
ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 97–4

Modeling and Measurement of the PeopleSoft
Multi-Tier Remote Computing Application

Yi-Chun Chu
ycchu@citi.umich.edu

Charles J. Antonelli
cja@citi.umich.edu

The Center for Information Technology Integration has undertaken a study of the poten-
tial impact of PeopleSoft software on U-M production computing environments, focusing
on the measurement and modeling of the Peoplesoft 6 architecture in order to provide re-
sults useful in sizing various components of the M-Pathways campus deployment.

We have constructed a closed queueing network model of the two-tiered deployment ar-
chitecture and evaluated the model using mean-value analysis. We also built a testbed
and a database exerciser at CITI that were used to measure model parameters and per-
form model validation. Our testbed also yields preliminary data for a three-tiered de-
ployment architecture planned by M-Pathways, which forms the basis for the next phase
of our work.

December 1997

Center for Information Technology Integration

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Executive Summary

In this first phase of work we have developed a Queueing Network Model for a two-tiered PeopleSoft 6
(PPS6) client-server system, built a performance modeling tool to evaluate the model via Mean Value
Analysis, and developed Stress, a load generator that exercises Oracle database servers. The model out-
puts closely matched the measured values in those cases where the CPU and disk service demands re-
mained constant; however, in several cases the service demands were found to vary with the number of
clients, causing major discrepancies. We plan to refine the model in the next phase of work by dissecting
the measured service demands into smaller components, using the tkprof tool.

We then performed some preliminary measurements when running PPS6 in a three-tier Citrix environ-
ment, both by monitoring network traffic and by measuring CPU utilization. First, we found that the av-
erage network traffic rate between Citrix WinStation clients and the WinFrame server consumes about
0.6% of a 10 Mbps Ethernet, so the network is not likely to be a bottleneck. Second, we measured the net-
work communications overhead in terms of CPU time expended on client and server machines, and
found that the Citrix client consumes about 96% of the client machine CPU; in contrast, the Citrix server
consumes about 19% of the server machine CPU -- about as much as Stress does when run on the same
platform. Finally, we noted a 14-17% increase in completion time when running Stress in the 3-tiered as
compared with the 2-tiered environment. Our measurement tools do not allow us to account for CPU
time charged to individual processes, so we cannot as yet correlate the increased completion time with
the ICA server overhead.

We were not able to obtain an accurate characterization of typical PPS6 application workloads for inclu-
sion in this study. Reasons for this include the inability to access real PeopleSoft applications running
against real databases. As a result our models give results in terms of Oracle database operations instead
of PeopleSoft panel accesses. In the next phase of work we plan to measure actual PeopleSoft applications
and to record client, network, and server utilizations, as well as the stream of Oracle requests generated
by each PeopleSoft panel. This request log will be replayed against a real database copy running on the
real hardware, using a modified version of Stress. This work will require close coordination with M-Path-
ways development staff.

Center for Information Technology Integration 1

Modeling and Measurement of the PeopleSoft
Multi-Tier Remote Computing Application

Yi-Chun Chu and Charles J. Antonelli

December 1997

1. Introduction

The Center for Information Technology Integration has undertaken a study of the potential impact of Peo-
pleSoft software on U-M production computing environments. This study has focused on the measure-
ment and modeling of the Peoplesoft 6 architecture [13] in order to provide results useful in sizing
various components of the M-Pathways campus deployment [12].

Our strategy has been to construct both an analytic model of the M-Pathways deployment architecture
and a representative testbed at CITI. Our testbed permits the measurement of relevant model parameters,
which are then used to drive the model to generate predictive estimates.

In Section 2 we present the analytic modeling techniques used to model a two-tiered Peoplesoft 6 archi-
tecture. In Section 3 we outline the testbed and database exerciser we built to validate the model parame-
ters and gather performance data. In Section 4 we present the results of some preliminary investigations
of the Citrix WinFrame product [5], which is used to build a three-tiered architecture on top of Peoplesoft
6. Finally, in Section 5 we discuss the results obtained and set the stage for future work, and conclude in
Section 6.

2. Analytic Modeling of Client-Server Systems

The performance evaluation of the PeopleSoft 6 distributed application (henceforth called PPS6) uses a
methodology common to many performance evaluation projects [8,11]. The procedures comprising the
methodology are:

 • understanding the software architecture of PPS6,
 • creating an analytic model of PPS6,
 • building a performance modeling tool to evaluate the analytic model,
 • measuring the modeling parameters,
 • validating the performance model, and
 • using the model to evaluate system performance of varying configurations.
We describe these procedures in detail in this and the following sections.

Center for Information Technology Integration 2

Chu/Antonelli

2.1 PPS6 Software Architecture

PPS6 is a two-tier client-server distributed application [13]. The future deployment of PPS6 will be aug-
mented with the Citrix WinFrame [12], which adds a distributed Windows presentation capability. The
deployed PPS6 architecture hence resembles a generic three-tier client-server application.1 The software
architecture of PPS6 augmented with Citrix WinFrame is shown in Figure 1.

Figure 1. Software architecture of PPS6 with Citrix WinFrame extension.

PPS6 clients are “thick” clients. Each client program, called a panel in PeopleSoft terminology, contains
business rules for data processing and provides a graphical user interface (GUI). PPS6 clients access re-
mote Oracle databases by means of SQL*Net [15], which is the foundation of Oracle’s family of network-
ing products, providing network connectivity in distributed, heterogeneous computing environments.

Citrix WinFrame provides a distributed presentation service with its Intelligent Console Architecture
(ICA) [4]. ICA, a general-purpose presentation protocol for Windows applications, is conceptually similar
to the X-Windows protocol in UNIX platforms. Its efficient and secure presentation service is imple-
mented in the ThinWire protocol, which supplements the underlying transport service with framing,
compression, and encryption capabilities.

2.2 Analytic Modeling of PPS6 Client-Server Systems

It quickly became clear that developing a single model for the deployed PPS6 and Citrix WinFrame com-
ponents would be very difficult, because a single model would be too complicated to build and impracti-
cal to evaluate with efficient algorithms. Therefore, a general approach for modeling a complicated
system following the “divide-and-conquer” principle was used in this project [11]. First, we built an ana-
lytic model for PPS6. As a consequence, we will be able to model the entire deployed system as the Win-
Frame clients interact with a “flow-equivalence” service center representing the PPS6.

The analytic model of PPS6 which we built is a closed queueing network model (QNM) with a fixed num-
ber of customers (PPS clients). The choice of a closed model with fixed customer population reflects the
situation when PPS6 is in production. A user submits a request by filling out a panel, waits for the result,
and “thinks” a while before submitting the next request. A pictorial presentation of the model is shown in

1. A three-tier client-server distributed application has three software components. The first tier is composed of “thin” clients
which provide the user interface (presentation). The second tier, called the application server, contains the business rules for
data processing. The data are stored in the third tier, which is usually composed of database servers. The “thin” clients in the
three-tier architecture contain the user interface only; in contrast, the “thick” clients in a two-tier architecture contain both the
user interface and business rules for data processing.

ThinWire

TCP/IP

SQL*Net

TCP/IP

Campus Network

WinStation

Citrix
WinFrame

Server

Oracle
Database
ServerDistributed Presentation Remote DB Access

PPS client

Center for Information Technology Integration 3

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

Figure 2. It includes a fixed number of clients, a local network, and a database server (modeled as a server
with one CPU and one disk).

Figure 2. Queueing network model for the PPS 6 application.

The model in Figure 2 assumes that PPS clients and the database server reside on the same Ethernet net-
work. Therefore, the local Ethernet can be modeled as a load-dependent service center1 accessed by cli-
ents and the server. PPS clients are modeled as delay centers with fixed population and a constant think
time (the elapsed time from receiving a previous reply to submitting another request). The database
server is modeled as a load-independent service center with two devices: a server CPU and a server disk.
Each class of client request2 is carried out with a certain amount of server CPU time (CPU service de-
mand) and server disk time (disk service demand), both assumed to be exponentially distributed. There-
fore, client requests in the closed QNM are characterized as multi-class homogeneous workloads. The
solution technique for the model should thus be able to evaluate QNMs with multiple job classes.

2.3 Solution Techniques for Evaluating QNMs

Mean-value analysis (MVA) is an efficient algorithm for evaluating closed QNMs with exact solutions [8,
10,11]. MVA computes only mean performance measures; variances of performance measures can not be
computed with this technique. MVA can be enhanced to evaluate more complicated QNMs. First, it has
been extended to evaluate closed QNMs with multiple job classes. Second, an evaluation technique for
service centers representing load-dependent devices has been developed and integrated into the MVA al-
gorithm. For QNMs with large numbers of job classes, however, the exact MVA algorithm could require
excessive time and space to run. Therefore, an approximate solution technique, called the approximate
MVA, is usually used in practice. Since the approximate MVA is quite accurate, it is useful as a general
technique, even for QNMs that could be solved exactly [10].

In this project we have built a performance modeling tool, called MVA, for evaluating general closed
QNMs. The tool provides a Tcl/Tk user interface for constructing analytic models and displaying model
outputs after analysis. Its core evaluation technique is based on a multi-class, approximate MVA algo-

1. The network is modeled as a load-dependent service center because Ethernet causes varying delays for packet transmission
under different workloads (network traffic).

2. The class of client requests is classified by the specific PPS6 panel generating the request.

PPS clients

network

Oracle DB server

cpu

disk

Center for Information Technology Integration 4

Chu/Antonelli

rithm, called the linearizer [3]. We further enhance the linearizer to evaluate Ethernet networks (load-de-
pendent devices). The following subsections present the modeling parameters and performance measures
in our tool.

2.3.1 Modeling Parameters of Multi-Class MVA Algorithms
A multi-class closed QNM is described as a set of modeling parameters to be evaluated by a multi-class
MVA. These modeling parameters are:

K The number of servers.

C The number of closed classes.

Nc The population of closed class c. (c = 1,2,..., C)

Zc The average think time of closed class c. (c = 1,2,..., C)

Dc,k The average service demand for a class c customer at server k.

The service demand is the total service time required by a class c customer at a

server k considering all visits made by the customer to that server and

= Vc,k * Sc,k

 where,

Vc,k The average number of visits of a class c customer to server k per invocation.

Sc,k The average service time for a class c customer when visiting server k.

MVA evaluates a QNM by determining the following performance measures:

Rc,k(N) The average residence time for class c customers at server k with population N, where N is
the network population vector, (N1, N2,...,Nc).

It includes both queueing and service time.

Rc(N) The average residence time for class c customers with population N.

It is defined as .

Xc(N) The total throughput of class c customers with population N.

It is defined as .

Qc,k(N) The average queue length for class c customers at server k with population N.

Qk(N) The average number of customers at server k with population N.

It is defined as .

Uc,k(N) The utilization of server k by class c customers with population N.

Uk(N) The utilization of server k with population N.

It is defined as .

Rc k, N()
k 1=

K

∑

Nc

Rc N() Zc+

Qc k, N()
c 1=

C

∑

Uc k, N()
c 1=

C

∑

Center for Information Technology Integration 5

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

2.3.2 Model Representation in the MVA Tool
The MVA tool provides a friendly user interface for model construction. The modeling parameters of a
closed QNM can be directly converted into equivalent modeling parameters in the tool. The equivalent
model representation in the MVA tool for the analytic model introduced in Figure 2 is shown in Figure 3.

Figure 3. Model representation of the PPS6 in the MVA tool.

A job class is represented as a parallelogram with two parameters: the client population (N) and the aver-
age client think time (Z). A device is represented as a circle with its service discipline, either a queueing or
delay service center, as its single parameter. A link connecting the parallelogram and a circle contains in-
formation about the service requirement for a job class visiting the device: its visit ratio (V)1 and the aver-
age service time for each visit (D).

For models with multiple job classes, each job class is represented by a separate parallelogram. In addi-
tion, its service requirement is specified by links connecting to visited devices.

2.4 MVA Extension with the Ethernet Device

The analytic model of PPS6 includes a network device (a local Ethernet network) connecting client and
server machines. The modeling parameters of an Ethernet device are determined differently from those of
the previous section. Ethernet performance varies with network traffic due to access contention caused by
the link-layer protocol, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) [6,7]. One ap-
proach for assessing the per-packet delay in the Ethernet network is to model the network as a load-de-
pendent (LD) device, and solve the model by the extended MVA with LD service centers [10,11]. The
corresponding LD service center models Ethernet contention as a certain number of stations simulta-
neously accessing the network. One disadvantage of this approach is the difficulty of assessing the per-
packet delay when considering the interference traffic from sources outside the system under evalua-
tion.2 The background traffic problem can be solved by modeling an Ethernet network with respect to the
overall packet rate and the average packet length rather than number of stations accessing the network
[1,7,9].

Assessing the per-packet delay in Ethernet with respect to the average packet rate can be performed by
the Ethernet delay submodel of NetMod [1]. The analysis technique of NetMod is based on decomposi-
tion. NetMod decomposes a network model with interconnected subnetworks into several related sub-

1. Visit ratio is the same asVc,k, the number of visits of a customer to a server per invocation.

2. It is difficult to estimate how many stations besides the system under evaluation will simultaneously access the Ethernet and
cause contention.

server CPU server disk Ethernet

clients of job class 1

V1,cpu
D1,cpu

V1,disk
D1,disk

N1,net
L1,net

N1
Z1

queueing queueing
B
τ
Tbg

Center for Information Technology Integration 6

Chu/Antonelli

models, analyzes each submodel with corresponding closed analytic expressions, and then consolidates
the results. The Ethernet submodel in NetMod applies Lam’s formula for the per-packet delay [7], and
Hammond and O’Reillys’ formula for Ethernet utilization [8]. Lam’s Ethernet delay model estimates per-
packet delay with four input parameters: the transmission speed of Ethernet, the one-way propagation
delay of the Ethernet network, the average packet rate, and the average packet length. The packet rate
and packet length parameters are averaged from all traffic sources accessing the Ethernet. Background
traffic is thus taken into account while estimating the per-packet delay.

Khandker has validated the feasibility of the integration of the linearizer and the analysis algorithm of
NetMod [9]. He combines the above two algorithms with a small program which converts the output of
the linearizer to NetMod, and vice versa. The combined method iterates one algorithm after the other,
and uses the outputs of one algorithm as input parameters of the other until the two algorithms converge.
In our implementation of the linearizer, we enhance his method by incorporating the Ethernet delay
model into the core iteration of the linearizer directly. This new algorithm generates the same perfor-
mance measures, but converges faster because fewer iterations are needed.

The enhanced linearizer introduces new input parameters for an Ethernet device:

B The transmission speed (network bandwidth) of Ethernet. (10 or 100 Mbps)

τ The one-way propagation delay of the Ethernet network.

Tbg The background traffic of Ethernet in Mbps.

The visit ratio and service time of an Ethernet device are replaced by:

Nc,k The average number of packets generated for classc customer per invocation.

Lc,k The average packet length of all packets generated by a classc customer per invocation.

The average packet length, Lk, for an Ethernet device k is estimated by the following formula:

The average packet rate, Rk, is estimated as:

Both formulas use Xc(N), the estimated throughput for a class c customer in the previous iteration, to
compute the per-packet delay of Ethernet in the current iteration.

Lk

Xc N() Nc k, Lc k,××
c 1=

C

∑

Xc N() Nc k,×
c 1=

C

∑
--=

Rk

Tbg Xc N() Nc k, Lc k,××
c 1=

C

∑+

Lk
--=

Center for Information Technology Integration 7

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

3. Measurement Methodology and Model Validation

A performance model aims at representing the behavior of a real system in terms of its performance. The
input parameters for a performance model describe the hardware configuration, the software environ-
ment, and the workload of the system under study. The representativeness of a model depends directly
on the quality of its input parameters [11]. This section presents two important steps for obtaining the in-
put parameters for our analytic model: performance measurement and parameter estimation. We start
this section with a short description of our measurement testbed.

3.1 Measurement Testbed

A measurement testbed for the PPS6 has been set up at CITI. The testbed is composed of a WinStation cli-
ent (Windows NT Workstation 4.0 equipped with a 200 MHz Pentium processor and 32 MB RAM), a
WinFrame server (Citrix WinFrame Server 1.6 equipped with two 200 MHz Pentium processors and 128
MB RAM), and a database server (IBM RS/6000 Model F30 running AIX 4.1 and Oracle server 7.3.1,
equipped with 256 MB RAM). These three machines are attached to a private 10-Mbps Ethernet through a
Cisco 1900 switch which also provides connectivity to the campus network.

A database exerciser, called Stress, is used as the load generator against the Oracle server in the testbed.
Stress provides two sets of functions. First, it allows manual selection of database access functions. Sec-
ond, it supports automatic request generation for synthetic database workloads. When used in this mode,
Stress can compose a mixed workload from four SQL database calls (insert, delete, query, and update a
record), each with different weights, and then run the workload repetitively against the specified data-
base while collecting performance statistics.

3.2 Performance Measurement

The purpose of the performance measurement step in our methodology is to provide measurement data
for determination of model parameters. Our analytic model requires two sets of input parameters: the
server CPU and disk service demands for carrying out a Stress request; and the number of packets gener-
ated by the request and the average packet length. The first set of parameters can be derived from the
CPU and disk utilization measured by iostat - a system monitoring utility. The number of packets and the
average packet length can be obtained with tcpdump and tcptrace - packet capturing and analysis tools.

Iostat is a general UNIX monitoring utility available across different vendor platforms. It can report sys-
tem statistics of CPU and disk utilization at specific time intervals with the granularity of seconds. Our
measurement plan monitors the following performance measures:

%user The percentage of time the system unit spent in execution at the user (or application)
level.

%sys The percentage of time the system unit spent in execution at the system (or kernel) level.

%idle The percentage of time the system unit was idle with no outstanding disk I/O requests.

%iowait The percentage of time the system unit was idle waiting for disk I/O to complete.

%tm_act The percentage of time the physical disk was active (busy).

tps The number of disk transfers per second.

The above performance measures can be converted directly into CPU and disk utilization. For example,
the server CPU utilization (%cpu) is the sum of %user and %sys; and the server disk utilization (%disk) is
the same as %tm_act.

Center for Information Technology Integration 8

Chu/Antonelli

Tcpdump is a portable UNIX tool for displaying the headers and payload of packets captured on a network
interface. Tcptrace is a UNIX tool for analyzing the packet traffic captured by tcpdump; for example, it can
reconstruct and compute statistics about TCP connections established between pairs of hosts. For each
type of Stress request, the number of SQL*Net packets (Nc,k) generated and the average packet length
(Lc,k) are derived from the packet trace collected by tcpdump. Since each type of Stress request always gen-
erates the same number of SQL*Net packets, we count each packet and average the packet length manu-
ally. For SQL requests generating a large number of packets, tcptrace can produce a statistical analysis of
the packet trace.

For model validation purposes, three different types of Stress requests - Stress insert, Stress update, and
Stress delete - have been measured in the testbed. Each performance measurement is conducted over
10,000 consecutive requests to minimize the boundary effect of measurement. The elapsed time of 10,000
requests is measured by Stress itself, and is used to derive the average completion time per request (the
elapsed time between Stress generating a database call and Stress receiving the last result packet from the
Oracle server) and the server throughput. At the same time, we measure the average server CPU utiliza-
tion and disk utilization with iostat. They are used to estimate the CPU and disk service demands per re-
quest in the next subsection.

For each type of Stress request, we repeat the same measurement with different numbers of concurrent
clients. The measurement data are presented in Tables 4-6. For the second set of model parameters, Table
7 shows the number of SQL*Net packets per Stress request and the average packet length for each type of
request.

 C: request completion time.
 X: server throughput.

Table 4. Measurement data for Stress insert.

of
clients

%cpu %disk C
(ms)

X Dcpu
(ms)

Ddisk
(ms)

1 20.19 57.66 59.79 16.7312.07 34.47
2 32.35 90.70 75.43 26.5212.20 34.21
3 39.31 90.38 92.46 32.4512.11 27.85
4 45.89 91.21 106.20 37.6712.18 24.21
5 52.04 91.07 115.44 43.3112.02 21.03
6 56.45 89.66 134.73 44.5412.68 20.13

mean 12.21 26.98
stdev 0.24 6.31

Table 5. Measurement data for Stress update.

of
clients

%cpu %disk C
(ms)

X Dcpu
(ms)

Ddisk
(ms)

1 24.74 40.99 79.58 12.5719.69 32.62
2 44.40 69.59 96.72 20.6821.47 33.65
3 55.62 78.43 117.93 25.4421.86 30.83
4 65.18 80.52 137.78 29.0322.45 27.24
5 72.23 81.16 158.23 31.6022.86 25.68
6 76.24 81.11 184.41 32.5423.43 24.93

mean 21.96 29.24
stdev 1.31 3.66

Table 6. Measurement data for Stress delete.

of
clients

%cpu %disk C
(ms)

X Dcpu
(ms)

Ddisk
(ms)

1 24.38 42.85 82.44 12.1320.10 35.33
2 42.43 69.91 99.83 20.0321.18 34.89
3 54.07 79.98 122.04 24.5821.99 32.54
4 62.64 81.89 143.76 27.8222.51 29.43
5 68.70 82.63 166.44 30.0422.87 27.50

mean 21.73 31.94
stdev 1.11 3.41

Table 7. Other Stress request parameters.

request type Npkt Lpkt Dclient
Stress insert 6 115.67 16.12
Stress update 16 123.94 26.46
Stress delete 16 113.44 28.51

Center for Information Technology Integration 9

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

3.3 Parameter Estimation

Parameter estimation deals with the determination of input parameters from measurement data. Many
times, performance measurement tools do not provide enough information for calculating the input pa-
rameters required by a performance model. Therefore, inferences have to be made to derive the desired
parameters [11]. In this subsection we show how the CPU and disk service demands can be derived from
the measurement data in the previous subsection.

For each performance measurement, we set up Stress to generate synchronous consecutive requests. At
the same time, the number of requests (n) carried out within the measurement interval (T) is measured
along with the server CPU utilization and disk utilization statistics. Therefore, the average completion
time (C) per request is estimated as T/n and the average server throughput (X) is estimated as n/T re-
quests per second (rps). The average CPU service demand is estimated from the %cpu as:

Similarly, the average disk service demand is estimated from %disk as:

The estimated service demands for each type of Stress request are also shown in Tables 4-6. For each type
of Stress request, the number of Stress clients varies from one to six except for Stress delete.1 The mean and
standard deviation of the estimated service demands are listed at the end of each table.

Model parameters, such as CPU or disk service demand, usually use the mean of all measurement data
available. The MVA tool can determine accurate performance measures if the variance of measured ser-
vice demands is relatively small in comparison to their mean. For Stress requests, however, the measured
service demands vary with the number of concurrent Stress programs: the CPU service demand increases
slightly with more concurrent clients and the disk service demand apparently decreases with more con-
current clients.2 This undesired phenomenon will cause a discrepancy between the measurement data
and the model outputs because the MVA tool evaluates analytic models with fixed service demands for
all client populations.

3.4 Model Validation and Performance Evaluation

Considering the disparity in the measured service demands, we evaluate the analytic model with two
sets of model parameters. The only difference between the two sets of parameters is their CPU and disk
service demands: one uses the mean value of all measured service demands (called Model 1) and the
other uses the exact measures obtained with five concurrent Stress clients (called Model 2).

When the input parameters are applied, the MVA tool determines the performance measures for a fixed
client population (number of clients) with zero think time. We increase the client population one at a time
until the disk is saturated. The model outputs and the measurement data are compared with three perfor-

1. Performance measurement forStress delete with six clients fails because one client machine is saturated.

2. We are still investigating the reason why the disk service time decreases while the CPU service time increases with more
concurrent clients accessing the Oracle server. We believe several reasons may cause the phenomenon. First, it is most likely
due to the Oracle database caching. Second, certain disk optimizations could reduce the disk service time in the presence of
increased pending disk I/O. Finally, the increasing CPU service time is probably due to the lock contention for several
concurrent Oracle connections accessing the same database.

Dcpu
%cpu T×

n
-----------------------=

Ddisk
%disk T×

n
------------------------=

Center for Information Technology Integration 10

Chu/Antonelli

mance curves: CPU utilization, disk utilization, and completion time (the average residence time in a job
class) against throughput. These performance curves are shown in Figures 8-10.

Figure 8a shows the service demands of Stress insert from the measurement data, and from the input pa-
rameters of Model 1 and Model 2. Among three different Stress requests, Stress insert has the largest dis-
parity in its measured disk service demand: it drops from 34.47 ms with one client down to 20.13 ms with
six clients. This causes about 7.32 ms of difference in disk service demands between Model 1 and Model 2.
The model outputs for disk utilization (in Figure 8d) and completion time (in Figure 8b) thus reflect this
disparity and cause a major discrepancy between model outputs and measurement data However, since
Stress insert has a very small disparity in the measured CPU service demands, the CPU utilization from
the model outputs closely matches the measured CPU utilization (in Figure 8c).

Figure 8. Comparison of measurement data and model outputs for Stress insert.

The MVA tool determines that the Oracle server saturates with throughput of 35 rps for Model 1 and of
47.55 rps for Model 2. The maximum throughput can also be derived from the inverse of the disk service
demands (1/0.028 and 1/0.021) applied to the model because the disk is the bottleneck device in this case.

For Stress update and Stress delete, the disparity among all measured disk service demands is similar to,
but not so significant as in Stress insert. However, another undesired phenomenon arises in that the mea-
sured CPU service demand increases with more concurrent clients. This causes a small discrepancy in

(c) CPU utilization(a) service demands

(b) completion time (d) disk utilization

Center for Information Technology Integration 11

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

CPU utilization between the model outputs and the measurement data. In general, the same analytic
model does a better job of predicting performance measures for Stress update and Stress delete than for
Stress insert because the former have a smaller disparity in measured service demands.

Figure 9. Comparison of measurement data and model outputs for Stress update.

From the above performance experiments, we find the analytic model does not predict the performance
satisfactorily because of the discrepancy between the model outputs and the measurement data. More
specifically, the general model assumption about the fixed service demands is not valid because the mea-
sured service demands actually vary with the number of concurrent clients. As a result, the first step for
model refinement is to identify the actual cause for the disparity in service demands at the Oracle server.
This task requires better monitoring tools capable of decomposing the execution of an SQL request into
smaller components. In addition, we also have to characterize how service demands vary with the num-
ber of concurrent Oracle connections. We discuss a plausible approach in our future research plan in Sec-
tion 5.

For capacity planning purposes, values for two more parameters are required to complete our model: the
client population and the average “think” time for each job class. Unlike the previous model parameters,
they are usually determined by a capacity planner based on his or her experience and intuition. However,
statistical analysis of measurement data from production systems can help determine these two parame-

(a) service demands (c) CPU utilization

(b) completion time (d) disk utilization

Center for Information Technology Integration 12

Chu/Antonelli

ters more accurately. Finally, we do not evaluate the analytic model with multiple job classes (such as
mixed Stress requests) because our measurement techniques cannot provide the performance measures to
validate the model outputs. Since capacity planning usually evaluates the analytic model with multiple
job classes, we are investigating the Oracle accounting facility to fulfill this purpose.

Figure 10. Comparison of measurement data and model outputs for Stress delete.

3.5 Regression Analysis of Service Demand s

Regression analysis is a general technique for finding a formula consistent with a set of data that can be
used for predicting values outside the range of the original data [8]. The technique is applied here to esti-
mate service demands with respect to the number of concurrent clients. In this subsection, we exercise
this technique with the performance measures of Stress delete and compare the result with the previous
model outputs.

As mentioned in the previous subsection, the MVA tool evaluates the model with different client popula-
tions (number of concurrent clients), but with the same CPU and disk service demands. Since the mea-
sured service demands actually vary with the client population, it is reasonable to change them as we
change the client population. However, an immediate problem arises because we do not have a complete
set of performance measures for model evaluation. Therefore, we apply the regression analysis to esti-
mate the service demands that could not be measured (for six or more concurrent clients) based on the
service demands we measured (for one to five concurrent clients).

(a) service demands (c) CPU utilization

(b) completion time (d) disk utilization

Center for Information Technology Integration 13

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

To discover the trend of the service demands for Stress delete, the measured values are plotted against the
number of concurrent clients (the dots in Figure 11). This helps us to determine what kind of regression
methods should be chosen for each case. In this example, we chose linear regression for the CPU service
demand, (the dashed line in Figure 11) and curvilinear regression for the disk service demand (the bold
curve in Figure 11). The regression analysis thus provides the MVA tool with the estimated service de-
mands of different numbers of concurrent clients for model evaluation. The regression model outputs are
shown in Figure 12.

Figure 11. Stress delete: regression analysis for service demand estimation.

Figure 12a plots the estimated service demands against the throughput, which provides another way for
judging the trend predicted by the regression methods chosen. From the performance curves in Figure
12b-d, the regression model outputs match the measurement data much better than do the outputs of
Model 1 and Model 2. However, the regression model outputs at higher throughput values are not very
satisfactory because the error in the predicted value grows larger as the independent variable increases.

From the above experiment, we learned the regression analysis is an attractive alternative when perfor-
mance measures do not provide enough information for estimating model parameters. This method nev-
ertheless has restrictions. First, we have only exercised this method with a single job class and a zero
think time because our measurement techniques cannot provide performance measures in a mixed work-
load environment. It is still inconclusive if multiple job classes and a non-zero think time can affect the ac-
curacy of this method. Second, we can only apply regression analysis with respect to the number of
concurrent clients, instead of the client population at the service center.1 However, modeling a LD service

1. For this task, we need to measure how service demands vary with the number of pending disk requests at the Oracle database
server.

of cli-
ents

measured regression
Dcpu Ddisk Dcpu Ddisk

1 20.10 35.33 20.35 36.91
2 21.18 34.89 21.04 33.88
3 21.99 32.54 21.73 31.49
4 22.51 29.43 22.42 29.54
5 22.87 27.50 23.11 27.91
6 23.79 26.53
7 24.48 25.33
8 25.17 24.28
9 25.86 23.36
10 26.55 22.53
11 27.24 21.78
12 27.92 21.10
13 28.61 20.49
14 29.30 19.92
15 29.99 19.40
16 30.68 18.91
17 31.36 18.47
18 32.05 18.05
19 32.74 17.66
20 33.43 17.29

Center for Information Technology Integration 14

Chu/Antonelli

center requires information about how its service demand varies with the client population at the service
center. These issues will be addressed in our future research plan.

Figure 12. Comparison of performance measures and three model outputs for Stress delete.

4. Preliminary Investigation of Citrix WinFrame Servers

There are two major benefits to extending PPS6 with Citrix WinFrame servers. First, it eases the adminis-
tration effort for distributing the PPS6 client programs, since they no longer need be stored on the widely-
dispersed Citrix client machines. Second, it provides a more secure environment for running the PPS6
panels because the application binaries are stored on the Citrix server machines, which reside in locked
rooms. From the performance perspective, however, stockpiling several PPS6 panels in a single Win-
Frame server can make the server itself a performance bottleneck. In addition, the extra ICA traffic be-
tween WinStations and WinFrame servers can impact the network. Therefore, performance measurement
of Citrix WinFrame servers includes:
 • estimating the capacity of a WinFrame server,
 • estimating the network impact of ICA traffic, and
 • investigating the performance impact for running PPS6 panels on WinFrame servers.

(a) service demands (c) CPU utilization

(b) completion time (d) disk utilization

Center for Information Technology Integration 15

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

To date, several monitoring tools running on Windows NT have been exercised for measuring the over-
head caused by the WinFrame extension; analytic modeling of the extension will be our goal.

4.1 Performance Measurements of ICA Traffic

It is difficult to quantify the workload of a distributed presentation service. One way to study the service
is by monitoring the communications between its components; in this case, the ICA traffic. ICA generates
window frames (network traffic) along both directions of a WinStation connection. At the WinStation, win-
dow frames carry key-strokes and mouse movements executed by a user; at the WinFrame server, win-
dow frames carry display updates on behalf of a program’s GUI.

We use two Windows programs, Lotus WordPro and Stress, to study the ICA traffic. Figure 13 shows the
ICA traffic for editing a small document with Lotus WordPro. Each dot in the figure represents an instan-
taneous TCP throughput value in one direction of the WinStation connection. It can also be interpreted as
the number of data bytes being transported in that direction. Figure 13a shows ICA traffic for carrying
key-strokes and mouse movements, and it is not surprising that the packet rate is very low. Figure 13b
shows ICA traffic for carrying WordPro display updates. The highest peak is at the very beginning of the
connection, probably due to bringing up the entire GUI for the first time. The rest of the ICA traffic is
bursty with a few smaller peaks.

Figure 13. ICA traffic for editing a small document with Lotus WordPro.

Figure 14 shows the ICA traffic for running Stress with 4 repetitions of 1000 database calls per repetition.
No ICA frames are sent by the WinStation (see Figure 14a), except at the very beginning and the very
end, because Stress requires no input after the load generation starts. Similarly, the highest peak at the
very beginning of Figure 14b is probably attributable to bringing up the Stress panel for the first time. Af-
ter that, a large amount of display updates are sent by the WinFrame server, which is shown as a band of
dots spreading along the time axis in Figure 14b.

(a) WinStation --> WinFrame server (b) WinFrame server --> WinStation

Center for Information Technology Integration 16

Chu/Antonelli

Figure 14. ICA traffic for running Stress.

Table 15 lists some statistics, from the tcptrace reports, about the above two WinStation connections. In the
Stress case, only 72 out of 5424 packets sent by WinStation actually carry data; the rest only carry TCP ac-
knowledgments. In the WordPro case, more than half the packets (428 out of 743) sent by WinStation carry
data, which is probably for key-strokes and mouse movements for document editing.

4.2 Characteristics of ICA Overhead

Running an application remotely at the Citrix WinFrame server requires extra CPU time to manage this
distributed presentation service. We call this extra CPU time the ICA overhead to distinguish it from the
actual CPU time consumed by the application. ICA overhead also applies to the WinStation on which the
result is displayed. Therefore, we further distinguish the ICA-client overhead from the ICA-server overhead
at the WinFrame server.

The amount of ICA overhead associated with an application depends on many factors. From the ICA per-
spective, the two most important factors are the encryption and compression setting in a WinStation con-
figuration [4]. The ICA encryption setting affects the amount of overhead associated with each ICA frame.
A WinStation configuration allows three levels of encryption setting: no encryption at all, encryption dur-
ing the authentication phase only, or encryption of each ICA frame. Similarly, the ICA compression set-
ting affects the overhead associated with each ICA frame. A WinStation configuration can set

Table 15. Comparison of ICA traffic for Stress and Lotus WordPro.

Stress Lotus WordPro
WinStation --> <-- WinServer WinStation --> <-- WinServer

total packets 5424 10728 743 909
actual data packets 72 10691 428 750
actual data bytes 1750 2117356 4593 144273

average segment size (bytes) 24 198 10 192
RTT average (ms) 113.7 1.4 86.4 33.9

throughput (bytes/sec) 5 5381 34 1065
connection elapsed time (sec.) 357.02 135.49

(a) WinStation --> WinFrame server (b) WinFrame server --> WinStation

Center for Information Technology Integration 17

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

compression on or off, with the default compression scheme or others.1 Other configuration factors affect-
ing the ICA overhead include the size and the color depth of the window displayed at the WinStation.

Application-specific and user-specific factors also affect the ICA overhead. Different Windows applica-
tions have different GUIs. They require different user inputs and generate different display outputs. Simi-
larly, different users of an application can execute key-strokes and mouse movements differently. Since
the ICA overhead is sensitive to these dynamic factors, they make the ICA overhead difficult to predict.
The discrepancy of ICA traffic between Figures 13 and 14, and the tcptrace statistics in Table 15 help sup-
port the above arguments.

4.3 Performance Measurements of ICA Overhead

We have discovered that the ICA overhead can be measured on Windows NT platforms by the task man-
ager, a process monitoring utility, or by perfmon, a general monitoring and logging tool. The WinFrame
server program csrss.exe (client-server runtime subsystem) manages all distributed presentation on behalf
of a WinStation. Therefore, WinStation-induced ICA-server overhead can be measured against the spe-
cific csrss.exe associated with each WinStation. Similarly, we can measure the ICA-client overhead against
two specific processes, called wengfN.exe and wfcrun32.exe. Table 16 shows the performance measure-
ments of the ICA overhead in a three-tiered environment. The measurements focus on the average ICA
traffic rate and the performance measures of three processes - Stress itself, csrss at the WinFrame server,
and wengfN at the WinStation. Based on the ICA traffic rates and the CPU utilization of csrss and wengfN,
we can estimate the ICA-client overhead and ICA-server overhead in CPU time cost per byte.

Several interesting phenomena are revealed by Table 16. First, the cost of the distributed presentation ser-
vice provided by Citrix on behalf of Stress is very high. It consumes about 96% of the CPU at the WinSta-
tion and 19% of the CPU at the WinFrame server; the latter figure is very close to the CPU utilization of
Stress itself, when run in the two-tiered configuration. Second, ICA-client overhead (140 us/byte) is more
costly than ICA-server overhead (28 us/byte). We cannot find a good explanation for this five-fold over-
head difference. Third, the average ICA traffic rate is low, less than 0.6% of Ethernet bandwidth; although
there are frequent display updates while running Stress. Thus we estimate that 48 concurrent connec-
tions2 would consume 29% of a 10 Mbps Ethernet network.

1. ICA compression cannot be turned off in Citrix WinFrame server version 1.6. This restriction has been removed from version
1.7 because most high-speed LANs, unlike serial modem lines, can accommodate the higher network load. Disabling ICA
compression reduces the ICA overhead at both WinStation and WinFrame server. All measurements in this section use the
same WinStation configuration: compression on and encryption off.

Table 16. Performance measurements of ICA overhead.

of DB

 calls

C

(sec.)

CPU time (sec.) %CPU ICA ICA Overhead (us/byte)
stress csrss wengfN stress csrss wengfN(byte/sec.) WinServer WinStation

125 38.22 7.87 7.06 39 20.59 18.47 102.04 6970.53 26.49 146.39
250 75.77 15.47 14.70 73 20.42 19.40 96.34 7214.87 26.89 133.54
375 113.83 24.51 21.70 109 21.53 19.07 95.76 6926.25 27.53 138.25
500 152.91 32.36 29.78 143 21.16 19.48 93.52 6926.32 28.12 135.02
625 190.81 40.65 37.27 182 21.30 19.53 95.38 6847.54 28.52 139.30
750 229.64 46.43 44.24 219 20.22 19.27 95.37 6684.91 28.82 142.66
875 269.13 55.23 52.43 256 20.52 19.48 95.12 6759.26 28.82 140.73
1000 307.81 61.28 59.31 293 19.91 19.27 95.19 6682.80 28.83 142.44
mean 20.71 19.24 96.09 6876.56 28.00 139.79
stdev 0.57 0.35 2.53 176.11 0.93 4.21

2. This is the maximum number of users PeopleSoft recommends handling via a single WinFrame server; for the server itself
PeopleSoft recommends a four-processor Pentium P6 200 and 1 GB of memory.

Center for Information Technology Integration 18

Chu/Antonelli

4.4 Application Impact of Citrix WinFrame

To further investigate the cost of running Citrix WinFrame, we measured the completion time and CPU
time for running Stress in a two-tiered configuration (called local) and in a three-tiered configuration
(called remote). The measurement data are shown in Figure 17 with different numbers of database calls in
each of four repetitions per measurement.

Figure 17. Measurement of application impact of Citrix WinFrame.

Comparing the measurements in both cases, we can draw three conclusions. First, in the three-tiered envi-
ronment, the Stress program and the ICA client consume about an equal amount of CPU time. Second,
there is a noticeable overhead (about 14-17%) in completion times for running Stress in the three-tiered as
opposed to the two-tiered environment, and the difference grows linearly with the completion time.
Third, the WinStation (in the form of wengfN.exe) consumes much more CPU time for the presentation of
Stress results than it does running Stress itself.

Running programs in the three-tiered environment generates ICA-server overhead; however, our mea-
surement tools do not account for this overhead in terms of CPU time charged to individual processes.
This increases the difficulty of correlating the increased completion time with the ICA- server overhead.
To date, we have been able to measure the ICA-server overhead on a per-WinStation basis (discussed in
the previous subsection); analytic modeling of the increased completion time with respect to the ICA-
server overhead is our next research goal.

5. Discussion and Future Work

Our project aims at providing performance measures for PPS6 capacity planning. To sustain the perfor-
mance measures with a high degree of confidence, precise measurement techniques and analytic (queue-
ing) models must be developed. We have worked toward this goal and gained experience through several
performance experiments conducted on the CITI testbed, which is a minimal PPS6 system when com-
pared to the hardware and software that will be deployed as part of the M-Pathways project. Neverthe-
less, these experiments have provided some interesting results, as well as some insights into conducting
performance measurements in the next stage of the project. To date, three major accomplishments of this
project are:

 • a prototype implementation of the database exerciser, the Stress program,

of DB
calls

2-tier Stress 3-tier Stress
CPU C CPU C wengfN

125 8.03 32.73 8.47 38.22 39
250 15.62 63.61 16.08 75.77 73
375 23.28 98.58 24.75 113.83 109
500 31.09 130.59 31.58 152.91 143
625 37.97 166.34 39.23 190.81 182
750 45.72 200.31 47.83 229.64 219
875 55.03 235.34 55.91 269.13 256
1000 61.33 266.92 63.75 307.81 293

Center for Information Technology Integration 19

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

• measurement techniques for Oracle database servers, SQL*Net traffic, Citrix WinFrame servers, and
ICA traffic, and

 • a general performance modeling tool for evaluating closed QNMs, the MVA tool.
Although the performance measurements presented in Section 3 are not entirely applicable to PPS6, our
achievement and experience can be easily applied to it. In this section, we summarize and discuss our ac-
complishments to date and our future research plans.

5.1 Database Exerciser

A database exerciser serves two purposes in performance measurement. First, it helps benchmark a data-
base server with different workload intensities. Due to the difficulty of setting up a testing environment
with a large number of users, a database exerciser is usually the only feasible solution for conducting
large-scale performance measurements. Second, it generates continuous, synchronous requests for mea-
suring the per-request CPU and disk service demands. However, we want to develop a database exer-
ciser which can generate synthetic SQL requests analogous to a real PPS6 panel.

While Stress, our prototype implementation of a database exerciser, met the testbed requirements, we be-
lieve two enhancements will help it better simulate a real PPS6 panel. First, we realize that PPS6 panels
generate more complicated SQL requests than does the Stress program. To emulate PPS6 panels more
precisely, the Stress program must generate SQL requests and access Oracle tables similar to those used in
processing PPS6 panels. Preliminary investigation indicates that the Oracle SQL trace and the PPS6 client
trace facilities can help us here.1 For each type of PPS6 panel, both types of traces could be collected while
users are using the system normally. Later, the traces can be analyzed to identify the exact SQL requests
composed of the PPS6 transactions associated with each panel. After the PPS6 transactions of frequently
used panels have been identified, Stress can be programmed to generate similar transactions for emulat-
ing PPS6 panels. Second, for emulating the user “think” time, the Stress program can be configured with
an adjustable delay between consecutive requests. The delay can be a fixed value or a probability distri-
bution, which is determined by measuring the real think time during normal use.

The proposed enhancements for Stress not only facilitate PPS6 performance measurements, but also help
us characterize the database workload of PPS6 panels. A more detailed description of Stress is provided
in Appendix A.

5.2 Measurement Methodology

Performance measurements require accurate monitoring tools and expertise in measurement techniques.
In this project, performance measures must be monitored at the Oracle database server and the Citrix
WinFrame server, and packet traces must be collected and analyzed for SQL*Net traffic and ICA traffic.
To date, we have used several performance monitoring tools with the CITI testbed;2 however, we find
them primitive and somewhat restricted. Therefore, we remain interested in new monitoring tools to de-
velop better measurement techniques.

5.2.1 Performance Measurement of Oracle Database Servers
The performance of the PPS6 depends on the performance of the Oracle database server, i.e. how it exe-
cutes the PPS6 transactions. Several performance measures help evaluate the performance of the Oracle
database server: completion time, throughput, and device utilization of the server CPU(s), disk(s), and
network interface card (NIC). Since these performance measures vary with workload intensity, they are
always studied with different numbers of Oracle connections (or active PPS6 panels).

1. SQL traces can be collected by the Oracle SQL trace or by the PPS6 client trace. The difference is the location where the SQL
trace is collected: the Oracle SQL trace collects it at the database server, the PPS6 client trace collects it at the client machine.

2. Several tools have been proved to be useful:iostat, perfmon, tcpdump, andtcptrace.

Center for Information Technology Integration 20

Chu/Antonelli

Currently, we measure the request completion time at the client side (via Stress itself), and use it to fur-
ther derive the server throughput. At the Oracle server, we measure the device utilization (with iostat),
which can sustain good accuracy by taking an average value of several measurements at short intervals.
This measurement technique is suitable for a controlled environment like the CITI testbed, but inconve-
nient for production systems. Therefore, we are looking for better monitoring tools for measuring the
completion time at the Oracle server and capable of accounting for the CPU time and the disk time ex-
pended on each request. With such tools, performance measures can be collected on a regular basis from
production systems for statistical analysis. These measurements can provide valuable information for
performance evaluation and capacity planning.

5.2.2 Performance Measurement for Analytic Modeling
Analytic modeling requires performance measures for estimating model parameters. These performance
measures are the service requirement at different devices, decomposed into individual service times at
various stages of request execution. Analytic modeling of the PPS6, therefore, measures service times for
the execution of SQL statements in terms of CPU time and disk time, and the number of SQL*Net packets
accounting for transmission delay.

Currently, we use iostat, which reports CPU and disk utilization at the Oracle server, and tcpdump, which
collects packet traces for the SQL*Net traffic, to derive the model parameters. As a consequence, the ser-
vice requirement of a Stress request can only be decomposed into a fixed CPU service time, a fixed disk
service time, and the transmission time of SQL*Net packets. We find these tools inadequate for modeling
purposes because the disparities of estimated service demands under different workload intensities and
the discrepancies of various performance measures between measurements and models outputs are so
obvious.

Therefore, an emergent need in performance measurement is a tool capable of dissecting the service de-
mands into smaller components. To date, we find tkprof, an Oracle performance diagnostic tool, a plausi-
ble solution for this task. Tkprof decomposes the execution of an SQL statement into three phases (parse,
execute, and fetch); it also reports the elapsed time, the CPU time, and the number of disk block reads in
each phase (see Table 18). These statistics help to refine the service requirement from two gross values
(CPU and disk service times) into smaller components with specific purposes. We believe this extra infor-
mation can help to discover the cause for the disparity in measured service demands and so to improve
the accuracy of the analytic models.

5.2.3 Packet Trace Analysis of SQL*Net Traffic
The SQL*Net traffic of an Oracle connection follows an interactive, handshaking pattern. This pattern has
been identified from the packet traces collected from the CITI testbed (for Stress) and from production
systems (for PPS6 panels). An important consequence of this pattern is that it augments the completion
time with a round-trip network latency and some client-side protocol latency for each handshake. There-
fore, it is important to measure the number of protocol handshakes for each PPS6 transaction and the cli-
ent-side latency for each handshake.

Currently, we collect SQL*Net traffic with tcpdump and analyze the packet traces with tcptrace. These tools
can interpret the packet traces at the transport layer (TCP), but reveal no protocol content about the
SQL*Net conversation. Although we are still able to measure the number of protocol handshakes for each
Stress request, analytical studies of the content of SQL*Net packet traces are impossible. In addition, the

Table 18. TKPROF output of an SQL statement.

call count cpu elapsed disk query current rows
Parse 1 0.16 0.29 3 13 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.03 0.26 2 2 4 14

Center for Information Technology Integration 21

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

current measurement techniques also prevent us from measuring the client-side latency for each hand-
shake accurately; this requires statistical analysis from a large number of samples. Therefore, a SQL*Net
protocol analyzer would be helpful for analytic and statistical studies of PPS6 packet traces.

5.2.4 Performance Measurements of Citrix WinFrame Servers
The ICA overhead and ICA traffic rate are two primary indices to evaluate the performance of the Citrix
WinFrame servers. Since these two performance measures have an application-specific property and vary
with some user-specific dynamic factors, the only plausible way to study them is to gather statistical data
from a large number of ICA connections in production systems. Our preliminary investigation, presented
in Section 4, has successfully exercised several measurement techniques for this task. Similar performance
measurements will be conducted against the PPS6 panels in production systems, which use Citrix Win-
Frame version 1.7.

Another important factor affecting the performance of WinFrame servers is the memory requirement for
running multiple Windows applications on behalf of several WinStaion connections. Two well-known
properties of Windows applications are that they consume memory relentlessly and most of them are I/O
bound instead of CPU-bound. Therefore, we believe the memory of a WinFrame server will probably
emerge as the primary bottleneck, followed by the CPU. The average memory requirement for each Win-
Station connection will be investigated for capacity planning of WinFrame servers.

5.3 Performance Modeling Tool

The MVA tool can evaluate closed QNMs with delay service centers, load-independent service centers
(called queueing), and Ethernet local networks. We exercise this tool by evaluating an analytic model of
the Stress program. Although the model outputs are not very satisfactory, we attribute the cause to the
model itself instead of the tool.

At the next stage of this project, we will still use the MVA tool, but will apply other solution techniques to
supplement its insufficiency. Most importantly, what technique to use strongly depends on what kind of
analytic models we want to evaluate. To date, we find the Method of Layers (MOL) an attractive tech-
nique for three-tiered client-server modeling [9,14]. MOL is designed to solve the Layered Queueing
Models (LQMs). An LQM is an enhanced QNM, which models distributed client-server systems as lay-
ered software servers competing for hardware (devices) servers [14]. Therefore, we can decompose the
execution of a SQL request as visiting different software servers with specific functions. This allows ana-
lytic models with a finer granularity of service requirements.

6. Summary

In this first phase of work we have developed a QNM for a two-tiered PPS6 client-server system, and
built a performance modeling tool to evaluate the model via MVA. We also developed Stress, a load gen-
erator that exercises an Oracle database server. We used Stress to determine the CPU and disk service de-
mand parameter values, after which the model outputs were compared to measured values. The model
outputs closely matched the measured values in those cases where the service demands remained con-
stant with increasing numbers of clients, as the model assumes a fixed service demand for all client popu-
lations. However, in several cases the CPU and disk service demands were found to vary with the
number of clients, causing major discrepancies. In order to address this issue, we plan to refine the model
by dissecting the measured service demands into smaller components, using the tkprof tool.

We then performed some preliminary measurements when running PPS6 in a three-tier Citrix environ-
ment, both by monitoring network traffic and by measuring CPU utilization. First, we measured the net-
work traffic between Citrix WinStation clients and the WinFrame server, which use the ICA protocol for

Center for Information Technology Integration 22

Chu/Antonelli

communication. Test loads were generated both by Stress and WordPro; the latter program was used to
generate continuous display updates. We found that the average ICA traffic rate is about 0.6% of a 10
mbps Ethernet, so the network is not likely to be a bottleneck.

Second, we measured the ICA overhead in terms of CPU time expended on client and server machines.
One interesting result was that the Citrix client consumes about 96% of the client machine CPU; in con-
trast, the Citrix server consumes about 19% of the server machine CPU -- about as much as Stress does
when run on the same platform.

Finally, we measured completion time and CPU time when running equivalent Stress workloads in both
the 2-tiered and 3-tiered environments. We noted a 14-17% increase in completion time when running
Stress in the 3-tiered environment. Our measurement tools do not allow us to account for CPU time
charged to individual processes, so we cannot as yet correlate the increased completion time with the ICA
server overhead.

We were not able to obtain an accurate characterization of typical PPS6 application workloads for inclu-
sion in this study. Reasons for this include the inability to access real PeopleSoft applications running
against real databases. As a result we were not able to generate models that give results in terms of Peo-
pleSoft panel accesses, but only in terms of Oracle database operations. To address this issue, we plan to
measure actual PeopleSoft applications and record client, network, and server utilizations, as well as the
stream of Oracle requests generated by each PeopleSoft panel. This request log will be replayed against a
real database copy running on the real hardware, using a modified version of Stress. This work will re-
quire close coordination with M-Pathways development staff.

Center for Information Technology Integration 23

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

References

1. D.W. Bachmann, M.E. Segal, M.M. Srinivasan, and T.J. Teorey. “NetMod: A Design Tool for Large-Scale Heter-
ogeneous Campus Networks.”IEEE Journal on Selected Areas in Communications, Vol. 9, No. 1, pp. 15-24, Jan-
uary 1991.

2. D.W. Bachmann. A Methodology for Performance Modeling of Distributed Systems Based on Client-Server Pro-
tocols. Ph.D. Thesis, University of Michigan, 1992.

3. K.M. Chandy and D. Neuse. “Linearizer: A Heuristic Algorithm for Queueing Network Models of Computing
Systems.”Communications of ACM, Vol. 25, No. 2, pp. 126-134, February 1982.

4. Citrix. ICA Technical Paper. [http://www.citrix.com/technology/icatech.htm], 1996.

5. Citrix. Thin-Client/Server Computing. [http://www.citrix.com], 1997.

6. J.L. Hammond and P. O’Reilly.Performance Analysis of Local Computer Networks. Reading, MA: Addison-Wes-
ley, 1986.

7. S.S. Lam. “A Carrier Sense Multiple Access Protocol for Local Networks.”Computer Networks, Vol. 4, No. 1, pp.
21-32, February 1980.

8. Raj Jain.The Art of Computer Systems Performance Analysis. John Wiley & Sons, 1991.

9. Masud A. Khandker.Performance Measurement and Analytic Modeling Techniques for Client-Server Distributed
Systems. Ph.D. Thesis, University of Michigan, 1997.

10.Edward Lazowska, John Zahorjan, Scott Graham, and Kenneth Sevcik.Quantitative System Performance. Pren-
tice Hall, 1984.

11.Daniel Menasce, Virgilio Almeida, and Larry Dowdy.Capacity Planning and Performance Modeling: from Main-
frames to Client-Server Systems. Prentice Hall, 1994.

12.M-Pathways.The M-Pathways Project. [http://www.mpathways.umich.edu], 1997.

13.PeopleSoft.PeopleSoft’s Distributed Architecture. [http://www.peoplesoft.com], 1997.

14.J.A. Rolia.Predicting the Performance of Software Systems. Technical Report, CSRI TR260, University of Tor-
onto, 1992.

15.Huge Toledo.Oracle Networking. Oracle Press, 1996.

Acknowledgements

This work was supported by the Executive Director’s Office of ITD. Bob Riddle built the Stress program
and offered invaluable practical assistance and advice. Thanks to our M-Pathways project colleagues who
provided some badly needed measurements; they will get the opportunity to do so again. Chuck Lever
and Janani Janakiraman provided project assistance. Finally, this project benefited greatly from the
weekly ministrations and behind-the-scenes efforts of Mary Jane Olsen.

Center for Information Technology Integration 24

Chu/Antonelli

Appendix A. The Database Exerciser - Stress

Stress is a Visual Basic program running on Windows platforms, which generates remote database calls
(through the Windows ODBC API) against an Oracle database server. The graphic user interface (panel)
of Stress, as shown in Figure 19, is divided into several areas for two main functions: automatic load gen-
eration and manual database controls.

For automatic load generation, Stress creates a synthetic workload from four types of database calls: in-
sert, update, query (read), and delete a row. Each workload is specified with six parameters (see area (i)
in Figure 19): total database calls, number of iterations, and the composition of workload: %inserts,
%reads, %updates, and %deletes. Load generation starts when the load generator button is clicked, after
which the status information area displays workload progress (g) and the processing time (h) for each
type of database call.

Figure 19. Stress panel.

The manual database controls include manual table operations and row operations. The top four horizon-
tal buttons are table operators (b): create, delete, browse, and clear a table. The three vertical buttons provide
batch operations to the rows of a table (c): insert, delete, or update a specified number of rows in the table.
The other three vertical buttons at the lower-right corner are single row operators (e): insert (marked as
Add), delete (marked as Del), and update (marked as Chg) a specific row of the table. The center area with
a vertical scrolling bar (d) displays a cumulative log of operations to the table; the lower area (f) displays
the content of the current row.

The Oracle connection area (a) has fields for Oracle user identification (Oracle ID) and password (Oracle
PWD) for establishing a connection to the Oracle server. The lower three fields specify the Oracle data-
base being accessed, the name of the table being accessed, and the field used as the primary key of the ta-

(c) batch row operators

(e) single row operators

(d) content of a table

(b) table operators

(a) Oracle connection

(f) content of a row

progress of
load generation

request

time
processing

(g)

(h)

(i)

Center for Information Technology Integration 25

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

ble. The table is composed of four fields: Record_ID, Record_Name, Record_Address, and
Record_Salary; each field is a string with a maximum length of 255 characters.

Appendix B. The Performance Modeling Tool - MVA

The performance modeling tool has a graphic user interface as shown in Figure 20. The buttons in the up-
per-left area of the panel provide functions for model editing; the buttons in the upper-right area provide
functions for file operations (save/load a model into/from a file) and model analysis.

Figure 20. Two screen snapshots of the performance modeling tool.

A model must have at least one job class (represented as a parallelogram) and one device (represented as
a circle). A link connecting the parallelogram and a circle represents the service requirement for the job
class visiting the device. Modeling parameters are associated with these icons (parallelograms, devices,
and links) as shown in Figure 20a. They can be set by clicking each icon; then by filling in the appropriate
fields in the upper area.

Figure 20b shows the performance measures determined by the tool. For each job class, the panel displays
the total residence time (marked as R) and the throughput (marked as X) of the job class. The perfor-
mance measures of each device are its device utilization (marked as U) and the average queue length
(marked as Q) at the device. For an Ethernet device, the utilization in parentheses is the reduced network
utilization excluding the background traffic. For each link, R is the residence time (waiting time and ser-
vice time) the job class spends in the device; Q is the split queue length (out of all job classes) for each job
class visiting the device.

(a) Show Input (b) Do Analysis

Center for Information Technology Integration 26

Chu/Antonelli

Modeling the Caching Effect of Database Access
Although it has not been exercised, the performance tool is able to model the caching effect of database
access. Database access caching can be accomplished at the DBMS level, at the OS level, or both. Similar to
other caching in a computer system, the disk service time of a database access is eliminated if the accessed
data were cached in memory. From the modeling perspective, the only concern is how to estimate the av-
erage cache hit ratio (h) of a database access. If the hit ratio can be estimated, even without a thorough ex-
amination of the caching algorithm, the disk service requirement could be manipulated to reflect the
caching effect in a model.

A straightforward approach is to adjust the visit ratio of a disk service with respect to the cache hit ratio
of a database access. In a QNM, the disk visit ratio of a job class can be multiplied by (1 - h) to obtain an
adjusted ratio reflecting a reduced percentage of disk visits. A more complicated approach is to change
the visit ratio and the service demand together for better approximation of the real disk service require-
ment. This adjustment should be considered together with the effect of disk access optimization.

Modeling PPS6 Clients with Network Latency
As mentioned in Section 2, our analytic model assumes client and server machines residing at the same
local network. For clients accessing the database from remote networks, the network latency along the
end-to-end path is not entirely covered in the model. It is plausible to model the rest of network latency as
a constant delay for two reasons. First, our modeling tool determines only steady-state, mean perfor-
mance measures; the variances of the performance measures cannot be determined by the model. Second,
many factors, such as the background traffic beyond the system under study also affect the end-to-end
network latency. Since it is impossible to determine all these factors or to cover all of them in the model, a
constant network latency is a plausible assumption. Therefore, each job class representing remote clients
should visit a pseudo delay center to cover the rest of the end-to-end network latency.

Appendix C. Performance Measurement of Citrix WinFrame Servers

Windows NT provides a monitoring tool, called perfmon, for system performance measurements. Inside
Windows NT, system performance measures are stored in various performance counters; a set of relevant
performance counters forms a performance object. Some performance counters may have multiple in-
stances because their performance object can refer to multiple entities in the system. Citrix WinFrame
servers add two new counters - Active WinStations and Total ICA Bytes/sec - in the system object, and a
new performance object called WinStation to the standard sets of performance counters. These new
counters are listed in Table 21.

Performance measurements of ICA overhead are conducted at two sites: the WinStation and the Win-
Frame server. Each WinStation connection has two processes running at its local machine, wfengN.exe and
wfcrun32.exe. The ICA-client overhead is the sum of the processor times of these two processes, which can
be measured by task manager in Windows NT 4.0 or by its predecessor, pview, in Windows NT 3.51. Task
manager can also report the instantaneous percentage of processor time allocated to a WinStation; how-
ever, only perfmon can report the statistical value.

Performance measurements of ICA-server overhead are more complicated for two reasons: a WinFrame
server usually has multiple active WinStation connections and each WinStation has multiple processes
running on the WinFrame server. The percentage of CPU time allocated to a WinStation is the specific in-
stance of the performance counter - WinStation:%ProcessorTime - associated with the WinStation. The to-
tal CPU time of a WinStation can be measured as the product of WinStation:%ProcessorTime and
WinStation:ElapsedTime. The ICA-server overhead of a WinStation is the processor time of a specific pro-

Center for Information Technology Integration 27

Modeling and Measurement of the PeopleSoft Multi-Tier Remote Computing Application

cess, csrss.exe, associated with the WinStation. However, it cannot be further decomposed in a per-process
base.

Table 21. New performance counters added by Citrix WinFrame.

Object/Counter Description

Object: System

Active WinStations total number of active (logged on) WinStations

Total ICA Bytes/sec total number of bytes transferred in the system as result of WinStation communications

Object: WinStation

% Privileged Time the percentage of elapsed time that this processes’s threads have spent executing code in Privileged Mode

% Processor Time the percentage of elapsed time that all of the threads of this process used the processor to execute instructions.

% User Time the percentage of elapsed time that this processes’s threads have spent executing code in User Mode

Bitmap Hit Ratio bitmap hit ratio

Bitmap Hits the number of Bitmap hits from the cache

Bitmap Reads the number of Bitmap references of the cache

Brush Hit Ratio brush hit ratio

Brush Hits brush hits

Brush Reads the number of brush references to the cache

Elapsed Time the total elapsed time (in seconds) this process has been running

Glyph Hit Ratio Glyph hit ratio

Glyph Hits Glyph hits

Glyph Reads the number of Glyph references to the cache

ID Process the unique identifier of this process

Input Async Frame Error number of input async framing errors

Input Async Overflow number of input async overflow errors

Input Async Overrun number of input async overrun errors

Input Async Parity Error number of input async parity errors

Input Bytes number of bytes input on this WinStation that includes all protocol overhead

Input Compress Flushes number of input compression dictionary flushes

Input Compressed Bytes number of bytes input after compression; this number compared with the Total Bytes input is the compression ratio

Input Compression Ratio compression ratio of the server input data stream

Input Errors number of input errors of all types

Input Frames number of frames (packets) input to this WinStation

Input Timeouts the total number of timeouts on the communication line as seen from the client side of the connection

Input WaitForOutBuf the number of times that a wait for an available send buffer was done by the protocols on the client side of the connection

Input WdBytes number of bytes input on this WinStation after all protocol overhead has been removed

Input WdFrames the number of frames input after any additional protocol added frames have been removed

Output Async Frame Error number of output async framing errors

Output Async Overflow number of output async overflow errors

Output Async Overrun number of output async overrun errors

Output Bytes number of bytes output on this WinStation that includes all protocol overhead

Output Compress Flushes number of output compression dictionary flushes

Output Compressed Bytes number of bytes output after compression; this number compared with the Total Bytes output is the compression ratio

Output Compression Ratio compression ratio of the server output data stream

Output Errors number of output errors of all types

Output Frames number of frames (packets) output on this WinStation

Output Parity Error number of output async parity errors

Center for Information Technology Integration 28

Chu/Antonelli

Output Timeouts the total number of timeouts on the communication line from the host side of the connection

Output WaitForOutBuf the number of times that a wait for an available send buffer was done by the protocols on the host side of the connection

Output WdBytes number of bytes output on this WinStation after all protocol overhead has been removed

Output WdFrames the number of frames output before any additional protocol frames have been added

Page Faults/sec the rate of Page Faults by the threads executing in this process

Page File Bytes the current number of bytes this process has used in the paging file(s)

Page File Bytes Peak the maximum number of bytes this process has used in the paging file(s)

Pool Nonpaged Bytes the number of bytes in the Nonpaged Pool

Pool Paged Bytes the number of bytes in the Paged Pool

Priority Base the current base priority of his process

Private Bytes the current number of bytes this process has allocated that cannot be shared with other processes

Save Screen Bitmap Hit Ratio save screen bitmap hit ratio

Save Screen Bitmap Hits save screen bitmap hits

Save Screen Bitmap Reads the number of Save screen bitmap reference to the cache

Thread Count the number of threads currently active in this process

Total Async Frame Error total number of async framing errors

Total Async Overflow total number of async overflow errors

Total Async Overrun total number of async overrun errors

Total Async Parity Error total number of async parity errors

Total Bytes total number of bytes on this WinStation that includes all protocol overhead

Total Compress Flushes total number of compression dictionary flushes

Total Compressed Bytes total number of bytes after compression

Total Compression Ratio total compression ratio of the server data stream for this WinStation

Total Errors total number of errors of all bytes

Total Frames total number of frames (packets) on this WinStation

Total ICA Hit Ratio the overall hit ratio of all ICA objects

Total ICA Hits total ICA cache hits

Total ICA Hits/sec total ICA cache hits per second

Total ICA Interval Hit Ratio the overall hit ratio of all ICA objects in the last sample interval

Total ICA Reads total ICA references to the cache

Total ICA Reads/sec the total ICA references to the cache

Total WaitForOutBuf the number of times that a wait for an available send buffer was done by the protocols on both the host and client sides of the
connection

Total WdBytes total number of bytes on this WinStation after all protocol overhead has been removed

Total WdFrames the total number of frames input and output before any additional protocol frames have been added

Virtual Bytes the current size in bytes of the virtual address space the process is using

Virtual Bytes Peak the maximum number of bytes of virtual address space the process has used at any one time

Working Set the current number of bytes in the Working Set of this process

Working Set Peak the maximum number of bytes in the Working Set of this process at any point in time

Table 21. New performance counters added by Citrix WinFrame.

Object/Counter Description

