracle Resource Usages

For most Oracle-based applications, an Oracle user session corresponds to an application instance con-
nected to a database instance. Therefore, v$sesstat is the closest thing we can get to collecting the resource
usage of individual applications, especially in a mixed workload environment. This method, however,
raises some subtle issues due to the intrinsic limitation of Oracle v$tables. We must address these issues
carefully while converting the Oracle resource usages into the service demands of application transac-
tions.

First, Oracle consumes some resources via Oracle background processes that perform system-wide func-
tions; Oracle does not charge these usages to individual user sessions. Second, only data block reads are
recorded under individual user sessions; disk block writes and redo logs are recorded under DBWR and
LGWR separately. Third, Oracle records disk 170 statistics in units of data blocks accessed instead of disk
time. In addition, v$sesstat does not detail these statistics on a per tablespace basis; this causes difficulties
to determine from which datafiles the data blocks are actually accessed. Last, but not least, some Oracle
performance statistics in v$sesstat will change under different workload intensities; this is because of the

Center for Information Technology Integration 6

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

various caching effects in the SGA such as the database buffer cache, dictionary cache, and shared pool,
as well as the batching effects of multi-block writes of DBWR and group commits of LGWR. We will ad-
dress these issues in the rest of this paper.

2.3 Experiments for Collecting Oracle Resource Usages

From the above discussion, we conclude that the best approach for measuring the resource usage of Peo-
pleSoft transactions is to collect Oracle resource usages at the session level and break them down into per
transaction averages. In this subsection, we first describe the important performance statistics in v$sesstat
of different Oracle sessions and then assess the accuracy of resource usage data collected through the Or-
acle v$tables.

2.3.1 Important Performance Statistics in v$sesstat

Tables 4-6 list the important performance statistics recorded in v$sesstat of Oracle user sessions, DBWR,
and LGWR separately. As mentioned before, only datafile reads are recorded under user sessions as phys-
ical reads; datafile writes are recorded under DBWR as physical writes and redo logs are recorded under
LGWR as redo blocks written.

Table 4. Important performance statistics in v$sesstat of Oracle user sessions.

Performance Statistics Description

CPU used by this session cumulative CPU time used by this session; relevant statistics include parse time
cpu, OS User time, and OS System time.

session logic reads the sum of db block gets and consistent gets.

physical reads the cumulative number of data blocks read from disk.

db blocks changes the cumulative number of data blocks chained to the dirty list. Once the block is
in the dirty list, additional changes to that data block are not counted as block
changes.

user commits the number of commit calls issued by this session.

redo sync writes the number of times the redo entry is forced to disk, usually for transaction
commit.

redo entries the number of redo entries generated by this session.

redo size the cumulative amount of redo entries generated by this session.

bytes sent via SQL*Net to client the cumulative number of bytes in SQL*Net messages was sent to client.

bytes received via SQL*Net from client the cumulative number of bytes in SQL*Net messages was received from client.

SQL*Net roundtrips to/from client the number of times a message was sent and an acknowledgment received.

From its definition in Table 4, db block changes is the only user session performance statistic related to
physical writes of DBWR; however, we find these two statistics are not correlated. This makes it impossible
to distinguish physical writes caused by different user sessions. Therefore, we can only measure the num-
ber of data blocks written per user transaction in a homogeneous workload environment.

Table 5. Important performance statistics in v$sesstat of DBWR.

Performance Statistics Description

physical writes the cumulative number of data blocks written to disk.

write requests the number of times LGWR is signalled to flush dirty buffers to disk.
OS User time used the total amount of CPU time running in user mode.

OS System time used the total amount of CPU time running in system mode.

Three performance statistics of user sessions are pertinent to redo logging: redo sync writes, redo entries,
and redo size. In section 4, we will describe how to apply these statistics and LGWR redo wastage to esti-
mate the redo blocks written on behalf of a user session.

Center for Information Technology Integration 7

Chu/Antonelli/Teorey

Table 6. Important performance statistics in v$sesstat of LGWR.

Performance Statistics Description

redo wastage the cumulative total of unused bytes that are written to the log. Redo buffers are
flushed periodically even when not completely filled.

redo writes the number of times LGWR is signalled to write redo buffers to disk.

redo blocks written the cumulative number of redo blocks written to disk.

redo write time the cumulative disk time for redo logging.

OS User time used the total amount of CPU time running in user mode.

OS System time used the total amount of CPU time running in system mode.

Although Oracle v$tables provide a rich set of performance statistics; these statistics are actually used for
performance tuning purposes. Before applying these statistics to estimate Oracle resource usages, we
must assess the accuracy of these statistics. Therefore, we conduct several measurement experiments with
the Stress program and compare these statistics with similar performance metrics collected with iostat.
These experiments are described in three separate subsections as: Oracle CPU usage measurement, Oracle
disk usage measurement, and SQL*Net traffic measurement.

2.3.2 Oracle CPU Usage Measurement

Oracle measures resource usages in v$sesstat by polling the system resource usages of Oracle processes
via system calls such as getrusage and times [13]. This approach makes Oracle resource usage statistics
fairly accurate at the OS process level; however, it does not consider system processes performing OS
functions on behalf of Oracle. Oracle CPU usages in v$sesstat thus only account for portions of total CPU
time actually consumed. To further study this issue, we conduct several CPU usage measurements on the
testbed Oracle server and compare the Oracle CPU usage in v$sesstat with the CPU time estimated from
iostat.

These measurement experiments are driven by the Stress program [4] with each Stress instance generating
10,000 Stress requests. The first set of measurements uses a single Stress instance and repeats for each re-
quest type. The second set of measurements uses two concurrent Stress instances for each request type.
The third set of measurements uses three concurrent Stress instances with a different request type for each
instance. The CPU usages of all Oracle sessions are summarized in Table 7.

Table 7. Comparison of CPU usages measured with v$sesstat and estimated from iostat.

#clients 1 2 3

request type insert update delete insert update delete mixed
Stress 73.17 129.59 126.95 157.36 278.12 271.63 367.84
PMON 0.10 0.14 0.17 0.17 0.16 0.22 0.21
DBWR 12.30 8.76 13.90 23.09 16.89 29.08 32.43
LGWR 21.39 20.12 21.66 37.69 47.16 41.81 56.28
SMON 0.03 0.06 0.06 0.06 0.07 0.11 0.08
RECO 0.00 0.01 0.00 0.01 0.00 0.01 0.00
Oracle 106.99 158.68 162.74 218.38 342.40 342.86 456.84
iostat 136.32 22310 222,57 273.96 470.05 475.06 619.11
OS overhead 29.33 64.42 64.83 55.58 127.65 132.24 162.27
% 78.48% 71.13% 73.12% | 79.71% 72.84% 72.17% | 73.79%

These measurements indicate that Oracle v$sesstat CPU usage measurements only account for 71-80% of
actual CPU usage estimated from iostat. Since iostat generates negligible monitoring overhead, it is rea-
sonable to consider the difference as the OS overhead. It is also apparent from Table 7 that different Ora-
cle workloads cause different amounts of OS overhead. The above results coincide with other research
work which also indicates CPU usage in v$sesstat only accounts for 75% of actual CPU usage on average
[9,11].

Center for Information Technology Integration 8

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

2.3.3 Oracle Disk Usage Measurement

Oracle records disk access statistics in v$sesstat as physical reads, physical writes, and redo blocks written.
Converting these statistics into individual user session disk usages raises some important issues. First,
Oracle records the numbers of data/redo blocks accessed instead of disk time. Second, v$sesstat does not
detail from which tablespaces these data blocks are accessed. Finally, only physical reads are recorded on a
per user session basis; physical writes and redo blocks written are system-wide statistics.

Converting Oracle Disk Access To Disk Time
Converting Oracle disk access to disk time require us to identify the disk(s) accessed and the unit disk
time per access. As a consequence, we can address the first two issues through the following four steps:

= identify the tablespaces accessed by each type of transaction,
= construct the mapping between Oracle tablespaces and physical disks,
= calculate the average disk time per block access, and

= estimate individual disk times by multiplying the disk access statistics by the average disk time per
block accessed.

These steps can be facilitated by use of long-term disk 1/0 statistics of datafiles and redo log files in
vifilestat and v$sysstat [23,24]. Table 8 lists these disk 1/0 statistics from the testbed Oracle server. The
row marked summary lists the average disk statistics over all datafiles.

Table 8. Long-term disk I/O statistics for datafiles and the redo log file from v$filestat and v$sysstat.

Oracle files PHYRDS | PHYWRTS | PHYRBLKRD | PHYBLKWRT | READTIM | WRITETIM
systemO1.dbf 51090 35339 84885 35339 3966 935057
rbs01.dbf 25 48886 25 48886 4 915107

summary 51115 84225 84910 84225 3970 1850164
redo log file 347290 712705 987909

Since the testbed Oracle server has only one disk, we can skip the first two steps. We then apply the disk
statistics in Table 8 to estimate the average disk times per block access as shown in Table 9. We can use
the summary average instead of individual averages of each datafile for the last steps because these sta-
tistics refer to the same disk.

Table 9. Average disk time per request and per block.

Oracle files ms/phyrds ms/ ms/phyblkrd ms/
phywrts phyblkwrt
system01.dbf 0.078 26.460 0.047 26.460
rbs01.dbf 0.160 18.719 0.160 18.719
summary 0.078 21.967 0.047 21.967
redo log files 28.450 13.860

To complete the last step, we ran two experiments with different workloads and collected the disk access
statistics in v$sesstat. Workload | comprises 10,000 Stress update requests; its disk access statistics are
listed in the third column of Table 10. Workload Il comprises 10,000 Stress requests with mixed request
types (10% query, 60% update, 25% insert, and 5% delete); its disk access statistics are listed in the fourth
column. The average disk times per block access from Table 9 are repeated in the second column of Table
10. We can thus compute the data block read time from physical reads, the data block write time from phys-
ical writes, and the redo log time from redo blocks written. At bottom of Table 10, we find that the estimated
disk times are very close to the iostat disk times for both measurements.

Center for Information Technology Integration 9

Chu/Antonelli/Teorey

Table 10. Disk time estimation by combining v$sesstat and v$filestat.

disk usage disk time 10,000 update requests 10,000 mixed requests
statistics
ms/unit v$sesstat disk time (sec) v$sesstat disk time (sec)
physical reads 0.047 345 0.016 10 0.001
physical writes 21.976 1830 40.200 2997 65.835
write requests 267 260
redo writes 28.450 10012 284.841 8998 255.993
redo blocks written 13.860 20006 277.283 18126 251.725
redo write time 27390 273.900 24860 248.600
estimated disk 317.499 317.561
time
iostat disk time 326.860 327.840

Separating Oracle Disk Writes for Individual User Sessions

Collecting the per-session Oracle disk usages raises the third issue because Oracle does not record physical
writes and redo blocks written on a per user-session basis. To the best of our best knowledge, there is no sat-
isfactory solution for this issue because not enough information is provided in v$sesstat of Oracle user
sessions. For physical writes, the db block changes of a user session does not imply the number of data blocks
written on behalf of the user session. For redo block written, the redo size of a user session does not imply
the redo blocks written on behalf of the user session because of redo wastage; however, redo wastage is only
recorded for LGWR and cannot be broken down into individual user sessions. Although these two prob-
lems reveal the imperfection of the measurement methodology based on v$sesstat, we can alleviate these
problems by conducting performance measurements in a homogeneous workload environment.

2.3.4 SQL*Net Traffic Measurement

For SQL*Net traffic measurement, the three performance statistics in v$sesstat (bytes sent via SQL*Net to
client, bytes received via SQL*Net from client, and SQL*Net roundtrips) are fairly accurate compared with the
SQL*Net packet traces collected with tcpdump. In addition, these statistics can be converted directly into
model parameters, such as #packets per request and average packet length, applicable to most analytic perfor-
mance models.

2.4 Performance Measures vs. Monitoring Tools

Table 11 summarizes how performance measures are associated with monitoring tools for collecting Ora-
cle resource usages. Three OS level tools - iostat, filemon, and tcpdump - are also included because they can
be applied to calibrate the performance statistics in Oracle v$tables. We further divide the v$sesstat into
three columns as USER, DBWR, and LGWR, because some performance statistics only apply to specific
Oracle sessions in v$sesstat.

There are several pitfalls while interpreting performance statistics in Oracle v$tables because some of these
statistics are either confusing or misleading. First, Oracle disk timing statistics (such as READTIM,
WRITETIM, and redo log time) are measured by Oracle processes at the OS user level; therefore, these sta-
tistics are actually the elapsed times of 1/0 system calls rather than the disk service times.

Second, some Oracle performance statistics have misleading names which easily cause confusion. For ex-
ample, physical reads/physical writes in v$sesstat record the same disk access statistics as PHYBLKRD/
PHYBLKWRT in v$filestat. In addition, write requests and redo writes in v$sesstat actually record the num-
ber of times DBWR and LGWR are signalled to work instead of recording actual disk write requests. The
actual numbers of disk requests to Oracle datafiles are recorded as PHYRDS and PHYWRTS in v$filestat;
however, no equivalent performance statistics are recorded in v$sesstat.

Third, some similar performance statistics are actually based on different units. For example, the redo
blocks (512 bytes) are a different size from the data blocks (4 KB); the timing statistics in v$sesstat is based

Center for Information Technology Integration 10

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

on units of 10 ms (Oracle clock ticks) but the timing statistics in v$filestat are based on units of millisec-
onds.

Table 11. Performance measures vs. monitoring tools for measuring Oracle resource usages.

v$sesstat

USER DBWR LGWR | Stress | v$filestat iostat filemon | tcpdump

transactions X

user commits X

response time X

CPU utilization X

CPU time X X X

disk utilization X X

disk read time X
READTIM X

disk write time X
WRITETIM X

redo log time X

disk transfers X

logic reads X

PHYRDS X X

physical reads (PHYBLKRD) X X X

write requests X

PHYWRTS X

physical writes (PHYBLKWRT) X X X

redo writes X

redo blocks written X

bytes sent via SQL*Net to client X X

bytes received via SQL*Net from client

SQL*Net roundtrips X X

x

x
x

3. Measurement Methodology for Citrix WinFrame Extension

Citrix WinFrame allows Windows applications to be deployed in a network-centric, three-tiered architec-
ture: the application execution and data storage occur on central servers, and only a “thin” piece of client
software is required at user desktop machines [6]. The three-tiered deployment is accomplished with Cit-
rix’s universal thin-client software, the multi-user NT server, and the Independent Console Architecture
(ICA). Performance measurement of this WinFrame extension aims at quantifying the resource consump-
tion of the ICA presentation service while the PeopleSoft client program (henceforth called PSTOOLS) is
remotely executed. The resource consumption as characterized by the ICA architecture comprises three
parts: the resource usage on a user desktop machine (WinStation), the resource usage on a WinFrame ap-
plication server, and the ICA traffic between the WinStation and the WinFrame server [4].

3.1 Citrix’s Independent Console Architecture

A distributed Windows presentation separates the graphic user interface (GUI) of an application from its
execution logic. In Windows NT 3.51 and previous releases, the window manager and graphics sub-
systems are implemented as a separate user-mode process called the Win32 subsystem (or csrss.exe) [8]. In
order to redirect the Windows display to a remote machine, Citrix adds a Thinwire component into the
Graphics Device Interface (GDI) and video drivers of the Win32 subsystem. The Thinwire component im-
plements the Thinwire protocol which provides highly optimized drawing primitives for Windows presen-
tations. The WinFrame server thus uses a separate instance of csrss.exe to manage the Windows display
for each WinStation connection [5].

Center for Information Technology Integration 11

Chu/Antonelli/Teorey

ICA divides its functions into individual protocol drivers layered as a protocol stack (shown in Figure 12).
The Thinwire data protocol relies on the ICA protocol to provide reliable, in-sequence delivery of data. Ad-
ditional protocol drivers can be configured to supplement the ICA protocol with functions such as com-
pression, encryption, framing, reliable delivery, and modem control. The bottom layer is the network
transport driver (TCP/IP, IPX/SPX, NetBIOS, or PPP/SLIP) provided by Windows NT.

WinFrame
Multi-user Application Server ICA-based Client

Application WinStation
screen output

|Thinwire Protocol | ---------------- - |Thinwire Protocol |

I keyboard & mouse I
| icaProtocol | ICA Data Stream | icAProtocol |
- .. encr;/pnon
|Add|t|0nal Protocols | |Add|t|ona| Protocols | framing
I I reliable transmission
| Network Transport I =|| Network Transport | TCP, IPX, NetBIOS

Figure 12. ICA Protocol Stack.

The Thinwire protocol uses WdFrames (window frames) to carry presentation information in both direc-
tions of a WinStation connection. At the WinStation, WdFrames carry key-strokes and mouse events; at
the WinFrame server, WdFrames carry Windows objects (bitmaps, brushes, glyphs, and pointers) for dis-
play at the WinStation. ICA can accommodate low network bandwidth for its presentation service be-
cause small Windows objects are cached in WinStation’s memory and large bitmaps are persistently
cached on the WinStation’s disk. Windows objects therefore are transported across the network on first
reference; most subsequent references can be resolved through local caches. In addition, multiple Wd-
Frames are encapsulated (or batched) in a single ICA frame to reduce the network traffic.

3.2 Performance Measurement Tools

Performance measurement of the WinFrame extension collects resource usages consumed by ICA Win-
dows presentation and PSTOOLS. Since the resource usages are collected at WinStations and WinFrame
servers, we apply different monitoring tools available on these platforms as described in the following
subsections.

3.2.1 Performance Measurement Tools on Windows 95

Most client desktop machines are personal computers running Windows 95 in the production environ-
ment. The standard monitoring tool on Windows 95 is the system monitor, which allows on-line monitor-
ing of a limited set of performance statistics about file system, kernel, and memory manager. However,
the system monitor cannot record these statistics into files; this makes it useless for resource usage mea-
surement. Some freeware tools are available for performance monitoring purposes on Windows 95. Stat-
Bar Console [7] and wintop [20] are two of these that fit our measurement requirement.

StatBar Console reports free System/User/GDI resources and CPU utilization between two sampling
points. Users can specify the delay between consecutive reports and redirect its outputs to a log file. Since
each report has a timestamp, we can estimate the CPU usage in a given time period. However, it is not
possible to further break down the CPU usage at the process level. Wintop is a Windows 95 approxima-

Center for Information Technology Integration 12

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

tion of the Unix top program. For each active process, wintop reports the percentage of CPU time used by
the process in the last two seconds and the accumulated CPU time since it was started. Therefore, the
CPU usage of a process can be collected at a specific measurement point.1

3.2.2 Performance Measurement Tools on WinFrame Servers

Unlike Windows 95, Windows NT is well-metered for performance measurement [8]. It provides a rich
set of performance counters for important system objects: System, Process, Memory, Physical Disk, Net-
work Interface, etc. Windows NT also provides a standard tool, called perfmon, for on-line monitoring of
individual performance counters or for recording all performance counters within a performance object
[10]. Similar to other monitoring tools, perfmon generates overhead for monitoring or logging, especially
for monitoring disk activities. Since the overhead grows with the number of performance counters moni-
tored, only necessary counters should be included in any measurement plan.

3.2.3 Performance Measurement Tools for ICA Traffic

ICA traffic can be collected as packet traces with packet capturing tools such as a network sniffer or tcp-
dump. After the packet stream of a WinStation connection is identified in the packet traces, the tcptrace
tool provides ICA traffic statistics of individual WinStation connections [4]. Similar performance metrics
can also be collected at WinStations or at WinFrame servers. Each WinStation records ICA packets gener-
ated by itself and displays the traffic statistics in the “Client Connection Status” window as shown in Fig-
ure 13. Therefore, we can reset these statistics at the beginning of a measurement and collect the ICA
traffic statistics at the end of a stress testing session.

Client Connection Status

Connected ta server: SPARROW
a3 uzer MPATH-TESThwochu
Encryption Level: Basic

“er 3.0.0.330 Incoming Cutgaing
Butes 158E36E 382308
Frames E032 5029
Evtez/Frame ZE0 7B 1r3=]
Frame erors 0 u}
Recv Send Ok Fieset |

Figure 13. Client Connection Status of a WinStation.

Citrix WinFrame adds a performance object called WinStation which contains a set of performance
counters associated with individual WinStation connections. The performance counters relevant to ICA
traffic measurement include: Total ICA Bytes/sec in the System object for all WinStation connections, Input/
Output/Total Bytes/WdBytes and Input/Output/Total Frames/WdFrames in the WinStation object for individ-
ual WinStation connections. These counters report ICA traffic generated between two consecutive sam-
pling points.

1. However, wintop is not always accurate for CPU usage measurement because some CPU time of a destroyed thread
may be lost; this results in CPU time under reporting if a process creates and destroys threads frequently. This is
not an issue for us because wfica32.exe does not destroy threads.

Center for Information Technology Integration 13

Chu/Antonelli/Teorey

3.2.4 Correlating Performance Data Across Platforms

Since performance measurement of the WinFrame extension spreads across several platforms, it creates
difficulties to correlate performance data collected at different locations. In addition, we find a similar
problem for correlating performance counters in different performance objects.! The WinStation adminis-
tration tool, winadmin, provides important information for building cross references among performance
counters in different performance objects as well as performance data gathered across different locations.
As a consequence, performance measurement must also collect the WinStation connection information
with winadmin in order to correlate the performance data.

3.3 Characteristics of ICA Overhead

Remote computing in the WinFrame environment requires extra CPU time to manage the distributed pre-
sentation. We call this extra CPU time the ICA overhead to distinguish it from the actual CPU time con-
sumed by the application. ICA overhead also applies to the WinStation on which the GUI is actually
displayed. Therefore, we further distinguish this ICA-client overhead from the ICA-server overhead at the
WinFrame server. Since ICA overhead is incurred by the distributed presentation, the GUI design of a
Windows application is the key factor in determining the amount of overhead generated. However, sev-
eral configuration settings of a WinStation connection can also affect ICA overhead. The two most impor-
tant are the encryption and compression settings because they cause extra CPU time for each ICA frame
[5]. Other configuration settings affecting the ICA overhead include the size and the color depth of the
window display at the WinStation.

3.3.1 Performance Measurement of ICA Overhead

We measure ICA overhead with perfmon and task manager in our testbed environment. Since the Win-
Frame server uses a separate csrss process to manage the distributed presentation on behalf of each Win-
Station, WinStation-induced ICA-server overhead can be measured against the specific csrss process
associated with each WinStation. Similarly, we can measure the ICA-client overhead against two specific
processes, called wengfN.exe and wfcrun32.exe?. Table 14 shows the performance measures of the ICA
overhead for running the Stress program in the three-tiered configuration. Performance measures in the
shadow area are actually measured; the other measures are derived values.

Table 14. Performance measurement of ICA overhead on behalf of Stress program.

#of DB C CPU time (sec.) %CPU ICA traffic ICA Overhead
calls WinServer WinStation WinServer WinStation WinServer WinStation
(sec) stress csrss wengfN stress csrss wengfN (bytes/sec) (us/byte)

500 38.22 7.87 7.06 39 20.59 18.47 102.04 6970.53 26.49 146.39
1000 75.77 15.47 14.70 73 20.42 19.40 96.34 7214.87 26.89 133.54
1500 113.83 2451 21.70 109 2153 19.07 95.76 6926.25 27.53 138.25
2000 152.91 32.36 29.78 143 21.16 19.48 93.52 6926.32 28.12 135.02
2500 190.81 40.65 37.27 182 21.30 19.53 95.38 6847.54 28.52 139.30
3000 229.64 46.43 44.24 219 20.22 19.27 95.37 6684.91 28.82 142.66
3500 269.13 55.23 52.43 256 20.52 19.48 95.12 6759.26 28.82 140.73
4000 307.81 61.28 59.31 293 19.91 19.27 95.19 6682.80 28.83 142.44
mean 20.71 19.24 96.09 6876.56 28.00 139.79
stdev 0.57 0.35 2.53 176.11 0.93 421

1. This problem exists because performance objects use different indices to refer multiple instances. For example,
performance counters in the WinStation object are indexed by connection ID (in the form of tcp#), but performance
counters in the Process object are indexed by process name. Correlating a process with a WinStation connection
requires winadmin information which maps the connection ID of a WinStation to the process name of a process.

2. Citrix has changed the name of its client program from wfengfN32.exe to wfica32.exe in recent releases; wfcrun32.exe
consumed no CPU time in our experiments, so we do not consider it further here.

Center for Information Technology Integration 14

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

The measurement focuses on the ICA traffic rate and the CPU consumption of three processes - Stress it-
self, csrss at the WinFrame server, and wengfN at the WinStation. Based on the ICA traffic rates and the
CPU utilization of csrss and wengfN, we can estimate the ICA-client overhead and ICA-server overhead in
CPU time cost per byte.

Several interesting phenomena are revealed by Table 14. First, the cost of the distributed presentation ser-
vice provided by ICA on behalf of Stress is very high. It consumes about 96% of the CPU time at the Win-
Station and 19% of the CPU time at the WinFrame server; the latter figure is very close to the CPU
utilization of Stress itself, when run in the two-tiered configuration. Second, ICA-client overhead (140 us/
byte) is more costly than ICA-server overhead (28 us/byte). We have not yet found a good explanation
for this five-fold overhead difference. Third, the average ICA traffic rate is low, less than 0.6% of Ethernet
bandwidth, even though our test has an artificially high GUI update rate.

3.3.2 Comparison with Two-Tier

To further investigate the cost of Citrix remote computing, we measured the completion time and CPU
usages for running Stress in both two-tiered and three-tiered configurations. The measurement data are
shown in Figure 15 with different numbers of database calls.

of DB 2-tiered Stress 3-tiered Stress | T ¥ ____.-'-'
alls | cpy C CPU C wengfN _ : s +
500 8.03 32.73 8.47 38.22 39 £ ___,.u- =
1000 15.62 63.61 16.08 75.77 73 | .-"' A
1500 23.28 98.58 24.75 113.83 109 + ___.:

2000 31.09 130.59 31.58 152.91 143 ..u-'
2500 37.97 166.34 39.23 190.81 182 ___.-'"-- ‘
3000 45.72 200.31 47.83 229.64 219 ___-:

3500 55.03 235.34 55.91 269.13 256 e

4000 61.33 266.92 63.75 307.81 293 I.—-

Figure 15. Measurement of application impact of Citrix WinFrame.

Comparing the measurement data in both configurations, we can draw three conclusions. First, the Stress
program consumes about an equal amount of CPU time in both configurations. Second, there is a notice-
able overhead (about 14-17%) in completion times for running Stress in the three-tiered as opposed to the
two-tiered configuration, and the difference grows linearly with the completion time. Third, the WinSta-
tion (in the form of wengfN.exe) consumes much more CPU time for the presentation of Stress results than
it does running the Stress program itself.

3.4 Stress Testing of WinFrame Server in a Production Environment

Stress testing was conducted in a production environment to study the performance of a WinFrame
server (a COMPAQ ProLiant 5000 running Citrix WinFrame 1.7 with 4 166MHz Pentium processors and
1 GB memory). In this testing, 35 test users connected to the WinFrame server from their local desktop
machines and submitted PeopleSoft Space Management transactions. Meanwhile, perfmon was set up on
the WinFrame server to log performance objects: Memory, Physical Disk, Process, Processor, System,
and WinStation, every 30 seconds. The log file was played back in the testbed WinFrame server and con-
verted into spreadsheets for statistical analysis.

Center for Information Technology Integration 15

Chu/Antonelli/Teorey

3.4.1 Major Resource Usage of the WinFrame Server
The major resource usages of the WinFrame server can be observed from the System, Memory, and Phys-
ical Disk performance objects. Figure 16 displays the recorded values of four performance counters for
the entire stress test. The Active WinStations counter, a dashed line peaking at 35, is also included to indi-
cate three different phases of the stress test: connection, data entry, and disconnection. These counters
correspond to the following performance metrics:

% Total Processor Time the average processor utilization of all processors,

Total ICA Bytes/sec ICA traffic rate for all WinStations connections in bytes/sec,
Active WinStations the number of active WinStation connections,

% Disk Time the disk utilization of the physical disk 0, and

Available Bytes the size of free virtual memory in bytes.

These counters capture the essential performance characteristics of the WinFrame server in the stress test.

| phase one | phase two | phase three |

HENEdsscadiEtdigeneEnenl

o e

DN Mee LT e T

Figure 16. Major resource usages of the WinFrame server in 35-user stress testing.

First, considerable free memory - no less than 750 MB - is left unused for the entire stress testing. Consid-
ering the overall processor utilization (i.e. % Total Processor Time) in the data entry phase, trading some
memory for faster processors can yield better performance. Second, three potential bottleneck devices can
be identified in each testing phase: the physical disks in the connection phase, the processors in the data
entry phase, and the network interface in the disconnection phase. Table 17 summarizes the average utili-
zation of all processors and individual disks in each testing phase.

Center for Information Technology Integration 16

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Table 17. Average processor and disk utilizations of the WinFrame server in different stress test phases.

Performance Counter Name Connection | Data Entry | Disconnection
System % Total Processor Time 44.62% 91.09% 34.88%

% Disk Time 52.62% 4.09% 26.47%

Physical Disk 0 % Disk Read Time 1.96% 0.05% 0.62%
% Disk Write Time 51.02% 4.05% 25.85%

% Disk Time 9.88% 2.02% 1.22%

Physical Disk 1 % Disk Read Time 7.31% 0.33% 0.29%
% Disk Write Time 2.57% 1.69% 0.93%

% Disk Time 2.44% 1.49% 0.87%

Physical Disk 2 % Disk Read Time 0.02% 0.00% 0.00%
% Disk Write Time 2.42% 1.49% 0.87%

The WinFrame server experiences moderate disk reads on disk 1 and high disk writes on disk 0 in the
connection phase. Disk 1 stores the PeopleSoft client software; therefore, the disk read activities are for
loading PSTOOLS. Disk 2 stores the PeopleSoft cache files of individual PeopleSoft users. The cache files
contains the online elements such as panels, fields, or menus retrieved from the master copies on the da-
tabase server. The disk write activities are for writing these objects into the cache files whenever
PSTOOLS is started.! The ICA traffic is moderate in most cases except when a WinStation is disconnect-
ing from the WinFrame server. This can be observed as several bursty peaks in Total ICA Bytes/sec when
the value of Active WinStations decreases. According to Citrix, this bursty ICA traffic is caused by ac-
knowledgment packets for closing all opened files of a WinStation connection.

3.4.2 Important Performance Metrics in the Process Object

The Process object records all active processes on the WinFrame server during stress testing. While re-
motely executing the PeopleSoft client program, each WinStation user launches seven processes: pstools,
csrss, progman, NTVDM, wfshell, winlogon, and NDDEAGNT.

Table 18. CPU usages of WinFrame system processes and PeopleSoft client processes.

Process Name % Processor Time % Total Processor Time
pstools (36) 184.249 47.0%
csrss (36) 125.927 32.1%
idle 35.793 9.1%
PERFMON (2) 25.950 6.6%
system 6.382 1.6%
winadmin (2) 6.275 1.6%
icasrv 4.541 1.2%
Isass 0.949 0.2%
services 0.847 0.2%
pspmd (2) 0.456 0.1%
WINFILE 0.108 0.0%
progman (36) 0.045 0.0%
USRMGR 0.039 0.0%
NTVDM (36) 0.034 0.0%
wrfshell (35) 0.028 0.0%
ibrowser 0.026 0.0%
winlogon (36) 0.025 0.0%
NDDEAGNT (36) 0.018 0.0%

1. The WinFrame/PeopleSoft Application Note suggests the PeopleSoft caches of individual users be stored on a
network file server. This approach, however, causes extra network traffic each time the PeopleSoft client program
references the PeopleSoft caches. The U-M approach copies these caches files from the network file server to the
local disk of the WinFrame server at the startup of PeopleSoft client program. Therefore, loading the PeopleSoft
caches actually causes intensive disk writes in the connection phase.

Center for Information Technology Integration 17

Chu/Antonelli/Teorey

As shown in Table 18, however, most processor resources are actually consumed by two processes: pstools
and csrss. Pstools is the PeopleSoft client program; it uses 47% of overall processor resources. Csrss han-
dles remote Windows presentation for a WinStation connection; it uses 32% of overall processor re-
sources. Perfmon causes the monitoring overhead at the amounts of 6.6% of overall processor resources
for recording 6 performance objects every 30 seconds.

Figure 19 plots the % Processor Time of csrss.exe against the % Process Time of pstools.exe for all WinStation
connections in the data entry phase. What is important here is that the ICA server overhead, in the form
of csrss CPU usage, grows linearly with the CPU usage of pstools instead of highly randomly.

% Froorrry Thmw - cHFRArs
. =
LY
5
LY
h

[
a4 24 ar TH " 21 E
o Frwees e Three sl rae

Figure 19. % Processor Time - csrss.exe vs. pstools.exe in the data entry phase of the stress testing.

3.4.3 Important Performance Metrics inthe WinStation Object
The WinStation object contains performance counters relevant to WinStation connections. These counters
can be divided into four major categories:

« resource usages: % Processor Time, Page File Bytes, Virtual Bytes, Working Set;

= ICA object references: reads, hits, and hit ratio of ICA object references;

= |CA traffic: input/output/total ICA bytes, WdBytes, frames, WdFrames; and
= ICA compression statistics.

Resource usage counters in the WinStation object cover processor and memory, but not disk. % Processor
Time reports the average processor utilization consumed by the WinStation connection between two sam-
pling points. Page File Bytes and Working Set can be used to estimate the size of system page files and the
amount of physical memory required for WinFrame servers.

Table 20. Performance statistics for cumulative ICA object references.

reads hits hit ratio

bitmap 82,977 81,687 98.4%

brush 36,818 36,782 99.9%

glyph 1,116,675 1,108,950 99.3%

save screen bitmap 3,384 2,228 65.8%
summary 1,239,854 1,229,647 99.2%

The WinStation object also records ICA object references for bitmap, brush, glyph, and save screen bitmap.
Each ICA object has three performance counters (reads, hits, and hit ratio) recording cumulative statistics.
Table 20 lists the content of these counters averaged from all WinStation connections. This table supports

Center for Information Technology Integration 18

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

the low bandwidth requirement of ICA because 99% of ICA object references are actually cached at Win-
Stations.

There are 12 performance counters in the WinStation object recording ICA traffic generated between two
sampling points. Figure 21 plots the average numbers of ICA frames/WdFrames generated in 30 seconds
against the % Processor Time of csrss.exe for individual WinStations in the data entry phase. There are two
vertical scales in this figure: the scale on the left shows Input Frames, Output Frames, and Input WdFrames;
the scale on the right shows Output WdFrames. Apparent from Figure 21 is that the ICA protocol puts to-
gether multiple output WdFrames into a single output frame to reduce communication overhead. In ad-
dition, we can observe a linear pattern between ICA frames generated and the % Processor Time of csrss in
Figure 21. If we consider both linear patterns in Figures 19 and 21, we can conclude that the ICA over-
heads, in the forms of csrss CPU usage and ICA traffic, have regular patterns.

& Inpat Frrse
] o B v E
}: . Chiipen Fusmsty .___.-"' &l
i Thm e Earm o
] = B
= --F
4 T E
5 - ab g
i ot ’ E
é 1 e) 5_
-
-
} e E
g - e ™
i
w ! 1T
i 1]

ED 12 rd | 1E i ua ag B D

a Foocsneoy Tiows - CErna sne

Figure 21. ICA traffic vs. % Processor Time of csrss.exe in the production environment.

3.5 Other Performance Measurement Considerations

From the discussion above, we can extend the measurement methodology to collect the resource usages
consumed by the WinFrame extension on a per-WinStation basis. If we further divide these by the num-
ber of PeopleSoft transactions accomplished, we convert the resource usages into a per-transaction basis.
From a performance modeling perspective, these per-transaction resource usages correspond to the ser-
vice demand parameters for each type of PeopleSoft transactions as: CPU service demand at a WinStation
(the average CPU time consumed by wfica32.exe at a WinStation for ICA presentation service), CPU service
demand at a WinFrame server (the average CPU time consumed by csrss.exe at a WinFrame server for the
ICA presentation service), #/CA frames (the average number of ICA packets generated for the ICA presen-
tation service), and bytes/ICA frame (the average packet length of ICA frames in bytes).

It should be noted that these model parameters do not include disk usages. We do not consider the disk
usage of WinStations because most ICA object references are actually cached in a WinStation’s memory.
For WinFrame servers, the stress testing shows that the actual disk utilizations in the data entry phase
(which also include disk writes of perfmon) are quite low - less than 4%. In addition, we can only monitor
system-wide disk usages on WinFrame servers. Therefore, we believe it is reasonable to neglect the disk
usage on WinFrame servers unless it can be measured on a per-process or per-WinStation basis.

Center for Information Technology Integration 19

Chu/Antonelli/Teorey

4. Service Demand Estimation and Analytic Modeling

In the previous two sections, we presented the measurement methodology for measuring the system re-
source usages consumed by PeopleSoft applications in both two- and three-tiered environments. Since the
resource usages are collected at each tier on a per-session basis, we can easily convert them into a per-
transaction basis. For analytic modeling, the average resource usages per transaction correspond to the
service demands of a PeopleSoft transaction. Our previous work shows that the measured Oracle service
demands, especially for Oracle disk times, actually vary with the number of concurrent user sessions on
the Oracle server [4]. In this section, we use the Stress program to investigate why Oracle service demands
vary with concurrent user sessions.

4.1 Experiment Setup

We set up the experiments by running multiple instances of the Stress program concurrently on the test-
bed WinFrame server. Each Stress instance is configured to generate 10,000 Stress update requests against
the testbed Oracle server; we start with a single Stress instance and add one instance at a time until we
have 10 concurrent instances. For each experiment, we collect the Oracle resource usages by taking snap-
shots of v$sesstat and v$filestat before and after each stress testing, we also use iostat to collect the CPU
and disk utilizations of the Oracle server, and we use pview to collect the CPU time consumed by each
Stress instance on the WinFrame server.

4.2 Performance Metrics Derived from lostat

Figure 22a plots the CPU utilization (%cpu), disk utilization (%disk), and throughput (X) of the Oracle
server against the number of concurrent Stress instances (henceforth abbreviated as #clients). There are
two interesting phenomena in this figure: first, the Oracle disk utilization saturates around 77-78%, in-
stead of 100%, with 4 or more clients; second, the Oracle bottleneck device switches from the disk to the
CPU between 6 and 7 clients.

-,

(0] X L =0T Sk W oy il Cepsanwr Oyt
.
=
T ™7 o &1
B
3w =
B b]
£ w! H
'E & ' LR
3 m "
5+ . i
x
d ! E
1 H ! a K [] T [] N 1E i . y & I a - i] 1B
nEE e
(a) utilization and throughput. (b) service demands.

Figure 22. Performance measures of Stress update derived from iostat outputs.

These two phenomena are more explainable when we look into the measured service demands of Stress
update in Figure 22b. It turns out that both the CPU service demand on the WinFrame server (Dcpu-cli)
and the CPU service demand on the Oracle server (Dcpu-svr) increase with #clients; however, the Oracle
disk service demand (Ddisk-svr) actually decreases with #clients. In addition, the Dcpu-svr begins to ex-

Center for Information Technology Integration 20

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

ceed the Ddisk-svr with 7 clients. To study these phenomena further, we decompose the Oracle service
times with performance statistics in v$tables.

4.3 Oracle CPU Time Decomposition for ~ Stress Update

The Oracle v$sesstat provides a better source than iostat to examine the Oracle CPU usage because it
records the Oracle CPU times for user sessions and background processes separately. Table 23 shows the
decomposed Oracle CPU times per Stress update request. The first five columns in Table 23 correspond to
Oracle background processes. The sixth column shows the average CPU time per request consumed by
Stress Oracle user sessions. The column marked ‘Oracle’ adds up all Oracle process CPU times; the col-
umn marked ‘iostat’ lists the Oracle CPU service demands from Figure 22b. From these two columns, we
find out that all Oracle processes together only account for 73% of the iostat CPU time. The difference ac-
tually represents the per-request OS overhead because iostat generates negligible monitoring overheads.
In addition, we find the OS overhead is quite regular because its variance against #clients is very small.

Table 23. Decomposition of Oracle CPU time for servicing a Stress update request against #clients.

#clients | PMON | DBWR | LGWR | SMON | RECO | Stress | Oracle OS overhead iostat

1 0.015 0.537 1.930 0.004 0.000 | 12.374 14.860 6.074 | 20.934

2 0.008 0.645 2.218 0.004 0.000 13.470 16.344 6.164 | 22.508

3 0.008 0.773 1.977 0.003 0.000 | 14.228 16.989 6.693 | 23.682

4 0.007 0.883 1.808 0.003 0.000 | 14.792 17.493 6.689 | 24.182

5 0.006 0.910 1.797 0.003 0.000 15.183 17.900 6.761 | 24.661

6 0.006 0.994 1.682 0.002 0.000 | 15.607 18.241 6.901 | 25.142

7 0.007 0.982 1.698 0.002 0.000 | 15.890 18.579 6.898 | 25.477

8 0.006 0.995 1.670 0.002 0.000 16.149 18.823 6.856 | 25.679

9 0.005 1.033 1.567 0.002 0.000 | 16.368 18.984 6.860 | 25.844

10 0.006 1.050 1.554 0.002 0.000 | 16.744 19.356 6.919 | 26.275

mean 0.007 0.875 1.791 0.003 0.000 15.080 17.757 6.681 24.438

stdev 0.003 0.172 0.204 0.001 0.000 1.384 1.382 0.309 1.672
%Oracle 0.04% 4.93% 10.09% 0.02% 0.00% 84.93% 100%

%iostat 0.03% 3.58% 7.33% 0.01% 0.00% 61.71% | (72.66%) 27.34% 100%

After examining each Oracle process, we can pinpoint that the Oracle server process (marked as Stress)
actually causes the Oracle CPU service demand to increase with #clients. Although we also observe that
the DBWR CPU time increases with #clients and the LGWR CPU time decreases with #clients, these two
processes together do not cause significant discrepancy in comparison to the Stress user session. The bot-
tom two rows of table 15 show how individual Oracle processes contribute to the total Oracle CPU time.
It is not surprising that the Oracle server process accounts for 85% of the share because it handles the
parse, execute, and fetch of SQL statements.

4.4 Oracle Disk Time Decomposition for Stress Update

Figure 24 shows various measured Oracle disk times against #clients. The two curved lines on top repre-
sent the measured Oracle disk times (iostat disk time and filestat disk time) derived from iostat and v$tables
separately. We calculate the latter values by taking the differences in disk performance statistics from
vifilestat and v$sesstat of LGWR before and after each stress testing. It should be noted that two curves
do not match each other closely. This discrepancy is because iostat records disk utilization at the OS sys-
tem level, but Oracle records the elapsed times of disk requests at the OS user level. The Oracle disk statis-
tics, therefore, include the disk waiting times whenever there are concurrent disk requests from different
Oracle processes.

Center for Information Technology Integration 21

Chu/Antonelli/Teorey

et e [T BT =3 of e e e ke L - e
-

RN LT A
- [
- |

Hrlrs

Figure 24. Oracle disk time decomposition for Stress update.

The barchart in Figure 24 show the decomposition of Oracle disk time as:

read time the cumulative elapsed time for Oracle server processes to read data blocks from data-
files,
write time the cumulative elapsed time for DBWR to write dirty buffers into datafiles, and

redo log time the cumulative elapsed time for LGWR to write redo entries into the online redo file.

The complete sets of Oracle disk 1/0 statistics from v$filestat and v$sesstat are listed in Table 25. The Or-
acle disk time decomposition reveals several interesting phenomena: First, for Stress update, Oracle disk
requests are dominated by disk writes (4% reads, 15% writes, and 81% logs), and the redo log time ac-
counts for 86% of the Oracle disk time. Second, the redo log time decreases dramatically with three or more
concurrent clients, which also causes the iostat disk time to decrease with #clients.*

At this point, we have identified the actual cause for the discrepancy in the Oracle disk service demand.
To explain this phenomenon, we have to introduce the group commit mechanism of LGWR. Oracle imple-
ments group commit to reduce the overhead of redo logging. According to Oracle, LGWR batches multi-
ple redo entries in a single redo write whenever LGWR finds multiple pending commit requests. The first
consequence of group commit is that it reduces the average cost of redo logging because the fixed over-
head of a disk write is shared by several requests.

The second consequence of group commit is that it reduces the amount of “redo wastage.” LGWR writes
redo entries into the online redo file in chunks of redo blocks. Since a redo entry may not fill the entire
redo block, the redo wastage will be significant if LGWR writes a single redo entry at a time. With group
commit, several redo entries are written into redo file and fill contiguous redo blocks. As a consequence,
the average amount of redo wastage per request is reduced, as shown in the third set of disk 1/0 statistics
in Table 25.

1. Although we also observe that the write time increases with #clients in Figure 24, we believe this is somewhat
misleading. Since Oracle disk 170 is dominated by redo logging, DBWR’s disk requests are more likely waiting for
LGWR’s disk requests than vice versa. The iostat disk time in Figure 24 supports this argument because it actually
decreases in accordance with the redo log time against #clients; the increasing write time apparently does not affect
iostat disk time at all.

Center for Information Technology Integration 22

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

We can also observe the consequences of group commit in Figure 26. Figure 26a plots the second set of
disk 1/0 statistics (physical reads, physical writes, and redo writes) in Table 25, showing that the number of
redo writes per request decreases with #clients. Figure 26b plots the third set of disk 1/0 statistics (data
blks read, data blks written, and redo blks written) in Table 25, showing that the number of redo blocks writ-
ten per request decreases with #clients.t

Figure 26.

A good Oracle model must capture the characteristics of Oracle server processes, DBWR, and LGWR be-
cause together they account for most Oracle resource usages. Since Oracle records the resource usages of
Oracle server processes on a per-session basis, these resource usages can be simply converted into the
corresponding service demands. The primary issue is that Oracle does not record the resource usages of
DBWR or LGWR on a per-session basis; therefore, the challenge actually lies in the analytic modeling of

Table 25. Disk I/O statistics per Stress update request derived from v$filestat and v$sesstat of LGWR.

#clients 1 2 3 4 5 6 7 8 9 10 mean stdev %
read time 0.004 0.004 0.009 0.008 0.009 0.010 0.013 0.015 0.016 0.018| 0.010 0.005| 0.04%
write time 2271 2729 3.086 3.621 3919 4.082 4235 4473 4947 5228| 3.859 0.948| 13.76%
redo log time 26.799 28736 27.010 25.117 23.721 22.877 22.316 22.001 21.692 21.541| 24.178 2.580| 86.20%
filestat disk time| 29.074 31.468 30.105 28.746 27.650 26.969 26.564 26.490 26.665 26.761| 28.048 1.733
iostat disk time| 32.673 33.138 30.564 28.220 26.714 25.841 25.104 24.605 24.153 23.705| 24.742 3.520
physical reads 0.038 0.036 0.036 0.035 0035 0.035 003 0.035 003 0.035| 0.035 0.001| 3.54%
physical writes 0.179 0.155 0145 0.144 0144 0.146 0148 0.150 0.153 0.156| 0.152 0.010| 15.22%
redo writes 1.001 0999 0937 0848 0.790 0757 0.727 0705 0.687 0.667| 0.812 0.128| 81.24%
total r/w| 1218 1.190 1.118 1.027 0.969 0937 0910 0.890 0.874 0.858| 0.999 0.133
data blks read 0.040 0.037 0.037 0.037 0036 0.036 0036 0.036 0036 0.035| 0.037 0.001| 8.96%
data blks written 0.179 0.155 0145 0.144 0144 0.146 0148 0.150 0.153 0.156| 0.152 0.010| 36.80%
redo blks written 2000 1.989 1931 1.837 1773 1735 1703 1.679 1660 1.639| 1.796 0.138| 54.24%
total blks r/w (4K)| 0.469 0.443 0423 0410 0402 0398 0397 0395 039 0.397| 0413 0.025

redo wastage

413.360 412.292 379.239 332.378 300.535 281.712 265.726 254.055 244.750 234.430

N

1 F <] i

(a) physical reads, physical writes, & redo writes.

DBWR and LGWR.

1. The ‘redo blks written’ in Figure 26b is scaled by a factor of 1/8 because a redo block size (512 bytes) is one eighth

of a data block size (4K bytes).

PPy reaan
sl e

e AT

< IOk MW

-
[

1 2 3 4 i L] T a8 = 10

Aulierts

B (e Dy resd
B cmin hlow wrtien
i hilen weritienedl

- el Bl e [

(b) data blocks and redo blocks read/written.

Disk /O statistics of datafiles and the redo file per Stress update.

Center for Information Technology Integration

23

Chu/Antonelli/Teorey

4.5 Analytic Modeling of DBWR and LGWR

Analytic modeling of DBWR and LGWR must establish their workload units, and we argue that the num-
ber of data blocks and the number of redo blocks can serve that purpose for two reasons. First, Oracle ac-
tually records disk 1/0 statistics in v$tables based on these two units; second, there are some hints in
vsesstat of a user session related to the numbers of data blocks modified and redo blocks logged on be-
half of the user session. The previous experiments with respect to concurrent Stress instances also provide
some measurement data to study this problem.

Table 27. Per-block averages of Oracle service times for DBWR and LGWR.

#clients 1 2 3 4 5 6 7 8 9 10 mean stdev
disk_time/blk_r 0.090 0.103 0.232 0.213 0.247 0277 0373 0421 0433 0.503| 0.289 0.140
cpu_time/blk_w 2998 4.152 5318 6.1563 6.302 6.469 6.616 6.636 6.764 6.721 5.813 1.281
disk_time/blk_w | 12.680 17.564 21.228 25.234 27.143 27.973 28524 29.823 32.396 33.497| 25.604 6.612

cpu_time/redo_blk | 0.965 1.110 1.024 0.984 1.014 0970 0997 0.995 0949 0.948| 0.996 0.048
disk_time/redo_blk | 13.398 14.382 13.985 13.673 13.381 13.187 13.108 13.104 13.065 13.123| 13.441 0.444

Table 27 lists the per-block averages of Oracle service times for DBWR and LGWR in the form of the fol-
lowing:

disk_time/blk_r the estimated disk time to read a data block derived from v$filestat,
cpu_time/blk_w the average DBWR CPU time to write a data block derived from v$sesstat,
disk_time/blk_w the estimated disk time to write a data block derived from v$filestat,
cpu_time/redo_blk the average LGWR CPU time to write a redo block derived from v$sesstat, and
disk_time/redo_blk the estimated disk time to write a redo block from v$sesstat of LGWR.

Figure 28 plots the DBWR service times per data block against #clients in Table 27. \WWe can observe a steep
increase in cpu_time/blk_w from 1 to 4 clients; after that, it gradually saturates around 6.7 ms. As men-
tioned in the previous subsection, the disk_time/blk_w is somewhat misleading. Although we observe that
it increases with #clients, the actual increased component is the disk waiting time instead of disk time.
Therefore, we must calibrate this statistic with the corresponding disk statistics from the filemon reports.

Ak et E o R B —— i R & - PR e, B
| -]

k=

. .._,1'- .
~
il
‘l , | .
= f|
i+ - =
2| |]
i | -] s E] ¥ a § L]
Lid]

Figure 28. Decomposed Oracle service times for DBWR and LGWR in units of data/redo blocks.

-\.
i | v

=

ik virs drrea

c e frai

=

Figure 28 also plots the LGWR service times per redo block against #clients in Table 27. Since LGWR'’s
disk requests are less likely to be waiting for the disk requests from other Oracle processes, we can ob-
serve that cpu_time/redo_blk and disk_time/redo_blk do not vary with #clients.

Center for Information Technology Integration 24

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

After the unit service times of DBWR and LGWR are established, the next issue for analytic modeling is
how to estimate the per-transaction averages of data blocks written (or physical writes) and redo blocks writ-
ten. We discuss these in the following subsections.

4.5.1 Estimating Data Blocks Written per Transaction

As mentioned in Section 2.3.3, the only feasible solution to measure the number of data blocks written per
user transaction is to collect the disk performance statistics of Oracle v$tables in a homogeneous workload
environment because we cannot separate the physical writes in v$sesstat of DBWR for individual user ses-
sions. Measurement data in Table 16 shows that the per-request average of data blocks written for Stress
updates does not vary significant with #clients in a homogeneous workload environment.

4.5.2 Estimating Redo Blocks Written per Transaction

There are a few hints in v$sesstat for estimating redo blocks written per transaction. For an Oracle user ses-
sion, the hints are redo entries and redo size; for LGWR, the hints are redo wastage and redo blocks written. Ta-
ble 29 lists the per-request averages of these performance statistics for Stress update. If we divide the sum
of redo size and redo wastage with redo blocks written, we can get an average ratio of 493.224 with a very
small variance. This discovery means that we can estimate the average number of redo blocks per request
if we know the redo size and the average amount of redo wastage per request.

Table 29. Estimating the number of redo blks per request for Stress update.

#clients 1 2 3 4 5 6 7 8 9 10 mean stdev
redo entries 2.002 2004 2,006 2.008 2.007 2007 2.007 2007 2.007 2.007
redo blocks written 2.000 1989 1931 1837 1773 1735 1703 1679 1660 1.639
redo size 571.475 572.790 573.699 574.372 574.239 574.207 574.161 574.113 574.050 574.032|573.741 0.833
redo wastage 413.360 412.292 379.239 332.378 300.535 281.712 265.726 254.055 244.750 234.430
(redo size + redo wastage) / redo blks written | 492.503 493.022 493.392 493.624 493.464 493.387 493.309 493.243 493.171 493.124|493.224 0.308

Although it is still difficult to obtain the average amount of redo wastage per user transaction, we can al-
ways estimate the number of redo blocks per user transaction in a worst case scenario from the average
redo size of a user transaction according to Table 29.

4.6 Hidden OS Issues for Oracle Disk Time Measurement

According to the measurement methodology described in Section 2, we estimate Oracle disk times with
the long-term disk performance statistics in v$filestat and in v$sesstat of LGWR. The merit of this ap-
proach is that it hides two complicated features about disk file 10s in AIX Journaled File Systems (JFS),
i.e. caching of memory mapped files and JFS logging, that are very difficult to measure or model.

AIlX uses persistent storage pages to cache data blocks of opened files retrieved from disk; the traditional
disk buffer caches of UNIX are not used in AlX [15]. From the perspective of AlX file systems, the Oracle
disk statistics are actually logical file 170 statistics instead of physical disk 170 statistics. Therefore, read-
ing a data block may not cause physical disk reads because the accessed disk block is possible already
cached in memory. Similarly, writing a data block merely modifies the corresponding persistent pages;
the modified pages may not be written to disk immediately.

The JFS is the default file system type for local disk files in AlX. JFS logs activity associated with the file
system control structures such that it can reconstruct a file system to a known state in the event of a sys-
tem crash. According to Kelley [15],

“... The goal of the journaled file system is to provide a more robust file system by logging
changes made to its own structures and lists. This includes changes made to the file system super
block, the inodes, directories, indirect blocks, and free lists of inodes and data blocks...

Center for Information Technology Integration 25

Chu/Antonelli/Teorey

The JFS uses a physical disk partition as a log device. Each volume group must have a JFS log de-
vice. The rootvg’s log device is /dev/hd8 (8MB). The JFS also maintains a log segment (256MB)
in virtual memory for each log device. Pages of this segment are written to the disk log device at
regular intervals...”

In order to study how much disk writes are associated with JFS logging, we ran several experiments with
multiple concurrent stress instances and measured disk utilizations of individual logical volumes with
filemon. The results indicate that JFS logging actually consumes one half of the disk utilization.

From the performance modeling perspective, a good thing about JFS logging is that it uses a dedicated
partition; the bad thing is that JFS logging is transparent to applications, and it is too difficult to correlate
the JFS logging with Oracle disk writes. Even though we have yet to measure and correlate Oracle 1/0
statistics with actual physical disk 1/0 statistics, the Oracle disk statistics in v$tables are adequate for Ora-
cle disk time measurement.

4.7 Analytic Modeling of Multi-Tiered Client/Server Distributed Applications

In our previous work [4], we have constructed a closed queueing network model for the two-tiered PPS6
distributed applications. While evaluating this model with the Stress program, we determined that the
Oracle service demands actually vary with the number of concurrent clients and cause discrepancies be-
tween the model and the system. In this paper, we address this issue by decomposing the Oracle service
demands. This decomposition requires us to improve the measurement methodology with Oracle v$tables
and to incorporate a different analytic modeling technique called Method of Layers (MOL) [28]. MOL eval-
uates analytic performance models constructed with one or more layers of software processes, called Lay-
ered Queueing Models (LQMS).

4.7.1 Layered Queueing Models

LQMs have been applied to model distributed client-server systems that contain one or more layers of
software servers [16,28]. We apply this technique to refine the analytic model because our measurement
methodology separates the Oracle service times for different Oracle processes. Therefore, we can con-
struct an LQM for two-tiered Stress as shown in Figure 30. Each parallelogram in an LQM represents a
group of one or more processes and each circle is a device. Directed arcs indicate requests for service from
the calling group to the serving group or device. MOL divides an LQM into two complementary models,
one for software and one for devices, and combines the results to provide performance estimates for the
system.

Center for Information Technology Integration 26

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Software
Contention
Model

Device
Contention
Model

Figure 30.

O

WinFrame CPU 1

WinFrame CPU 2

The two-tiered Stress LQM.

Q/ \

Ethernet Switch

Oracle CPU

Oracle Disk

The two-tiered Stress LQM contains five hardware devices of the testbed configuration: two CPUs of the
WinFrame server, the Ethernet switch, and the CPU and disk of the Oracle server. The four software
groups correspond the important processes while running the Stress program in a two-tiered environ-
ment: stress.exe, Oracle server process, DBWR and LGWR background processes. The software contention
model of the Stress LQM is depicted in the upper two layers of Figure 30; which describes the relation-
ships in the software process architecture and is used to predict software contention delays. The device
contention model of the Stress LQM is depicted in the lower two layers; which describes how software
processes request services to hardware devices and is used to determine queueing delays at devices. The
requests for service of the two-tiered Stress LQM are shown in Tables 31 and 32.

Table 31. Requests for service in the two-tier Stress LQM.

Stress Update

Stress

Oracle

DBWR

LGWR

Stress
(FCFS)

V=1

Oracle
(Rendezvous)

V=1

DBWR
(FCFS)

V = Nphy-blk-wrt

LGWR
(FCFS)

V = Njog-bik-wrt

WinFrame CPU 1
(PS)

V=05
S = Depu-stress

WinFrame CPU 2
(PS)

V=05
S = Depu-stress

Ethernet Switch
(PS)

V = NsqL*Net-rt
S = Dpet-sQL*Net-recv

V = NsqL*Net-rt
S = Dpet-sQL*Net-sent

Oracle CPU
(PS)

Vl =1
S1 = Depu-oracle
Vz =
S2 = Depu-os

v=1
S = Depu-bik-wrt

v=1
S = Depu-blk-log

Oracle Disk
(PS)

V = Nphy-blk-rd
S = Dyisk-blk-rd

V=1
S = Dyisk-bIk-wrt

V=1
S = Dgisk-blk-log

Note that all software processes, except Oracle, are modeled as FCFS servers and all hardware devices
are modeled as PS servers (round-robin process sharing scheduling discipline). We model the Oracle

Center for Information Technology Integration

27

Chu/Antonelli/Teorey

server process as an Rendezvous server (i.e. an FCFS process with two phases of services); its requests for
service to the Oracle CPU have the phase one service demand as the CPU time consumed by the Oracle
server process and the phase two service demand as the average OS overhead while servicing a Stress up-
date request. We simplify the Ethernet switch model as a PS server because the SQL*Net traffic is less than
10% of Ethernet bandwidth while we evaluate the model. We model DBWR as an FCFS server which
takes requests from other software groups for writing modified data blocks to disk. A request for service
to DBWR hence uses the number of data blocks written as its visit ratio. Similarly, a request for service to
LGWR uses the number of redo blocks written as its visit ratio.

Table 32. Description of requests for service in the two-tiered LQM.

Legend Description Value
Depu-stress WinFrame CPU service time for servicing a Stress update request 22.721 ms
NSQL*Net—rt SQL*Net roundtrips to/from client 8
Dhpet-sQL*Net-recv (bytes received via SQL*Net from client / SQL*Net roundtrips to/from client) * 8 / 10Mbps | 0.034 ms
Dcpu—oracle Oracle CPU time of Oracle server process for servicing a Stress update request 15.080 ms
Depu-os Oracle CPU time as OS overhead for servicing a Stress update request 6.681 ms
Nphy-blk—rd average number of data blocks read per Stress update request 0.037
Dyisk-blk-rd Oracle disk service time for reading a data block 0.047 ms
NSQL*Net—rt SQL*Net roundtrips to/from client 8
Dhpet-soL*Net-sent (bytes sent via SQL*Net to client / SQL*Net roundtrips to/from client) * 8 / 10Mbps 0.056 ms
Nphy-blk-wrt average number of data blocks written per Stress update request 0.152
Depu-bik-wrt Oracle CPU service time for writing a data block 5.813 ms
Disk-blk-wrt Oracle disk service time for writing a data block 21.967 ms
Niog-bik-wrt average number of redo blocks written per Stress update request varied
Depu-blk-log Oracle CPU service time for writing a redo block 0.996 ms
Disk-blik-log Oracle disk service time for writing a redo block 13.860 ms

4.7.2 Initial Validation Test of the Two-tiered Stress LQM

We conduct the initial validation test of the two-tiered Stress LQM with the performance measures from
our experiment of multiple concurrent Stress instances.! The values of LQM model parameters applied to
model evaluation are listed in the last column of Table 32. Note that we use constant values for all model
parameters except Njoq pik-wre While we increase the workload population of Stress Update (i.e. the num-
ber of concurrent Stress instances). Since the average number of redo blocks written per Stress update re-
quest decreases with #clients and causes the major discrepancy of the Oracle disk service demand, we
apply different values of Njoq -t Using redo blocks written per request recorded in Table 25.

Table 33. Comparison of Oracle service demands: measured vs. model.

#clients | Oracle CPU service demand (ms) | Oracle disk service demand (ms)
measured model %err | measured model Y%err

1 20.934 24.637 -17.7% 32.673 31.066 4.9%
2 22.508 24.635 -9.5% 33.138 31.036 6.3%
3 23.682 24.569 -3.7% 30.564 30.112 1.5%
4 24.182 24.475 -1.2% 28.220 28.803 -2.1%
5 24.661 24.411 1.0% 26.714 27.913 -4.5%
6 25.142 24.373 3.1% 25.841 27.387 -6.0%
7 25.477 24.341 4.5% 25.104 26.940 -7.3%
8 25.679 24.318 5.3% 24.605 26.614 -8.2%
9 25.844 24.299 6.0% 24.153 26.354 -9.1%
10 26.275 24.278 7.6% 23.705 26.066 -10.0%

1. Khandker has implemented the MOL with a Tcl/Tk user interface in [16]. We constructed and evaluated the two-
tiered LQM with this implementation.

Center for Information Technology Integration 28

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Table 33 lists the differences in Oracle service demands between the real measurements and the values
applied to the LQM device contention model. The only element causing the slightly decreasing Oracle
CPU service demand is due to the CPU service times for writing redo blocks varying with Njog pik-wrt-
However, the decreasing Njogpk.wrt actually causes the Oracle disk service demand in the LQM device
contention model to decrease significantly.

The model outputs of the Stress LQM are shown in Table 34 and Figure 35. The LQM, in general, predicts
the request completion time fairly accurate because the error range is less than 5%. For Oracle CPU and
disk utilizations, there are only two cases where the error range between model outputs and measure-
ments is greater than 10%.

Table 34. Comparison of measurements and model outputs of 2-tier Stress LQM.

#clients Oracle CPU utilization (%) Oracle disk utilization (%) Request completion time (ms) Uwf-cpu Ukthernet
measured model %err | measured model %err | measured model Y%err
1 27.092 31.600 -16.6% 42.312 39.500 6.6% 77.044 78.000 -1.2% 14.500 2.700
2 44,903 49.000 -9.1% 66.277 60.400 8.9% 100.119 102.000 -1.9% 22.200 4.200
3 58.623 60.000 -2.3% 75.659 71.100 6.0% 120.995 126.000 -4.1% 26.900 5.100
4 66.615 67.700 -1.6% 77.545 76.500 1.3% 144.456 150.000 -3.8% 30.300 5.800
5 72.255 72.900 -0.9% 78.100 79.700 -2.0% 169.995 174.000 -2.4% 32.600 6.300
6 76.555 76.500 0.1% 78.425 81.700 -4.2% 196.030 200.000 -2.0% 34.100 6.600
7 79.336 79.200 0.2% 77.392 83.100 -71.4% 223.223 225.000 -0.8% 35.300 6.900
8 81.665 81.200 0.6% 77.951 84.000 -7.8% 249.528 252.000 -1.0% 36.100 7.000
9 83.170 82.800 0.4% 77.477 84.700 -9.3% 278.073 278.000 0.0% 36.700 7.200
10 84.394 84.200 0.2% 75.889 85.200 -12.3% 308.787 304.000 1.6% 37.400 7.300

Figure 35a plots the Oracle CPU utilizations against throughput. The discrepancy between measured val-
ues and model outputs is because we do not consider the increasing component in the Oracle CPU ser-
vice demand caused by the Oracle server process. This increasing component in CPU service times is
actually caused by the lock contention for concurrent Oracle server processes accessing the Oracle SGA.
Some preliminary research works addressing this issue has been discussed in [2].

x il
) n resmaed o m rmweaml
- & e —
2 - = _..,- EBE e — i T 5
£ e L . =
T o - E m -~
A ;]
E W o~ g 5 -
L] b =] 5.-"'..
L
P - i
i = ® u
0 1
) - | - [}] i = L -]
Phrmggipul peH dwinaglfad
(a) Oracle CPU utilization. (b) Oracle disk utilization.

Figure 35. Oracle server CPU and disk utilizations: measured vs. model outputs.

Figure 35b plots the Oracle disk utilization against throughput. Although we have addressed the decreas-
ing Oracle disk service demand with decreasing Njoqpi-wrt While evaluating the Stress LQM, we find
there is still small discrepancy between measured values and model outputs. The actual reason causing
this discrepancy is because we apply the long-term statistic value of Dyjgkpik-1og While evaluating the

Center for Information Technology Integration 29

Chu/Antonelli/Teorey

LQM. This value (13.860 ms) is much bigger than the average measurement value (13.441 ms) while con-
ducting the experiment of concurrent Stress instances. As a consequence, this raises an important issue for
applying the long-term disk statistics to derive the model parameters. We intend to address this issue in
our future work.

4.7.3 A Three-Tiered LQM for PPS6 Remote Computing

In the previous subsection, we have constructed a two-tiered LQM and conducted the initial validation
test for the model. The two-tiered LQM can be extended to model the three-tiered remote computing of
PPS6. The three tiered LQM contains two more software servers for modeling wfica32.exe on a WinStation
and csrss.exe on the WinFrame server as shown in Figure 36.

Figure 36. A three-tiered LQM for modeling the remote computing of PPS6.

5. Conclusions and Future Work

In order to address the varying Oracle disk service demands, we have refined our measurement method-
ology and the initial analytic model by decomposing the disk service demand into three components:
data block reads, data block writes, and redo log writes. Measuring these components with Oracle v$ta-
bles, we discovered that only the redo log writes exhibit significant varying disk service demands due to
LGWR’s group commit.

Center for Information Technology Integration 30

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Next, we performed some measurements to determine what fraction of the total disk 1/0 could be attrib-
uted to the redo log. We constructed a three-tier PPS6 environment testbed in the CITI lab, and measured
our synthetic Stress workload there. This workload exhibits a highly variable disk service demand, with
54% of all disk traffic going to the redo log. This is due to Stress’ high update rate. We then measured real
PPS6 applications running against test Oracle server in the University of Michigan production environ-
ment. This workload exhibits less variation in disk service demand because the redo log accounts for only
2% of all disk traffic. We believe this is due to the PPS6 application’s design, in which many database
records are accessed while a new record is being assembled; this single record is then written.

For workloads similar to PeopleSoft OLTP transactions, our original model based on QNM is thus suffi-
cient for analysis and modeling for capacity planning purposes. For workloads exhibiting behavior closer
to that observed for Stress, it will be necessary to use an LQM model. We have started work on such a
model, and have presented some preliminary results here; in general, the LQM model correlates well
with our initial testbed measurements. Further work includes completing the validation of this model
and extending the two-tiered LQM to three-tiered LQM.

References

1. E. Aronoff, K. Loney, and N. Sonawalla. Advanced Oracle Tuning and Administration. Oracle Press, 1997.
2. D.P. Atkinson. “Capacity Modeling of Oracle-based System.” Proceeding of UK-CMG’97, 1997.

3. J.P.Buzen and A.W. Shum. “Considerations for Modeling Windows NT.” Proceeding of CMG’97,
December 1997.

4. Yi-Chun Chu and Charles J. Antonelli. Modeling and Measurement of the PeopleSoft Multi-Tier Remote
Computing Application. Technical Report, CITI-TR-97-04, Center for Information Technology
Integration, University of Michigan, December 1997.

Citrix. ICA Technical Paper. [http://www.citrix.com/technology/icatech.htm], 1996.

Citrix. Thin-Client/Server Computing. [http://www.citrix.com], 1997.

Cygnus Production. StatBar Console. [http://www.mcs.net/~cygnus/freeware/freeware.htm], 1998.
Helen Custer. Inside Windows NT. MicroSoft Press 1993.

Tim Foxon. “Performance Analysis of an Oracle-based Interactive UNIX System - a Case Study.”
Proceeding of CMG’94, December 1994.

10. Mark Friedman. “Windows NT Performance Monitoring: an Overview.” [http://www.demandtech.com],
1997.

11. Adam Grummitt and Tim Foxon. “Performance Tuning and Capacity Planning for Oracle on UNIX - A
Case Study.” Proceeding of CMG’97, December 1997.

12. Guy Harrison. “Getting the Most from the SQL_TRACE Facility.” Oracle View, Spring 1996.

13. IBM Redbooks. RS/6000 Performance Tools in Focus. IBM International Technical Support Organization,
May 1997.

14. Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.
15. D. A. Kelley. AIX/6000 Internals and Architectures. McGraw-Hill, 1996.

16. A.M. Khandker. Performance Measurement and Analytic Modeling Techniques for Client-Server Distributed
Systems. Ph.D. Dissertation, The University of Michigan, 1996.

© ©®© N o O

Center for Information Technology Integration 31

Chu/Antonelli/Teorey

17.

18.

19.
20.

21.
22.
23.
24,
25.
26.
27.
28.

29.

Edward Lazowska, John Zahorjan, Scott Graham, and Kenneth Sevcik. Quantitative System
Performance. Prentice Hall, 1984.

Daniel Menasce, Virgilio Almeida, and Larry Dowdy. Capacity Planning and Performance Modeling: from
Mainframes to Client-Server Systems. Prentice Hall, 1994,

Mercury Interactive. LoadRunner. [http://www.merc-int.com/products/loadrunguide.html], 1998.

MicroSoft. Windows 95 Kernel Toys - Windows Process Watcher. [http://www.microsoft.com/windows/
download], 1997.

M-Pathways. The M-Pathways Project. [http://www.mpathways.umich.edu], 1997.
Oracle7 Server Concepts Manual. Oracle7 Documentation. Redwood Shores, CA, 1996.
Oracle7 Server Reference Manual. Oracle7 Documentation. Redwood Shores, CA, 1996.
Oracle7 Server Tuning. Oracle7 Documentation. Redwood Shores, CA, 1996.

PeopleSoft. PeopleSoft’s Distributed Architecture. [http://www.peoplesoft.com], 1997.
PeopleSoft. Introduction to PeopleTools. PeopleSoft Inc., 1996.

Rational. preVue-C/S. [http://www.rational.com/products/prevue/cs/index.html], 1998.

J.A. Rolia and K.C. Sevcik. “The Method of Layers.” IEEE Transactions on Software Engineering, 21(8),
pp. 689-699, August 1995.

Willison WindowWare. WinBatch. [http://www.windowware.com/winware/winbatch.html], 1998.

Center for Information Technology Integration 32

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Appendix A. Oracle v$sesstat.

Although the Oracle v$sesstat contains a rich set of performance statistics, the definitions and descrip-
tions of these performance statistics are very poorly documented by Oracle. Table 37 provides some of
these definitions or description that we can find.

Table 37. Performance Statistics in the Oracle v$sesstat table.

| NAME DESCRIPTION

0 | logons cumulative The cumulative number of connections to the database from the last warm start.

1 | logons current The current number of open sessions in the database.

2 | opened cursors cumulative This is the cumulative number of cursors opened.

3 | opened cursors current This is the number of the currently active SQL statements.

4 | user commits The number of commit calls issued users.

5 | user rollbacks The number of rollback calls issued by users.

6 | user calls The number of user calls issued by users. Calls can be any of the following: describe, parse, open
fetch, close, or execute. If a SQL statement fetches more than one row at a time, each array read
will count as one user call.

7 | recursive calls The number of recursive calls generated by the Oracle kernel rather than by users.

8 | recursive cpu usage The associated CPU usage for recursive calls.

9 | session logical reads The number of logical reads, which is the sum of db block gets and consistent gets.

10 | session stored procedure space The number of bytes allocated to stored procedures used in the session.

11 | CPU used when call started CPU used by the current SQL statement = #11 - #12

12 | CPU used by this session Amount of CPU time used in 1/100’s of a second.

13 | session connect time The timestamp when this session was connected.

14 | process last non-idle time The timestamp of the last user call.

15 | session uga memory The amount of UGA memory allocated to this session.

16 | session uga memory max The maximum amount of UGA memory allocated to this session.

17 | messages sent These two numbers reflect the communications between the various Oracle background

18 | messages received processes. Generally a message is sent every time a commit is made or a new connection the
database is opened.

19 | background timeouts The number of timeouts issued for Oracle background processes.

20 | session pga memory The amount of PGA memory allocated to this session.

21 | session pga memory max The maximum amount of PGA memory allocated to this session.

22 | enqueue timeouts The number of times an enqueue request was not granted within the allotted wait time.

23 | enqueue waits The number of times an enqueue request resulted in a wait.

24 | enqueue deadlocks the number of process deadlocks that occurred due to enqueues for DDL operations.

25 | enqueue requests The number of times an enqueue was requested.

26 | enqueue conversions The number of enqueue locks converted to a different mode.

27 | enqueue releases The number of times an enqueue was released.

28 | global lock gets (non async)

29 | global lock gets (async)

30 | global lock get time

31 | global lock converts (non async)

32 | global lock converts (async)

33 | global lock convert time

34 | global lock releases (non async)

35 | global lock releases (async)

36 | global lock release time

37 | db block gets This is the number of blocks accessed via single block gets (i.e., not through the consistent get
mechanism). Its value increments when a block is read for update and when segment header
blocks are accessed.

38 | consistent gets This is the number of accesses made to the block buffer to retrieve data in a consistent mode. Its
value is incremented according to the operation performed: For full table scans: it increments once
per block read. For table access through the index: it increments by index height (usually 2) + 2 *keys
in the range. For access inside the index only: it increments once per block read.

39 | physical reads This is the cumulative number of blocks read from the disk. Its value is incremented once per
read block regardless of whether the read request was for a multiblock read or single block read.
Logical Reads / (Logical Reads + Physical Reads) = Hit Ratio

40 | physical writes This is the cumulative number of blocks written to disk. Its value is incremented once per block
written regardless of whether the write request was for a multiblock write or single block write.
Most physical writes are done by DBWR.

41 | write requests This is the cumulative number of write requests.

Physical Writes/Write Requests = # of blocks written per single write

Center for Information Technology Integration 33

Chu/Antonelli/Teorey

Table 37. Performance Statistics in the Oracle v$sesstat table.

| NAME DESCRIPTION

42 | summed dirty queue length This is the sum of the buffers left in the write queue after every write request.

43 | db block changes This is the cumulative number of modified blocks chained to the “dirty” list. Once the block is in
the “dirty” list, additional changes to that block are not counted as block changes.

44 | change write time

45 | consistent changes This is the number of times a consistent get had to retrieve an “old” version of a block because of
updates that occurred after the cursor had been opened. It does not indicate the number of
updates (or changes). A more accurate statistics for number records changed is ‘data blocks
consistent reads - undo records applied.’

46 | redo synch writes The number of user commits, the number of checkpoints, and the number of log switches. Its
value is incremented every time a user commits, at every checkpoint and every log switch.

47 | redo synch time

48 | exchange deadlocks

49 | free buffer requested The total number of free buffer requested. Free buffers in the buffer cache are requested for
multiple reasons. When data is inserted into the database, a free buffer is requested every time a
new block is needed. On updates, free buffers are requested to contain the rollback information.

50 | dirty buffers inspected This is the number of times a foreground process encounters a dirty buffer that has aged out via
the LRU queue while the process is looking for the buffer for reuse.

51 | free buffer inspected The number of buffers skipped in the buffer cache in order to find a free buffer.

52 | commit cleanout failure: write disabled

53 | commit cleanout failures: hot backup in progress

54 | commit cleanout failures: buffer being written

55 | commit cleanout failures: callback failure

56 | total number commit cleanout calls

57 | commit cleanout number successfully completed

58 | DBWR timeouts

59 | DBWR make free requests

60 | DBWR free buffers found

61 | DBWR Iru scans

62 | DBWR summed scan depth

63 | DBWR buffers scanned

64 | DBWR checkpoints This is the number of checkpoints messages that were sent to DBWR. During a checkpoint there is
a slight decrease in performance since data blocks are being written to disk which causes 1/0. If
the number of checkpoints is reduced, the performance of normal database operation improves
but recovery after instance failure is slower.

65 | DBWR cross instance writes

66 | remote instance undo block writes

67 | remote instance undo header writes

68 | remote instance undo requests

69 | cross instance CR read

70 | recovery blocks read

71 | recovery array reads

72 | recovery array read time

73 | CR blocks created

74 | Current blocks converted for CR

75 | calls to kemgces

76 | calls to kemgrs

77 | calls to kemgas

78 | next scns gotten without going to DLM

79 | Unnecessary process cleanup for SCN batching

80 | calls to get snapshot scn: kemgss

81 | kemgss waited for batching

82 | kemgss read scn without going to DLM

83 | kemccs called get current scn

84 | redo entries The number of entries in the redo log buffer.

85 | redo size The amount of redo generated in bytes.

86 | redo entries linearized This is the number of times a redo entry was pre-built before trying to obtain a latch in order to
write into the redo buffer.
Redo Size / Redo Entries = Average Size of Redo Entries

87 | redo buffer allocation retries The number of attempts to allocate space in the redo buffer.

88 | redo small copies This is the total number of redo entries with fewer bytes than specified by the init.ora parameter

LOG_SMALL_ENTRY_MAX_SIZE. These entries are written in the redo buffer under the
protection of the redo allocation latch.

Center for Information Technology Integration

34

Performance Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Table 37. Performance Statistics in the Oracle v$sesstat table.

| NAME DESCRIPTION
89 | redo wastage Cumulative total of unused bytes that were written to the log. The redo buffer is flushed
periodically even when not completely filled, so this value may be nonzero.
90 | redo writer latching time This is the time needed by the process writing redo to obtain and release each copy latch. If this
time is high, the timeouts for the redo allocation and copy latches should be analyzed.
91 | redo writes The total number of redo writes.
92 | redo blocks written The total number of redo blocks written.
93 | redo write time Cumulative elapsed time spent on log 1/0.
94 | redo log space requests The number of times a user process waits for space in the redo log buffer of SGA.
95 | redo log space wait time Time spent waiting for log space in 1/100’s of a second.
96 | redo log switch interrupts The count of times an instance log-switch was requested by another instance when running in
parallel mode.
97 | redo ordering marks
98 | hash latch wait gets
99 | background checkpoints started The number of checkpoints started.
100 | background checkpoints completed The number of checkpoints completed.
101 | serializable aborts
102 | transaction lock foreground requests
103 | transaction lock foreground wait time
104 | transaction lock background gets
105 | transaction lock background get time
106 | transaction tables consistent reads - undo records
applied
107 | transaction tables consistent read rollbacks
108 datall_btljocks consistent reads - undo records This number is the actual number of data records changed.
applie
109 | no work - consistent read gets
110 | cleanouts only - consistent read gets
111 | rollbacks only - consistent read gets
112 | cleanouts and rollbacks - consistent read gets
113 | rollback changes - undo records applied
114 | transaction rollbacks
115 | immediate (CURRENT) block cleanout
applications
116 | immediate (CR) block cleanout applications
117 | deferred (CURRENT) block cleanout
applications
118 | table scans (short tables) The number of full table scans on tables with less than 4 db_blocks.
119 | table scans (long tables) The number of full table scans on tables that have more than 5 data blocks.
Table Scans (long tables) + Table Scans (short tables) = # of full able scans
120 | table scans (rowid ranges) These two statistics are used with the Parallel Query Option.
121 | table scans (cache partitions)
122 | table scans (direct read)
123 | table scan rows gotten The cumulative number of rows read for full table scans.
124 | table scan blocks gotten The cumulative number of blocks read for full table scans.
125 | table fetch by rowid This is the cumulative number of rows fetched from tables using a TBALE ACCESS BY ROWID
operation.
126 | table fetch continued row This is the cumulative number of continued rows fetched.
127 | cluster key scans The number of requests for record reads for a given cluster key.
128 | cluster key scan block gets The number of database blocks accessed to retrieve a set of clustered records.
129 | parse time cpu Accumulative CPU time for parsing SQL statements.
130 | parse time elapsed Accumulative elapsed time for parsing SQL statements.
131 | parse count The number of parse calls made by the session/system.
132 | execute count The number of execution calls made by the session/system.lts value incremented for every
execute request and for every time a cursor is opened.
133 | bytes sent via SQL*Net to client The cumulative number of bytes in SQL*Net messages was sent to client.
134 | bytes received via SQL*Net from client The cumulative number of bytes in SQL*Net messages was received from client.
135 | SQL*Net roundtrips to/from client The number of times a message was sent and an acknowledgment received.
136 | bytes sent via SQL*Net to dblink
137 | bytes received via SQL*Net from dblink
138 | SQL*Net roundtrips to/from dblink
139 | sorts (memory) This is the number of sorts small enough to be performed entirely in sort areas without using
temporary segments.

Center for Information Technology Integration

35

Chu/Antonelli/Teorey

Table 37. Performance Statistics in the Oracle v$sesstat table.

| NAME DESCRIPTION

140 | sorts (disk) This is the number of sorts which require the use of temporary segments for sorting.

141 | sorts (rows) The total number of rows sorted.

142 | session cursor cache hits The number o times the cursor was cached in the session and even a parse call was not made.

143 | session cursor cache count

144 | cursor authentications

145 | OS User time used The total amount of time running in user mode.

146 | OS System time used The total amount of time spent in the system executing on behalf of the processes.

147 | OS Maximum resident set size The maximum size, in kilobytes, of the used resident set size.

148 | OS Integral shared text size An integral value indicating the amount of memory used by the text segment that was also
shared among other processes.

149 | OS Integral unshared data size An integral value of the amount of unshared memory in the data segment of a process.

150 | OS Integral unshared stack size

151 | OS Page reclaims The number of page faults serviced without any 170 activity. In this case, 1/0 activity is avoided
by reclaiming a page frame from the list of pages awaiting reallocation.

152 | OS Page faults The number of page faults serviced that required 1/0 activity.

153 | OS Swaps The number of times a process was swapped out of main memory.

154 | OS Block input operations The number of times the file system performed input.

155 | OS Block output operations The number of times the file system performed output.

156 | OS Socket messages sent The number of IPC messages sent.

157 | OS Socket messages received The number of IPC messages received.

158 | OS Signals received The number of signals delivered.

159 | OS Voluntary context switches The number of times a context switch resulted because a process voluntarily gave up the
processor before its time slice was completed. This usually occurs while the process waits for
availability of a resource.

160 | OS Involuntary context switches The number of times a context switch resulted because a higher priority process ran or because

the current process exceeded its time slice.

Center for Information Technology Integration 36

