Case Study: How Modeling Revealed Serious Performance Problems in
Distributed (DCE) Systems

A. M. Khandker

masud@citi.umich.edu

T. J. Teorey

teoreyQeecs.umich.edu

1 Introduction

Open Software Foundation’s Distributed Com-
puting Environment (OSF/DCE) [8] is a plat-
form for distributed computing. DCE is a col-
lection of tools and services for the develop-
ment, use, and maintenance of transparent dis-
tributed application systems. The communica-
tion paradigm supported by DCE is the syn-
chronous Remote Procedure Call (RPC) [1].

RPCs can be implemented on any transport
layer protocol, such as TCP or UDP. RPCs
over UDP can be optimized more than those
over TCP. Therefore, RPCs over UDP are, in
general, faster and hence of our interest in this
paper.

Fundamental to the overall performance of
DCE is the RPC round trip time, also known
as latency or response time. Round trip time
is the time elapsed between when an RPC is
invoked and when it is returned. In this paper,
we focus on the round trip time of DCE RPC.

Our earlier work describes analytic per-
formance modeling techniques for distributed
application systems [4]. Unfortunately, the
techniques couldn’t be validated because the
model-predicted and measured round trip
times didn’t match. When the model predicted
a decrease in the RPC round trip time, the
measured round trip time showed an increase.
The prediction of the model followed intu-
ition but the actual measurement was counter-
intuitive. We concluded that a performance
bug in the system was causing the round trip
time anomaly and investigated the reason. The
result of the investigation is described this pa-
per.

The objective of this paper is to illustrate
how modeling a distributed system can reveal
serious performance problems and lead to per-
formance improvement.

We start with a background of DCE RPC
in Section 2. We develop a queueing net-
work model for RPC in Section 3 and suggest
a simple extension to the Mean Value Analy-
sis (MVA) algorithm [6] to account for paral-
lelism present in inter-machine RPCs. We re-
discover the anomaly by comparing the model-
predicted round trip times with the measured
round trip times in Section 4. Section 4.3 de-
scribes the anomaly. We discuss the cause be-
hind the anomaly in Section 4.4 and suggest the
fix in 4.5. Section b describes our conclusions
and future work.

2 Background on DCE

RPC

In a typical DCE configuration, potential
servers export descriptions of the service they
provide into the cell directory service (CDS) via
the name service interface (NST). Before mak-
ing an RPC, a client obtains a description of
services (e.g., by importing from the CDS) and
chooses a compatible server. This process is
known as the binding process. The end prod-
uct of the binding process is a binding han-
dle, which is a reference to binding information
stored in the RPC runtime. The client uses

IRPC runtime is a layer of software on top of the
transport protocol that provides general support for
RPC operations.

Khandker/Teorey

the binding handle for making future calls to
the same remote interface.

Before issuing an RPC, a client also needs a
call handle. A call handle keeps all the infor-
mation that is related to a call in progress. The
information stored in the call handle gets up-
dated as the call progresses. For example, call
handles keep track of the maximum size of the
packet that can be safely sent to the server at
any time. A call handle must be created before
the first RPC is issued and remains in use as
long as an RPC is in progress. A multithreaded
client, issuing more than one RPC in parallel,
needs one call handle per thread. When an
RPC is finished, the call handle is cached in
the binding handle. Subsequent RPCs, made
with the same binding handle, i.e., made to
the same server interface, can reuse the cached
call handle.

In RPCs over UDP, the flow is controlled by
the RPC runtime. Jacobson’s method of con-
gestion control [2], which maintains windows
for transmission and uses slow-start to open up
a window, is used for flow control. The initial
and the current window sizes are stored in the
call handle.

When a call handle is created, the maximum
UDP packet size is set to the default size of 1
Kbyte. If, for example, the maximum packet
size has been set to 4 Kbytes, the runtime will
discover this using the slow-start and update
the call handle. Once the maximum packet size
is obtained and stored in the call handle, the
subsequent RPCs that reuse the call handle will
not go through the slow-start. In a typical com-
puting environment, like ours, where the max-
imum UDP packet size is 4 Kbytes, the round
trip time of an RPC that goes through the slow-
start is greater than the round trip time of an
RPC that does not. Therefore, reusing the call
handle can significantly reduce the round trip
time.

In case of inter-machine RPCs, which are
typical in distributed environments, various
steps of an RPC can progress in parallel [3].
For example, the client, after handing an RPC
request packet(s) to the network, may need to
do some housekeeping work for the RPC before
it can start servicing other requests. While the
client CPU is busy doing the housekeeping for
the RPC, the same RPC is progressing through

the network keeping the network busy as well.
Thus, we frequently encounter parallel process-
ing in inter-machine RPCs.

Creating a binding handle has a one-time
overhead time cost incurred before and during
the first call to a remote interface. Subsequent
RPCs to the same interface by the same client
do not involve that overhead. We ignored that
overhead in modeling RPCs.

RPCs that go through the slow-start take
longer to finish than those that do not. In
terms of modeling, the two cases may require
a significantly different service demand for de-
vices in the queueing network model. How-
ever, in a well-behaved RPC, one can expect
that the slow-start will be encountered only at
the beginning (and maybe once in a while dur-
ing congestion) but would otherwise be rare.
Therefore, we based the service demands for
our model upon RPCs without the slow-start.

The service demands for the steps of an
RPC performed in parallel on two devices con-
tribute to the queueing delays on both devices,
but only the device with the longer delay con-
tributes to the round trip time. We needed to
account for the effect of the parallel processing
in analyzing the model.

3 The Queueing Network
Model of DCE RPC

We modeled a distributed application where a
DCE client application, running on one ma-
chine, communicates with a DCE server ap-
plication, running on a different machine, us-
ing RPC over the connectionless user datagram
protocol (UDP). The two machines are con-
nected with a 10 Mbps Ethernet. The client
is multithreaded. Each client thread issues an
RPC, sleeps for a while (including zero time)
after the RPC completes; and then issues an-
other RPC. The server, also multithreaded, has
a single listener thread and one executor thread
per RPC in progress. The actual service pro-
cedure for an RPC does no work (i.e., simply
returns.)

Note that the above model does not depict
a real computing environment. In reality, the
client thread may do some application process-
ing between issuing RPCs (as opposed to sleep-

Case Study: How Modeling Revealed Serious Performance Problems in Distributed (DCE) Systems

CONTROLLER

OEHH

Figure 1. The Queueing Network Model for
DCE RPC

ing), which demands CPU time. Also, at the
server end, the service procedure usually in-
volves real work, which demands server CPU
time and adds to the queueing delay. How-
ever, the focus of this paper is the performance
of RPC only. Modeling distributed systems
with real workload, including the client and the
server overhead, is our future goal.

The techniques in our earlier work [4] al-
lowed us to decompose the system into logi-
cally separate components based on the natural
boundaries between protocol layers, model each
component separately, and finally combine the
models to characterize the system as a whole.
The techniques made 1t possible to reuse ex-
isting models for system components but re-
quired sophisticated integration methods. In
this paper, we chose not to break the system in
components. Instead, we built a much simpler
queueing network model.

Figure 1 shows the queueing network model
for the DCE RPC. The client and the server
CPUs are single-server FCFS service centers
with constant service times. The controllers
at the client and the server machines are rep-
resented by a single delay server (shown in a
single box) whose service time is the sum of all
controller delays. For simplicity, the network 1s
also modeled as a FCFS server with constant
service times. The time between RPCs is as-
sumed to be exponentially distributed.

To account for parallel processing, as men-
tioned in Section 2, we needed to extend the
Mean Value Analysis (MVA) technique [6].
The extension to the MVA is similar to what
Rolia used to model Rendezvous servers [7] and
is described in the following section.

3.1 The MVA and its extension

Mean Value Analysis (MVA) is a popular tech-
nique for the analysis of closed queueing net-
work models. It takes the following set of in-
puts:

K The number of servers.

C The number of closed classes.

N. The population of closed class ¢. (¢ =
1,2,...,0)

Z. The average think time of closed class
c. (c=12,...,C)

D, The average service demand for class

¢ customer at server k.
D, 1, is the total service required by a class ¢
customer at a server considering all visits made
by the customer to that server. By definition:

D.py=Vor * S
where,
Ve,r The average number of visits of class

¢ customer to server k per invocation.
The average service time for class ¢
customer when visiting server k.

Sc,k
The following performance measures are de-

termined:

R.r The average residence time for class ¢
customers at server k.
It includes both queueing and service
time.
The average residence time for class ¢
customers.

. K

It is defined as), | Re
The total throughput of class ¢
customers.
It is defined as RﬁfZC
The average queue length for class ¢
customers at server k.
The average number of customers at
server k.
It is defined as chzl Q. k
The utilization of server k by class ¢
customers.
The total utilization of server k.

It is defined as chzl Uer

MVA algorithm is based on the following
equations:

Rep() = Dep(1+Qr(i— 1)) (1)

Khandker/Teorey

e

X. (1) =
) Ze+ Ypzy Rep(il)

(2)

Qi(7i) = > X. % Re (i) (3)

where,

Qr(i1) is the mean total queue length at
server k if the network population vector is
() = (n1,n2,,n¢). (7—1;) denotes the pop-
ulation vector (7) with one class ¢ customer
removed.

Given the performance of N-1 users, equa-
tions 1 through 3 are sufficient to compute the
performance of N users. Because the perfor-
mance with no user, i.e., () = (6) can be easily
computed, performance of any number of users
can be computed iteratively. This method of
solving the model is known as the exact mean
value analysis (as opposed to the approximate
mean value analysis described later.)

To account for the parallel processing in
RPCs the service demand at the devices can
be thought to be composed of two phases. In
the first phase, the job remains in a device,
t.e., cannot proceed to another device until the
phase one service is completed. After phase
one, the job is released and can move to other
devices for service. But the device the job has
just left must still complete the phase two ser-
vice before it can serve other jobs.

Phase two service demands contribute to the
queueing delays and are included when queue-
ing delays are calculated. Thus, the service de-
mand for our model is the summation of phase
one and two service demands. i.e.,

Dew = Dy + DYy,

where,
/c,k Phase one service demand for class
customer at server k.
D/c/,k Phase two service demand for class

customer at server k.

Because phase two service demands do not
contribute to the RPC round trip time, we sub-
tract them from the response time calculation.
So, we modify the response time of a class to

be
RC = Zf:l Rc,k -

1"
¢,k

4-

4 Model Validation

We consider three primary factors affecting
RPC performance. First, the amount of data
sent with the RPC, which represents various
kinds of RPCs that might be present in the real
world. Second, the number of client threads,
which represents the level of concurrency in a
system. Third, the time between RPCs, which
plays a significant role in the workload. We de-
sign experiments using various values for these
factors and measure the round trip time for
each of these cases. The values for the factors
in our experiments are as follows: We consider
NULL RPCs and RPCs that generate 1, 2, 3,
6, and 12 packets of request data and only zero
byte reply data. (RPCs with non-zero byte
reply data can be modeled easily by includ-
ing the additional service demands for such re-
ply packet(s).) We chose the number of client
threads to be 1, 3, 6, and 9. The time be-
tween RPCs is assumed to be an exponentially
distributed random variable with mean varied
from 0 to 216 ms depending on the round trip
time of the RPC.

The same values for the factors were given
as input to the model. The service demand
for the model is obtained by measuring the
time required to complete different steps of an
RPC. Table 1 shows the service demands at the
service centers for different kinds of RPCs ob-
tained by measuring the system. The details of
the measurement, 7.e., how to define and mea-
sure RPC steps, can be found in our earlier
work on performance of DCE RPC [3].

4.1 Comparing Model Predic-

tions with Actual Measure-
ments

Round trip times were measured for each
individual thread by letting the threads com-
plete a total of 100 RPCs. The experiment
was repeated 15 times and the average round
trip time with the minimum variance was used.
With a few exceptions, the minimum variance
was observed with the minimum average.

Table 2 compares the model-predicted round
trip times (column 4) with the measured round
trip times (column 5) at different levels of the
factors we consider. Column 6 shows the %

Case Study: How Modeling Revealed Serious Performance Problems in Distributed (DCE) Systems

RPC Service Demand (millisecond)

type Ceopr CONTROLLFER NETWORK Scpru

NULL 2.98 (0.82) T17 0.20 341(1.21)
1 packet | 3.54 (0.82) 1.53 1.31 3.64 (1.21)
2 packet | 4.20 (1.10) 1.53 2.54 3.84 (1.21)
3 packet | 4.99 (1.79) 153 3.58 4.84 (1.94)
6 packet | 9.51 (3.61) 3.06 7.15 10.46 (5.26)
12 packet | 18.18 (7.98) 4.59 14.20 (3.57) | 18.63 (10.23)

Table 1. Service demand of various types of RPC The numbers shown

are the combined service demands for phase one and two. Phase two service

demands are shown in parenthesis.

Error calculated as:

% Error =
(Measured value—Model predicted value) x100

Measured value

High % Errors reveals inconsistency between
the model and the system.

The modified system (column 7) is discussed
in section 4.5.

4.2 Simulation

Having failed to validate the analytic model, we
developed a simulation model for RPC round
trip time using GPSS/H [9]. The round trip
times prediced by the simulation matched the
predictions from the analytic model, within
12% in all cases.

The simulation considered the steps of RPC
separately, as opposed to the notion of a single
service demand at each device in the analytic
model. The nature of simulation automatically
accounted for the parallel processing in the sys-
tem for calculating round trip times. In short,
the simulation model captured the dynamics of
RPCs more accurately than had been possible
with the analytic model.

Nevertheless, we couldn’t validate the ana-
lytic model using the simulation model because
both models were based on the same assump-
tion of how RPCs work and used the inputs ob-
tained from the same set of experiments. How-
ever, the close match between the analytic and
the simulation model helped us conclude that
the analytic model was accurately modeling our
understanding of how RPCs work and the anal-
ysis had no significant flaw.

This led us to believe that the actual system
was at fault. We believed that there was an
anomaly in the system.

=
=}
S
3]
o
= 40 X L e original system
g N _ . modified system
Na X~ X NS
° . [
g 30 Se. 6-packets X
= e T TN
24 Oy
5 20 G G
E ¢ - gnago oo obackeds e
g 10 L A _'_"'_"_"'_"_"-_-1--_---_--;--_--;--_--;--_--;.._..._..__.._...
o 1-packet
0
0 9 18 36 72

Time between RPCs (millisecond)

Figure 2. The round trip time anomaly. Mea-
sured round trip time of RPCs with three client
threads in the original system are shown by the
dotted lines. The round trip time goes up when
delays are introduced and then gradually goes
down. For comparison, the anomaly free be-
havior from the modified system is shown by

the dashed lines.

4.3 The Anomaly

To understand the anomaly, let us consider a
single row in Table 2. The average measured
round trip time of back-to-back (i.e., with zero
inter-RPC time) RPCs with 2-packet request
data with six client threads was 23.80 ms. The
model predicted 22.76 ms — very close to the
measured value. With the introduction of 3
ms delays between RPCs, the model predicted
a small decrease in the round trip time (20.55
ms), while the measurement showed a substan-
tial increase in the average (33.90 ms) as well as
in the standard deviation (18.60). Intuitively,
the delay between RPCs should have lessened
the load on the system and decreased the round

Khandker/Teorey

Round trip time (microsecond)

RPC # of client Think Model Measured Measured

type threads time(ms) | predicted original % Error modified % Error
avg (std) avg (std)

1-pack 1 0 7.99 7.90 0.20 -1.14 7.90 0.20 -1.14
3 7.99 8.00 0.30 0.13 8.10 0.20 1.36
3 0 11.23 | 10.80 1.80 -4.02 | 10.40 0.70 -8.02
3 10.46 | 14.60 7.20 28.35 | 10.10 0.90 -3.57
9 9.64 | 13.20 5.40 27.01 9.60 1.00 -0.37
18 9.07 | 11.70 4.20 22.45 9.20 1.10 1.38
36 8.63 | 10.30 3.60 16.23 8.70 0.90 0.83
72 8.34 9.00 2.20 7.35 8.40 0.70 0.73
6 0 19.78 | 18.50 1.10 -6.90 | 18.70 0.80 -5.76
3 17.41 | 23.90 10.80 27.18 | 15.60 2.50 -11.57
9 14.16 | 20.70 8.10 31.58 | 13.40 2.40 -5.70
18 11.75 | 17.90 7.70 34.36 | 11.80 2.80 0.43
9 0 30.31 | 28.20 1.70 -7.49 | 29.50 2.40 -2.76
3 27.37 | 34.20 16.30 19.98 | 26.00 2.60 -5.26
9 22.03 | 31.00 17.00 28.95 | 21.00 3.40 -4.89
18 16.56 | 25.50 10.40 35.07 | 16.50 3.40 -0.35
3-pack 1 0 11.21 | 11.20 0.30 -0.09 | 11.10 0.30 -0.99
6 11.21 | 11.10 0.30 -0.99 | 11.10 0.30 -0.99
3 0 15.93 | 14.50 2.10 -9.84 | 14.40 1.10 -10.60
9 14.10 | 21.40 10.50 34.09 | 14.10 1.50 -0.03
18 13.27 | 20.40 9.80 34.95 | 13.70 1.80 3.14
36 12.50 | 18.60 9.90 32.77 | 12.60 1.60 0.76
72 11.95 | 14.70 7.10 18.72 | 12.00 1.30 0.44
6 0 27.28 | 25.00 1.60 -9.13 | 25.70 1.80 -6.15
9 21.61 | 42.20 20.00 48.79 | 19.50 3.10 -10.82
18 18.36 | 37.20 20.10 50.63 | 17.50 3.90 -4.94
36 15.35 | 35.70 24.40 56.99 | 15.40 4.10 0.30
72 13.36 | 22.30 12.00 40.07 | 12.70 1.70 -5.23
9 0 41.10 | 52.70 16.30 22.01 | 42.90 11.60 4.20
18 26.90 | 72.90 37.40 63.10 | 26.20 5.60 -2.67
36 19.93 | 53.10 31.80 62.47 | 22.20 8.50 10.24
72 15.31 | 39.10 26.50 60.84 | 16.90 6.90 9.39
6-pack 1 0 21.31 | 21.60 2.60 1.34 | 21.30 1.90 -0.05
6 21.31 | 21.30 1.60 -0.05 | 21.50 1.60 0.88
3 0 30.91 | 34.90 10.50 11.44 | 36.90 11.70 16.24
9 28.66 | 41.40 15.40 30.78 | 29.50 6.20 2.85
18 27.22 | 34.90 8.70 22.00 | 27.90 5.20 2.44
36 25.52 | 32.90 9.10 22.42 | 25.00 3.50 -2.09
72 23.96 | 27.30 7.50 12.23 | 24.50 3.80 2.20
6 0 54.13 | 57.90 11.60 6.50 | 51.40 10.70 -5.32
9 47.67 | 58.20 14.00 18.10 | 49.30 10.80 3.31
18 42.64 | 55.30 15.00 22.90 | 45.10 10.70 5.47
36 36.01 | 53.10 20.70 32.19 | 36.40 7.80 1.08
72 29.83 | 41.80 17.50 28.64 | 30.40 8.00 1.87
9 0 82.56 | 60.70 7.50 -36.02 | 81.20 15.20 -1.68
18 66.41 | 63.80 13.90 -4.10 | 67.70 16.10 1.90
36 53.68 | 54.30 22.60 1.14 | 57.00 14.80 5.82
72 39.32 | 53.20 33.40 26.08 | 39.40 12.40 0.19

Table 2. Model Validation. Error in model-predicted round trip times with respect to the

original and the modified system.

Case Study: How Modeling Revealed Serious Performance Problems in Distributed (DCE) Systems

trip time. Therefore, the actual behavior of the
system 1s anomalous. The round trip times of
back to back RPCs in a multithreaded DCE
client are smaller than the round trip times of
RPCs when delays are introduced between the
RPCs. The anomaly 1s not present for NULL
RPCs or RPCs with 12-packets of data. We
wanted to investigate this also.

Figure 2 depicts this anomalous behavior
graphically for 1-packet, 3-packet, and 6-packet
RPCs with three client threads. The round
trip time in the original system increases as
some delay is introduced between RPCs and
then gradually decreases as shown by the dot-
ted lines. For comparison, the dashed lines
show the round trip times in the modified sys-
tem discussed in section 4.5.

After considerable investigation over two
months, we found the reason behind this
anomaly.

4.4 The Reason

Initially, we thought that the thread package,
particularly the scheduler could be the cause
of the anomaly. To precisely locate the ac-
tual source of delay, i.e., whether the server,
the client, or both contributed to the ele-
vated round trip time, we installed the Berke-
ley Packet Filter (BPF) [5] in a machine on
the same Ethernet to watch network packets.
We discovered that in the case of non back-to-
back RPCs, the number of small packets, pack-
ets that one would see at the beginning of a
slow-start, 1s much greater than the number of
similar packets for back-to-back RPCs. We re-
alized that the random invocation of the slow-
start was the problem, but still didn’t know
why slow-start was being invoked at random.
After browsing through the code, we found
that the current RPC runtime implementation
allows only a single call handle to be cached
in a binding handle. This is not a problem
for single-threaded clients because there could
only be one RPC in progress; no more than
one call handle is ever created for a binding
handle. On the other hand, a multithreaded
client issuing more than one RPC in parallel
creates more than one call handle for reasons
that were described in Section 2. Of these call
handles, only one can be cached at a time.

The availability of only one cache for a call
handle is not a problem for back-to-back RPCs,
even 1n a multithreaded client. In the case of
back-to-back RPCs, each thread puts the call
handle into the cache and immediately grabs it
for the next RPC. Therefore, call handles are
never kept in the cache long enough to cause
contention for the cache among threads. Each
thread always finds a call handle in the cache
to use; the one found is the one that has just
been put back into the cache.

When delays are introduced between RPCs,
the call handles are kept in the cache for a ran-
dom period of time. If other threads complete
their RPCs during that period and find the
cache to be full, they destroy the call handles.
Destroying call handles requires that new ones
be created when needed in the future. RPCs,
issued with new call handles go through the
slow-start and take longer to finish. This ex-
plains why the round trip times of back-to-back
RPCs are smaller than the round trip times of
the RPCs when delays are introduced between
two RPCs.

The reason for the anomaly not being ob-
served by NULL RPCs is that the NULL RPC
generates only one packet; therefore, the slow-
start does not come into play. In fact, the
anomalous behavior should not be present for
RPCs that result in a single UDP packet. In
RPCs with very large data, e.g., 12-packet
RPCs, the anomaly is present but not visible.
In such cases, the reduction in the round trip
time due to the introduction of delay between
RPCs subsided the penalty for the slow-start.

4.5 The Fix

A possible solution for eliminating the anomaly
is to allow more than one call handle to be
cached with each binding handle. This can
be implemented with a linked list. Another
solution i1s to keep the information about the
packet size for the RPC in the binding handle
instead of the call handle. We maintain that
the latter approach is more elegant. The in-
formation about the packet size truly depends
on the machines involved in the communication
(not the call that is made) and thus the infor-
mation belongs in the binding handle. With
this approach, all threads will be forced to slow

Khandker/Teorey

down if one thread detects congestion.

The solutions we suggested above need sub-
stantial modification in the RPC runtime
source code and a total recompilation. Because
our access was limited to a pre-release version
of the source code, we fixed the problem dif-
ferently. We saved all packet size related in-
formation before destroying a call handle and
restored it back to a newly created one. We
reran the experiments with the modified sys-
tem. Some sample results are tabulated in col-
umn 7 of Table 2. The round trip times for
the modified system are very close to those ob-
tained from the model. The absolute maximum
error is 17.50%. The average and the standard
deviation of the percent error are 0.18 and 6.31.

5 Conclusion and Future
Work

We developed a reasonably accurate perfor-
mance model for DCE RPC over UDP. The
DCE system we modeled had a performance
bug. The mechanism to improve the perfor-
mance of RPC by caching call handles did not
work for a multithreaded client. Thus, the
RPC round trip times in the system were larger
than what they should have been had the sys-
tem been properly optimized.

Usually, when a model fails to match mea-
surements in the real system, we look for er-
rors in the model. However, the close match
between the analytic and the simulation model,
that we built subsequently, suggested that the
bug was in the system and not in the model.
The notion that the system was at fault seemed
very reasonable due to the presence of anoma-
lous behavior in the system.

Had the anomaly not been present, i.e., had
the round trip times been consistently greater
than the model-predicted times in all cases,
we might have rejected the model. We have
learned that this may not always be the case. A
system that deviates too much from its model
warrants investigation, which can often help
build an improved system.

The bug was discovered in the process of
building the model, which emphasized the
importance of building performance models
throughout the life cycle of these systems.

Our future goal is to include the client and
the server in the model and build a model for
DCE applications. A methodology has already
been suggested in our earlier work [4].

References

[1] Andrew D. Birrell and Bruce Jay Nel-
son. Implementing Remote Procedure
Calls. ACM Transactions on Computer
Systems, 2(1):39-59, February 1984.

Van Jacobson. Congestion Avoidance and
Control. Proceedings, ACM SIGCOMM’88
Stanford, CA, pages 314-329, August 1988.

A. Masud Khandker, Peter Honeyman, and
Toby J. Teorey. Performance of DCE
RPC. 1In Proceedings, 2nd International
Conference on Services in Distributed and
Networked Environments, Whistler, British
Columbia, pages 2-10, July 1995.

A. Masud Khandker, Jerome A. Rolia,
and Toby J. Teorey. Performance Mod-
eling of the Distributed Computing Envi-
ronment. In CD ROM proceedings, the
fifth annual CASCON conference, Toronto,
Canada, November 1995.

S. McCanne and Van Jacobson. The bsd
packet filter: A new architecture for user-
level packet capture. USENIX, pages 259-
269, January 1993.

[5]

Martin Reiser and S. S. Lavenberg. Mean
Value Analysis of Closed Multichain Queue-
ing Networks. Journal of the ACM,
27(2):313-322, April 1980.

J. A. Rolia. Predicting the Performance
of Software Systems. Technical report,
CSRI Technical Report 260, University of
Toronto, Canada, 1992.

Ward Rosenberry, David Kenny, and Gerry
Fisher. Understanding DCE. O’Reilly and
Associates, Inc., 1992.

Thomas J. Schriber. An Introduction to
Simulation Using GPSS/H. John Wiley &
Sons, 1991.

