

ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 95Ð7

A Scalable, Deployable Directory Service
Framework for the Internet

Timothy A Howes

tim@umich.edu

Mark C. Smith

mcs@umich.edu

This paper describes a directory service framework for the Internet that fits within the
approach outlined in the IETFÕs RFC 1588. This framework consists of a global directory
service that enables virtually any local directory service to operate under it. We also
include an optimized local directory service, thereby providing a complete solution for
Internet directory service. Our approach uses proven Internet technology (e.g., the
Domain Name System and Uniform Resource Locators) and successful or promising
pieces of other services (e.g., X.500 and WHOIS++). Previous attempts to create a unified
Internet directory service, such as X.500, LDAP, WHOIS++, and SOLO, have not been
fully accepted because of difficulties in implementation and deployment. Therefore, we
designed our approach with ease of implementation and deployment in mind. To that
end, our approach attempts to co-opt the installed base making a switch to the new ser-
vice as seamless as possible.

July 11, 1995

Center for Information Technology Integration 1

A Scalable, Deployable,
Directory Service Framework

for the Internet

Timothy A. Howes and Mark C. Smith

July 11, 1995

1. Introduction

Despite many efforts to create a comprehen-
sive directory service for the Internet, no
such service currently exists. Though most
sites run a local service, there is no global
framework capable of tying them together
into a uniform service, useful throughout
the Internet. Early efforts to mandate a solu-
tion by encouraging sites to switch from
their local directory service to a standard
one (X.500) have largely failed, despite
pockets of successful X.500 sites and a
slowly growing global X.500 service.

In Fall of 1993, the Internet Engineering
Task Force (IETF) adopted a more pragmat-
ic approach toward developing an Internet
directory service, one that takes into account
the diverse installed base and allows devel-
opment of alternative global systems. The
goal of this egalitarian approach, document-
ed in RFC 1588 [7], remains to arrive at a
global service, but to do so in a way that
does not favor one candidate service over
another, allowing a natural process of selec-
tion to take place.

We believe ease of implementation and
deployment are qualities that will ulti-
mately select the directory service winner
on the Internet, and these goals have driven
the design of our service. This paper
describes a global directory service frame-
work and an example local directory service

that fit within the approach outlined in RFC
1588. Our approach uses proven Internet
technology (e.g., the Domain Name System
and Uniform Resource Locators) and suc-
cessful or promising pieces of other services
(e.g., X.500 and WHOIS++).

The framework is general enough to sup-
port sites running virtually any local proto-
col, while encouraging migration to our
more functional local service. Making the
migration optional enables sites with set
local services to still participate in the global
service. The local service component of the
framework is based on a stand-alone version
of the Lightweight Directory Access Proto-
col (LDAP) [3,4]. LDAP was formerly used
exclusively as a front-end to the X.500 direc-
tory. This choice makes our service highly
compatible with X.500, but free of its short-
comings.

The following sections describe various
aspects of the global framework and our
optimal local service. We finish with some
examples, a discussion of our implementa-
tion of the system, and prospects for deploy-
ment throughout the Internet.

2. The Global Service Framework

The global directory service framework we
define is described in the following sections.
We start with the namespace and then give

Center for Information Technology Integration

2

Howes/Smith

an overview of navigation, or how one gets
from a name to a server holding data on that
name. This section forms the basis for how
our system solves the directory service
ÒreadÓ problem. The co-opting of the
installed base is tackled next. Our solution
to the directory service ÒsearchÓ problem is
then presented, providing the basis for
information retrieval when the name of an
object in the directory is not known.

2.1 Namespace

A namespace plays a key role in a directory
service, allowing efficient reference and
retrieval of collections of related informa-
tion. Our service piggy-backs on existing
DNS infrastructure to build a directory ser-
vice namespace for the Internet similar to
what is already used for e-mail. This
approach makes implementation and deploy-
ment easier by using familiar and efficient
names and avoiding the need for cumber-
some registration procedures.

In some services, e.g., X.500 [1,2] and the
Domain Name System (DNS), the name-
space is explicit and hierarchical. A hierar-
chical namespace is characteristic of most
global systems. It allows information to be
subdivided easily, authority to be distrib-
uted, new information to be added with lit-
tle disruption of the rest of the system, and
straightforward navigation through the
namespace. Unfortunately, such a name-
space can require relatively complicated
management, and a site must understand
and endure some registration process before
it can Òget connected.Ó These are barriers to
deployment.

A hierarchy is not the only option. Services
such as WHOIS++ [9] and SOLO [8] favor a
more loosely organized ÒmeshÓ structure. In
this model, information is referred to by its
content. An entry in the mesh may have as
many ÒnamesÓ as it has collections of
attributes that uniquely identify it. New
sites come online by announcing their pres-
ence to one or more Òneighbors,Ó or to a
more formal registration authority. In this
way, the mesh may grow from the bottom

up, or Òout,Ó as the case may be. The barri-
ers to getting connected are low, but with-
out careful administration this method can
lead to the same scaling problems and tan-
gled information structure that characterize
the World Wide Web (WWW). In a direc-
tory system meant for organizing and find-
ing information, this lack of organization is
a bad thing.

User acceptance is another barrier to
deployment that any namespace faces.
Internet users have to deal with many dif-
ferent namespaces: an IP address name-
space, a host namespace, and several
electronic mail and information resource
namespaces, to name a few. To succeed,
another namespace must bring with it
enough benefit to out-weigh the inconve-
nience that it poses to users. Large and
unwieldy names, such as those proposed by
X.500, fight an uphill battle for acceptance.
Names that users cannot easily grasp or put
on a business card, such as those proposed
by WHOIS++, are also at a disadvantage.
Names that are hard to remember, or have
no obvious relationship to the objects they
name will be difficult for users to accept.

To ensure user acceptance, our proposal
relies heavily on the DNS, which is already
an integral part of the Internet. The DNS is
scalable, familiar to users and administra-
tors, and has well-established registration
procedures. Just as RFC 822 piggy-backs on
the DNS to define an e-mail namespace for
the Internet, we build on the DNS to define
an Internet directory service namespace.
Our namespace has the same l

ocal@domain

syntax as an Internet e-mail address, and
similar semantics. The

domain

 part identifies
the server holding the information, while
the

local

 part has meaning only to the local
directory server.

Aside from having an aesthetic appeal (for
example, our directory names in this scheme
are

tim@umich.edu

 and

mcs@umich.edu

), this
scheme has the advantage of being familiar
to both users and administrators. Having
gone without a true directory service for so

Center for Information Technology Integration 3

A Scalable, Deployable, Directory Service Framework for the Internet

long, Internet users have gotten used to
dealing directly with e-mail addresses, to
which our directory names bear a striking
resemblance. The names are sufficiently
compact and efficient to be carried easily in
protocol, while retaining enough mnemonic
value to please users.

Furthermore, because we piggy-back on the
existing DNS infrastructure, the registration
problem is neatly averted. A site must regis-
ter with the DNS to get connected to the
Internet in the first place, and by doing so it
simultaneously (and unwittingly) registers
in our directory service namespace as well.

2.2 Navigation: The Directory Service
Read Problem

Navigation is the process of finding which
servers contain the data corresponding to a
name. This process is the essential compo-
nent in any solution to the directory service
read problemÑgiven the full name, return
the information associated with that name.
Directory lookups of this kind must be fast
and efficient, without requiring any user
interaction. Often a program does the
lookup, perhaps in the course of delivering a
piece of mail or accessing a resource.

In a read operation, the client specifies the
full name of the object. Contrast this with
the less constrained search problem, which
we discuss in detail later. A search may
begin with partially specified criteria, con-
tact several servers, and require subsequent
interaction with a user or other agent before
the search is finished. Most directory ser-
vices treat the read and search operations as
substantially the same. We feel they have
different enough requirements to warrant
different technical solutions.

When it comes to returning information
associated with a name, few systems com-
pare in scale or efficiency to the InternetÕs
DNS. The DNS has a variety of uses, from
host name to address translation, to the
reverse mapping, to e-mail service location
for a domain name. We use an approach
analogous to this latter function for our

directory service. Among the records associ-
ated with a name in the DNS can be a mail
exchange, or MX, record. The purpose of
this record is to provide a mapping from a
domain name to the name of one or more
hosts performing mail service for that
domain. Because our goal is to provide a
mapping from a domain name to a host per-
forming directory service for a domain, the
analogy is direct.

Our service defines a directory exchange, or
DX, record. The DX record is functionally
similar to an MX record, except that it points
to a host performing directory service for a
domain instead of e-mail service. As with an
MX record, multiple hosts can be specified,
with different preferences. In fact, as the
next section describes, a DX record actually
specifies a protocol for retrieving directory
information in addition to a host name.

A directory client begins with a name of the
form

localpart@domain

. It looks up

domain

 in
the DNS, asking for DX or address records.
If no DX records are found, it assumes an
LDAP service is running on the standard
port at the given address. If one or more DX
records are found, the client chooses among
them, based on priority and protocol. It con-
tacts the corresponding server using the
appropriate protocol and retrieves the infor-
mation.

Using DX records has several advantages
over other schemes:

•

The technology on which they are based
is familiar and scalable, proven by years
of use in the Internet community.

•

The concepts are well-understood by sys-
tem administrators who already interact
with the DNS to use and provide other
Internet services.

•

All that is necessary to Òget connectedÓ to
our directory service, using any local ser-
vice a site wants, is to add a simple
record to the DNS. If a site chooses to run
our version of stand-alone LDAP as their
local service even that is not necessary.
(See the section 5, Implementation and
Deployment, for a discussion of our

Center for Information Technology Integration

4

Howes/Smith

implementation of DX records using TXT
records.)

2.3 Installed Base

Any new service that does not take into
account a large installed base faces an uphill
battle for acceptance and ultimate deploy-
ment. For a successful Internet directory ser-
vice, we strive for as easy and seamless an
upgrade path as possible. Co-opting the
installed base so that it actually becomes
part of the new service is an even bigger
win.

The World Wide Web is an example of such
an approach in action. The Web incorpo-
rated Gopher, FTP, and other protocols,
immediately making their information avail-
able through its own model, increasing its
own value. We strive for the same level of
success by including existing directory ser-
vices in our own. To do so, we employ the
same tool used successfully by the Web: the
Uniform Resource Locator, or URL.

The models we have described for name-
space and navigation could be easily
applied to a number of directory services.
Our goal is to broaden them to apply to all
services at once. To do this, we extend the
DX record concept introduced above. We
allow a DX record to be multivalued and
expand its content to allow a partial URL,
rather than a simple hostname. A client
looking up DX records for a directory name
is returned one or more partial URLs, point-
ing to the directory service(s) for the
domain. Intelligent clients can then choose
the access method they prefer. This method
also supports redundant replicated servers.

The URLs returned are ÒpartialÓ; they con-
tain only enough information to identify the
desired server and the protocol used for
accessing it. The rest of the URL, enabling
the client to retrieve the information it
desires, is contained in the

localpart

 of the
directory name. How the full URL is con-
structed and used depends on each protocol.
For example, if the local directory service is
a CSO nameserver, the

localpart

 of the name

might be the desired entryÕs unique identi-
fier. If the local directory service is a WHOIS
or WHOIS++ server, the

localpart

 of the
name might be the recordÕs handle. We do
not define the exact mappings here, but the
approach is clear.

The advantages of this scheme are several:

•

By using URLs, we employ technology
familiar to administrators.

•

It is relatively easy to add new protocols
to the mixÑall thatÕs needed is the defi-
nition of a new URL format.

•

In addition to incorporating existing
directory services, URLs have the poten-
tial to make our service easily available
to the wide variety of WWW clients
already familiar to users.

2.4 The Search Problem: Dealing with
Multiple Servers

So far, the framework weÕve described
addresses part of the directory service prob-
lemÑit enables quick and efficient informa-
tion retrieval from a single server, given a
name uniquely identifying it. Although this
function is vital to the success of any ser-
vice, the ability to search for and retrieve
information from multiple servers poses a
more interesting and challenging problem.
The goal is, given some search criteria, to
determine which servers contain the
requested information, and then to retrieve
it. Our solution is based on the standard
LDAP model for searching, with the addi-
tion of centroids to help prune the search
space of servers.

Efficient resource consumption is the pri-
mary constraint during the search process.
For searches with a naturally restricted
scope, this is a minor problem. If only one
or a few servers are involved, it is not
unreasonable to contact them all with the
search request. For wider-area searches, this
approach is not feasible.

For example, keeping in mind the name-
space model described above, suppose a
user wants to search for a friend named

Center for Information Technology Integration 5

A Scalable, Deployable, Directory Service Framework for the Internet

ÒBabs Jensen.Ó The problem is that our user
met Babs while on spring break and knows
only that she is in college Òsomewhere up
north.Ó A simple-minded approach would
be to extend the search to every directory
server in the

edu

 domain. (At last count, this
domain contained over 1,000,000 hosts.)
Contacting them all would leave our user
waiting quite a while for the results of his
query. If more than a few users produced
such queries, the network and server
resources consumed would soon bring the
Internet itself to its knees. Clearly, a better
method of handling such searches is needed.

In our system, a client performing the search
described above would begin by looking up
DX records for the name

edu

 in the usual
way (or perhaps through cached knowledge
of the ÒrootÓ information, as is currently
done in the DNS). Depending on its pre-
ferred choice of protocol, the client picks one
of the returned URLs and connects to the
indicated service to perform the search. Our
only requirement on this service is that it
return

DX referrals

 to the client, indicating
likely places for the client to continue the
search.

A DX referral is similar to the partial URL
defined in Section 2.2. It provides a level of
indirection to the information it references,
allowing control over the protocol(s) used to
access the information to remain in the
hands of the site providing the service. For
example, the search for Babs in the

edu

domain might return two DX referrals,

dx://umich.edu

 and

dx://cornell.edu

. The actual
protocols and directories that contain the
information are discovered by the client in
the normal way: by looking up DX records
for the names

umich.edu

 and

cornell.edu

,
respectively. If a site does not need the indi-
rection provided by a DX referral, it may
elect to return a protocol-specific partial
URL directly.

The efficiency with which searches are con-
ducted depends on how well the high-level
servers initially contacted prune the search-
space. These servers return DX referrals
only to those directories which, when
searched, will return positive results to the
query. Return too few referrals and some
information vital to the user may be lost.
Return too many, and we revert to the Òcon-
tact every serverÓ approach.

Because we allow many high-level protocols
to provide the searching service in our
scheme, it is not really for us to say how
they might make this happen. But in our
implementation of LDAP, described more
fully in the next section, we make use of cen-
troid indexing [6] for this purpose. Origi-
nally adapted for use in WHOIS++ as a
means of both searching and navigating
through the mesh of servers, we adopt the
technique as a searchspace-pruning device
in LDAP.

Our solution to the searching problem has
several advantages:

•

It allows any protocol that can support
the namespace we define to participate as
wide-area-search servers. In contrast,
other proposals that mandate a particular
protocol for searching fix the query lan-
guage, the information model, etc.

•

Our approach is based on DX referrals,
which introduce a useful level of indirec-
tion, again leading to more flexibility and
control by local sites.

•

While we propose the use of centroids as
a method of pruning the searchspace,
particularly in our implementation of
LDAP, our scheme is not tied to centroid
technology. Should another distributed
indexing mechanism become available, it
can be incorporated into our scheme eas-
ily. The details of searchspace pruning
are hidden from the user, who sees only a
familiar and consistent view of the name-
space.

Center for Information Technology Integration

6

Howes/Smith

3. The Local Service: Stand-Alone
LDAP

Having described the global framework into
which any end-user directory can fit, we
now turn our attention to the design of one
such end-user system. Our system is based
on the Lightweight Directory Access Proto-
col (LDAP), with a few simple extensions to
make it fit better into the our global frame-
work. LDAP was designed as a lightweight
access method for X.500. In this mode, cli-
ents interact with a single LDAP server that
interacts with one or more X.500 servers on
the clientÕs behalf. The LDAP server holds
no data itself. All data is contained in the
X.500 servers (Figure 1).

Figure 1.

LDAP as a front end to X.500.

 The LDAP
server chases referrals, merges results,
etc. from multiple X.500 servers.

LDAP retains the basic X.500 model, sup-
porting most X.500 operations, and the same
namespace and information model. The pro-
tocol itself runs directly over TCP, leaving
out many of the more esoteric and less often
used X.500 features, with most data items
encoded in simple character string formats.
The simplified feature set, transport, and
encoding, allow LDAP clients to be more
easily developed and run using far fewer
resources than their full X.500 counterparts.

We make two key extensions to LDAP,
enabling it to function as a stand-alone
directory service and to participate fully in
the framework outlined above, both as a
local service and as a wide-area search ser-
vice. Both extensions are designed to be

LDAP
LDAP
client

LDAP
server

X.500
server

X.500
server

DAP

DAP

transparent to existing LDAP clients, mak-
ing the new version compatible with the
existing one. Old clients will not know
enough to take advantage of the new fea-
tures we introduce, but they will not break.
We took a lesson from the developers of
MIME here, who transparently enabled new
features in RFC 822 e-mail, simply by defin-
ing new formats for message bodies that fit
within the existing protocol. Our extensions
are similar in philosophy.

First, we extend the LDAP Distinguished
Name (DN) format to include the Internet-
style names described earlier. Since these
names are carried in LDAP as simple
strings, there are no protocol changes neces-
sary to support this. Second, LDAP allows
the server to send back an arbitrary text
message to the client as part of a search
result. We impose some structure on this
message, defining a format for the return of
referrals within it. Clients that donÕt under-
stand this format will not be able to follow
the referrals, but they will not be bothered
by their presence either.

The resulting interaction model is shown in
Figure 2. In this configuration, data is held
by the LDAP servers themselves, along with
referrals pointing to different LDAP (or
other protocol) servers.

.

Figure 2.

Stand-alone LDAP interaction.

 A client
makes a request in transaction 1 and fol-
lows the returned referral in 2.

LDAP
client

LDAP
server

LDAP
server

1

2

LDAP

LDAP

Center for Information Technology Integration 7

A Scalable, Deployable, Directory Service Framework for the Internet

4. Example Interactions

This section describes in detail two typical
interactions between an Internet directory
client and the global and local services
defined in this paper.

4.1 Example of the Search Capability

Our first example illustrates the search capa-
bility of the system. In this example, our
goal is to discover the phone number of a
user named Babs Jensen, a college student
somewhere in Michigan.

1.

A client looks up

edu

 in the DNS, asking for
DX records. The client may receive several
records, but let’s assume it chooses the one
providing an LDAP service for the

edu

domain,

ldap://some.host

.

The client contacts the LDAP port on

some.host

and sends it an LDAP subtree
search of the

edu

 domain for an entry with an
ObjectClass of person, a locality of Michigan,
and a name of Babs Jensen.

The LDAP server consults the centroid index
it has collected and finds that there are two
possible services where the client should con-
tinue the search, one at the University of
Michigan, and another at Michigan State Uni-
versity.

2.

The corresponding DX referrals, which
the LDAP server returns to the client, are

dx://umich.edu

 and

dx://msu.edu

.

3.

The client may present these referrals to the
user, or it may follow them automatically.
Choosing the latter, it looks up

umich.edu

 and

msu.edu

 in the DNS, asking for DX records.

4.

For each set of DX records returned, the cli-
ent chooses one corresponding to a protocol
it understands and follows that record. In
our example, the chosen records might be

ldap://umich.edu

 and

cso://msu.edu

.

5.

The client contacts each directory via the
appropriate protocol and continues its search,
retrieving the results it desires.

The five steps in this process correspond to
the client transactions shown below in Fig-
ure 3 and Figure 4.

Figure 3.

In transaction 1, the client retrieves DX
records for the edu domain. In transaction
2, the client retrieves DX referrals to serv-
ers it should contact.

Figure 4.

n transaction 3, the client retrieves DX
records for each DX referral. In transac-
tions 4 and 5, the client contacts the indi-
cated servers via CSO and LDAP
respectively, retrieving results.

4.2 Example of E-mail Processing

Our second example is of an e-mail user
agent processing a piece of mail addressed
to the directory name

babs@umich.edu

. The
goal is to find the e-mail address to which to
forward the message, illustrating the read
capability of the system. This interaction is
shown in Figure 5..

Figure 5.

In transaction 1, the client retrieves DX
records for umich.edu. In transaction 2, the
client retrieves the desired information.

some.
host DNS

client

12

DNSLDAP

client

msu
server

umich
server

DNS 3

4

5

CSO

LDAP

DNS

client

umich.
edu DNS

12
DNSLDAP

Center for Information Technology Integration

8

Howes/Smith

The client starts by looking up

umich.edu

 in the
DNS, asking for DX records. Among the DX
records returned to it is one pointing to an
LDAP service for the domain,

ldap://umich.edu

.
The client contacts the LDAP server on the

umich.edu

 host, giving it the name

babs@umich.edu

 and asking for the e-mail
address associated with the entry

5. Implementation and
Deployment

As of this writing, we have implemented
most of the global and local services
described in this paper and are beginning to
gain experience with deployment. More spe-
cifically:

•

Our implementation of DX records in the
DNS is built using TXT records, already
supported in most nameservers.

•

We have developed a stand-alone LDAP
daemon, called

slapd

, that supports a
variety of database backends, including
one capable of holding and searching
centroid indexes. How centroid data gets
into the backend is still a problem, one
we hope to solve by using an existing
common indexing protocol server.

•

We have modified our LDAP client
library to handle the referrals returned by
this server, either automatically or only
when directed by the client program.

•

Work is underway to make use of the
new client library features in maX.500,
waX.500 and xax500, our LDAP clients
for the Macintosh, MS Windows, and X
Windows, respectively.

•

We also have plans to develop a forms-
based Web interface capable of following
multiprotocol referrals.

•

Finally, we are working on support for
replication in

slapd

, described in detail
below.

Slapd

 has been designed with high perfor-
mance, ease of configuration and use, and
flexibility in mind. Implemented on a vari-
ety of UNIX systems, it is based on a single

highly-threaded process. A new thread is
created for each operation, maximizing con-
currency. We developed our own threads
ÒglueÓ library, based on draft 4 of the Posix
standard. The library provides a mapping
onto a number of underlying threads pack-
ages (we currently support three and have
plans to add more). Support is provided for
both preemptive and non-preemptive
threads.

Slapd

 supports multiple database backends,
allowing great flexibility when adapting to a
siteÕs environment. Communication with a
backend is through a well-defined API,
making it easy to add new or customized
databases. We have implemented three
backends so far: an

/etc/passwd

 backend; a
ÒshellÓ backend; and a high-performance,
fully-indexed hash or btree-based backend
called

ldbm

. The relationship between

slapd

and its backends is shown in Figure 6. Mul-
tiple instances of each backend can be
enabled by editing a simple tailor file. This
allows a single

slapd

 process to serve several
portions of the namespace.

Figure 6.

Slapd

 architecture.

 Supports multiple
simultaneous database backends through
a common API.

The shell backend allows the execution of
arbitrary administrator-defined commands
in response to queries. Slapd executes the
command, feeding it a text representation of
the request on standard input and reading a
text representation of the results from stan-
dard output. Although not appropriate for
high-performance environments, this meth-
od allows easy integration with virtually
any system (e.g., via shell scripts).

protocol frontend

database selector

database API

passwd
backend

shell
backend

ldbm
backend

Center for Information Technology Integration 9

A Scalable, Deployable, Directory Service Framework for the Internet

The ldbm backend is based on technology we
originally developed for use in our X.500
server. The underlying indexes are imple-
mented by one of a number of dbm or btree
packages. As with the threads support, we
have developed a library of ÒglueÓ routines
allowing the use of several different pack-
ages and easy addition of more (we support
three so far). The ldbm backend can support
efficient processing of all types of LDAP
searches, including substring, approximate,
and range queries. It is targeted at medium
to large-scale databases of up to a few hun-
dred thousand entries. It is not meant to
handle millions of entries but should be suf-
ficient for the needs of most sites.

We are in the process of adding replication
support to slapd. Our approach is to have
slapd log changes to a file which is then read
by a separate process. The stand-alone
LDAP update replication daemon (slurpd) is
responsible for distributing the changes to
the appropriate replicas (slapd records where
each change should go in the replication log
file). Changes are made to a replica using
the normal LDAP protocol; no special repli-
cation protocol is required. Slurpd authenti-
cates itself to each replica as a special entity
allowed to make changes. This leads to a
master and slave replication scheme. The
interaction is depicted in Figure 7.

Figure 7. Master and slave slapd replication.
Interaction with slurpd.

slapd
master
server

slurpd
repl

process

slapd
slave
server

slapd
slave
server

LDAP

slapd
repl
log

6. Availability

Our implementation is freely available using
the URL ftp://d.rs.itd.umich.edu/ldap/ldap.tar.Z.
We invite anyone interested to retrieve the
software and participate on either a local or
global level with our pilot. Sites wanting to
participate strictly at a local level can just
bring up one or more stand-alone LDAP
daemons and point their local clients at
them.

If the site wants to be visible to the outside
world, it need only add a simple TXT/DX
record to its local DNS server. If the site
wants to participate in the global search ser-
vice, it needs to run centroid generation and
updating software. The software will auto-
matically find and connect to the correct
indexing server. If a site wants to participate
with a directory service protocol other than
LDAP, it can do so by adding a TXT/DX
record to the DNS pointing to that service.

Deployment on a wider scale will begin as
soon as we have gained more experience
with the system, worked out the remaining
bugs, and improved the documentation.

7. Summary

This paper defines a global framework and
local directory service within that frame-
work which follows the approach outlined
in RFC 1588. The scheme described here
removes the barriers to implementation and
deployment encountered by other directory
services, while incorporating existing local
directory services impartially. The registra-
tion problem is sidestepped by using the
existing DNS namespace. The likelihood of
user acceptability is enhanced through the
use of familiar names. System administra-
tors likely already have the knowledge nec-
essary to hook their site into the global
system; all thatÕs necessary is to add a sim-
ple record to the DNS. Migration from exist-
ing services is not required and can take
place at leisure. Most of the system has been
implemented, and work is ongoing on the
remaining pieces.

Center for Information Technology Integration 10

Howes/Smith

8. Acknowledgements

This material is based upon work supported
by the National Science Foundation under
Grant No. NCR-9416667. Thanks also to
Peter Honeyman for his valuable review of
this paper.

References

1. The Directory: Overview of Concepts, Mod-
els and Service. CCITT Recommendation
X.500, 1988.

2. Information Processing Systems – Open Sys-
tems Interconnection – The Directory: Over-
view of Concepts, Models and Service. ISO/
IEC JTC 1/SC21; International Standard
9594-1, 1988

3. W. Yeong, T. Howes, S. Kille, Lightweight
Directory Access Protocol. Request For Com-
ments (RFC) 1777, March, 1995.

4. T. Howes, S. Kille, W. Yeong, C. Robbins,
The String Representation of Standard
Attribute Syntaxes. RFC 1778, March 1995.

5. Tim Howes, Mark Smith, An LDAP URL
Format. Internet Draft draft-ietf-asid-ldap-for-
mat-00.txt, March, 1995.

6. Chris Weider, The Common Indexing Proto-
col, Internet Draft draft-weider-comindex-
00.txt, March 1995.

7. J. Postel, C. Anderson, White Pages Meeting
Report. RFC 1588, February, 1994.

8. C. Huitema, P.-A. Pays, A. Zahm, A. Woer-
mann, Simple Object Look-up Protocol
(SOLO), Internet Draft draft-huitema-solo-
02.txt

9. Peter Deutsch, Rickard Schoultz, Patrik Fal-
strom, Chris Weider, Architecture of the
WHOIS++ Service. Internet Draft draft-ietf-
wnils-whois-arch-03.txt, March 1995.

Author Information

Tim Howes is a Senior Systems Research
Programmer for the University of Michi-
ganÕs Information Technology Division. He
received a B.S.E. in Aerospace Engineering,
a M.S.E. in Computer Engineering from U-
M, and is completing a Ph.D. in Computer
Science. He is currently project director and
principal investigator for the NSF-spon-
sored WINX project, and in charge of cam-
pus-wide directory service development
and deployment at U-M. He is the primary
architect and implementor of the U-M
LDAP system, the GDA X.500 DSA, and a
major developer of the QUIPU X.500 imple-
mentation. He is author or co-author of sev-
eral RFCs including RFC 1777 and RFC 1778
defining the LDAP protocol. He is chair of
the IETF Access, Searching, and Indexing of
Directories working group, and an active
member of the ACM and IEEE.

Mark Smith is a Project Leader and Systems
Research Programmer for the University of
MichiganÕs Information Technology Divi-
sion, specializing in Directory Service, Unix,
Macintosh, and AppleTalk and TCP/IP net-
work programming. He received his B.S.E.
in Computer Engineering from U-M and is
completing an M.S.E. in Computer Engi-
neering. He is currently leading X.500 Yel-
low Pages development and deployment at
U-M. He is the architect and implementor of
the popular maX.500 Directory User Agent,
and is a major developer of the U-M LDAP
implementation, and has made important
contributions to several other Internet soft-
ware packages for Unix and Macintosh. He
is co-author of RFC 1249 describing the
DIXIE protocol and an active member of the
IETF.

