
CITI Technical Report 95−3

Peephole Log Optimization

L.B. Huston
lhuston@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

Center for Information Technology Integration
University of Michigan

Ann Arbor

ABSTRACT

The log files generated while operating a file system in disconnected mode grow to sub-
stantial sizes. Eliminating redundant or useless operations in these logs can free up
scarce disk space on laptops, reduce replay times, and reduce the frequency of data
conflict. Our approach uses a rule-based portable peephole optimizer for compilers.
This work suggests a general method of optimization for any system that performs log-
ging at the vnode layer.

January 26, 1995

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



Peephole Log Optimization

L.B. Huston
lhuston@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

Center for Information Technology Integration
University of Michigan

Ann Arbor

1. Introduction

One goal of mobile computing is to provide users with a system that faithfully emulates the desktop
environment. The mobile environment makes this goal a difficult one to reach because of limitations such
as sporadic, low-bandwidth networks. Moreover, mobile computers tend to be resource poor, so that con-
sumption of resources, such as disk space, demands careful control.

The conventional paradigm for modern computing systems is distributed computing. An essential service
in a distributed computing environment is the (distributed) file system. One successful technique of pro-
viding mobile clients with a distributed file system is disconnected operation [5, 6], a form of optimistic
replication in which the client can continue working with cached data when file servers become unavail-
able. As part of disconnected operation, any updates need to be logged so they can be propagated to the
server at a later time.

If each operation is logged as it occurs, many log entries will be redundant. For example, if a user is edit-
ing a file called paper.ms portions of the log will typically contain the following entries.

...
setattr(paper.ms)
write(paper.ms)...
setattr(paper.ms)
write(paper.ms)...

In this sequence, each setattr and write pair corresponds to each time the user saves the file she is
editing.1

The object of replaying the log is to achieve the file system state that would have been realized were the
client connected. In the absence of conflict, the naive, but incontrovertibly correct approach to achieving
this state is to replay each deferred operation in the log. This approach is wasteful if it performs operations
that do not affect the final state. For example, in the log segment shown above, it is possible to eliminate
the first setattr/write pair, as these operations are made superfluous by the the second
setattr/write pair.

Many other operations can be removed from a log without affecting the final state of the file system. For
example, if file foo is created and subsequently deleted during a period of disconnection, the create and
remove operations, along with any other operations on foo, can be deleted from the log.

Removing unnecessary operations has several advantages. The amount of time needed to replay the log
depends directly on the number of operations being replayed; this is especially important when replaying
over a dialup network, as we often do. Furthermore, by reducing the log size, disk space — a scarce
hhhhhhhhhhhhhhhhhh
1 The setattr operation is characteristic of UNIX text editors, which truncate before writing new file data.

- 1 -



Huston and Honeyman

resource on many laptops — is freed. Additionally, Kistler reports that removing unneeded operations
reduces the chance of a conflict during replay [7].

To reduce the size of the log, transformations must be applied so that the optimized log is equivalent to the
original log, i.e. , replaying either log results in identical final states of the file system. In the remainder of
this paper, we describe related work, followed by a detailed description of our use of a peephole optimizer
to reduce the size of logs produced during disconnected operation of AFS. We conclude with measure-
ments of the effectiveness and performance of the optimizer.

2. Related Work

Early work on log transformation was in the context of optimistic replication for databases [1]. Log
transformations use semantic properties to convert a given log into an equivalent, shorter log, which can
reduce the cost of synchronizing replication sites after a network partition.

The Coda file system also uses log transformations to reduce the space needed for the log, and to reduce
the time necessary for reintegration [7].

A problem related to optimization of file system logs is compiler peephole optimization [2, 9, 10], used to
remove redundant instructions from assembly code when a program written in a high level language is
compiled.

3. Design

The system we have built is designed to be used with a version of AFS [4] that supports disconnected
operation [5]. Logging in disconnected AFS is performed at the vnode layer; each log entry corresponds to
a vnode operation [8]. The operations that concern us are the mutating ones — those that cause data in the
file system to be modified. For a standard vnode interface these operations are:

store, setattr, create, remove, rename, link, symlink, mkdir, rmdir

The store operation is not a standard vnode operation, but represents the operation that stores modified
file data to the file server. In AFS this is close, but for other distributed file systems, e.g. NFS [11], this
would correspond to the write and putpage operations.

To optimize our disconnected AFS logs we have elected to use a machine-independent peephole optimizer
designed by Fraser [3], and modify it to support our needs. Fraser’s peephole optimizer takes as input a list
of rules, each of which consists of a set of source operations, followed by a set of target operations
equivalent to the source set. The optimizer applies these rules by searching for a set of operations in the
input that matches a source set, and replacing them with the corresponding target set. The optimizer
iterates until no more rules can be applied.

To optimize the log we have built three components: a preprocessor, an optimizer, and a postprocesser.
Although the preprocessor and postprocessor are specific to our AFS work, and embed detailed knowledge
of the log format, the optimizer itself is independent of file system particulars.

3.1. The Preprocessor

Because the peephole optimizer operates on character strings, the log of disconnected operations — stored
as binary data — must be converted into a text equivalent. Some information in the log is unnecessary for
transformation, but is required for replay. The preprocessor elides this information, but provides a means
for the postprocessor to recover it.

To increase the efficacy of the optimizer, we have broken the setattr vnode operation into three opera-
tions. The first component, set_len, sets the length of the file. The second component, set_mode, sets
mode, owner, and group information on a file or directory. The third operation, set_time, sets the
modification or access time. A given setattr might combine more than one of these operations; during
optimization we treat each independently, and recombine them in the postprocessing stage.

We also elaborate the semantics of the rename and create operations. For a rename that overwrites
an existing file, we precede the operation by a remove on the target name. Similarly, we replace a
create operation on an existing file by a truncate operation, i.e., set_len to zero. By expanding these
operations during the preprocessing stage, we are able to simplify the optimizer because it need not detect

- 2 -



Peephole Log Optimization

these special cases. The postprocessing stage converts these operations back into a single operation.

The preprocessor reads the log file and emits an output string for each entry in the log. Each output string
is one of the following.

Opid create PDid Fid name
Opid mkdir PDid Did name
Opid remove PDid Fid name
Opid rmdir PDid Did name
Opid link PDid Fid name
Opid symlink PDid Fid name
Opid rename SPDid DPDid Fid oname nname
Opid store Fid dist
Opid set_len Fid len dist
Opid set_mode Fid dist
Opid set_time Fid dist

The Opid field is an index of the operation in the disconnected log. The postprocessor uses this field to
reconstruct the log from the optimized output. The Opid is also used to sort the optimized operations so
that when the operations are replayed, any file timestamps will have the same relative ordering as they
would have had in the unoptimized case.

The PDid uniquely identifies the parent directory of the operation. In the case of rename, both the source
parent directory and the destination parent directory are included.

The Fid and the Did fields serve as unique identifiers for a file or directory in the cache. Some operations
include a name field to identify one of several names linked to a Fid; the name field unambiguously
identifies a name in the file system by encoding a numeric representation of the file name and its parent
directory (PDid). The dist, or distinguished, field indicates whether a file has exactly one name. Unless
the preprocessor has direct knowledge to the contrary, all files are assumed to have multiple names.

For clarity, the remainder of the paper elides fields not directly relevant to a given example.

3.2. The Optimizer

The operation of Fraser’s optimizer is simple. The user specifies a set of substitution rules. A rule is a
sequence of lines containing a search pattern and a sequence of replacement lines. Any search pattern
found is replaced.

We made some small modifications to the peephole optimizer. The largest of these adds support for condi-
tional events that can trigger substitution. These conditionals are needed for the ordering operations
described in Section 3.2.2.

We provide a set of rules that describe the correct optimizations. The rules can be classified into two
categories: replacement rules, which replace a set of adjacent operations with an equivalent set; and order-
ing rules, which re-order adjacent operations so that further replacement rules can be applied.

We perform the optimization in two phases: one that operates on data operations, and one that operates on
namespace operations. Each phase uses a different set of ordering and replacement rules.

3.2.1. Replacement Rules

The replacement rules remove redundant operations from the log. A typical example of a replacement rule
is:

Opid1 create PDid1 Fid1 name1
Opid2 remove PDid2 Fid2 name2

are removed if

Fid1 = Fid2 and name1 = name2 2

hhhhhhhhhhhhhhhh
2 The name field embeds both the file name and parent directory ID in the encoding, so comparing PDid1 and
PDid2 would be redundant.

- 3 -



Huston and Honeyman

When this pattern of consecutive create/remove operations is found in the log, both operations are
elided: they do not affect the final state of the file system.

Another example of a replacement rule is:

Opid1 create Fid1 name1
Opid2 rename Fid2 oname2 nname2

is replaced by

Opid1:Opid2 create Fid1 nname2

if

Fid1 = Fid2 and name1 = oname2
This rule represents a file that is created and subsequently renamed. The transformation allows the file to
be created with the final destination name, eliminating the rename operation. Note that the new Opid is
the concatenation of Opid1 and Opid2 separated by a ‘‘:’’. This allows the post processor to identify
the operations that were combined.

3.2.2. Ordering Rules

It is often the case that potentially canceling operations are not adjacent in the log. For example, when a
user creates a file, she usually performs some other operations before deleting the file, so the create and
remove operations are separated by intervening operations, which causes the pattern matching to fail. To
address this problem we provide rules that group related operations together.

Two operations can be reordered if all replacement rules applied to the reordered operations preserve the
log’s semantics. Thus the legal ordering operations depend on the defined replacement operations. This
issue is discussed further in sections 3.2.3 and 3.2.4.

An example of an ordering rule is:

Opid1 set_mode Fid1 dist1
Opid2 set_mode Fid2 dist2

are replaced by

Opid2 set_mode Fid2 dist2
Opid1 set_mode Fid1 dist1

if

Fid2 < Fid1
These two operations can be reordered: they affect metadata in distinct files, so there is no dependence
between the operations. The ordering rules group operations on similar files in a manner comparable to a
bubble sort.

3.2.3. Data Optimization

The vnode operations can be divided into two different types: data operations, which modify file data or
metadata; and naming operations, which modify the file system namespace.3 Accordingly, we perform the
optimization in two phases, the first for data operations, and the second for namespace operations. This
allows us to take advantage of the differences between these types of operations.

The primary difference between the two phases lies in the ordering rules. In the first phase, the ordering
operations group all data operations based on the Fid of the affected files. Because each data operation
affects a single file, all data operations on the same file can be grouped together without violating the
semantics of the file system. The ordering rules also separate out namespace operations, so that they do not
interfere with data optimizations.

During this phase we don’t consider any replacement rules that modify the namespace. This restriction is
hhhhhhhhhhhhhhhh
3 Some operations such as remove can be both namespace and data operations. In each phase we treat these opera-
tions in the appropriate manner.

- 4 -



Peephole Log Optimization

necessary because the ordering rules may allow a transformation in which such replacement rules could
generate an invalid log.

The replacement rules, which remove redundant data operations, are given in Table 1.

Old Operations New Operations Conditionaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 set_len Fid1 dist1 len1 Id2 set_len Fid2 dist2 len2 Fid1 = Fid2 &&

Id2 set_len Fid2 dist2 len2 len2 = 0 4
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 set_mode Fid1 dist1 Id1:Id2 set_mode Fid2 dist2 Fid1 = Fid2
Id2 set_mode Fid2 dist2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 set_time Fid1 dist1 Id1:Id2 set_time Fid2 dist2 Fid1 = Fid2
Id2 set_time Fid2 dist2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 store Fid1 dist1 Id2 store Fid2 dist2 Fid1 = Fid2
Id2 store Fid2 dist2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 store Fid1 dist1 Id2 set_len Fid2 dist1 len2 Fid1 = Fid2 &&

Id2 set_len Fid2 dist2 len2 len2 = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 store Fid1 dist1 Id2 remove Fid2 dist1 Fid1 = Fid2 &&

Id2 remove Fid2 dist1 = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 set_len Fid1 dist1 len1 Id2 remove Fid2 dist1 Fid1 = Fid2 &&

Id2 remove Fid2 dist1 = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 set_mode Fid1 dist1 Id2 remove Fid2 dist1 Fid1 = Fid2 &&

Id2 remove Fid2 dist1 = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 set_time Fid1 dist1 Id2 remove Fid2 Fid1 = Fid2 &&

Id2 remove Fid2 dist1 = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1: Replacement rules for data optimization. This table lists
replacement rules applied during optimization of data operations.

3.2.4. Naming Optimization

The second phase optimizes the namespace operations. Prior to this phase, the output from first phase must
be sorted on Opid to place the remaining operations in their original order. This ensures the log is a valid
replay log.

As with the data optimization phase, we use reordering operations to group related operations. Extra care
must be taken to preserve semantic validity, i.e., we may not perform any reordering that would lead to an
invalid log. For example, consider the operations:

Opid1 mkdir PDid1 Did1 name1
Opid2 create PDid2 Fid2 name2

The ordering rules should not allow these operations to be reordered if PDid2 is identical to Did1 — if
the mkdir operation is canceled by a rmdir operation, then the create operation applies to a non-
existent directory.

hhhhhhhhhhhhhhhh
4 In general we could perform replacement when len2 <= len1 , but in all cases we have seen, files are truncated to
length 0.

- 5 -



Huston and Honeyman

An example of a valid ordering rule is:

Opid1 mkdir PDid1 Did1 name1
Opid2 create PDid2 Fid2 name2

are replaced by

Opid2 create PDid2 Fid2 name2
Opid1 mkdir Pfid1 Did1 name1

if

Fid2 < Did1 and Did1 ≠ PDid2
It is possible to combine the data and naming optimizations into a single step, but the stricter ordering
requirements of the naming optimizations may prevent the optimizer from finding some valid data transfor-
mations. The replacement rules for the namespace optimization are given in Table 2.

Old Operations New Operations Conditionaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 create Fid1 name1 Fid1 = Fid2 &&

Id2 remove Fid2 name2 name1 = name2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 link Fid1 name1 Fid1 = Fid2 &&

Id2 remove Fid2 name2 name1 = name2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 symlink Fid1 name1 Fid1 = Fid2 &&

Id2 remove Fid2 name2 name1 = name2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 mkdir Did1 name1 Did1 = Did2 &&

Id2 rmdir Did2 name2 name1 = name2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 create Fid1 name1 Id1:Id2 create Fid1 nname2 Fid1 = Fid2 &&

Id2 rename Fid2 oname2 nname2 name1 = oname2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 link Fid1 name1 Id1:Id2 link Fid1 nname2 Fid1 = Fid2 &&

Id2 rename Fid2 oname2 nname2 name1 = oname2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 symlink Fid1 name1 Id1:Id2 symlink Fid1 nname2 Fid1 = Fid2 &&

Id2 rename Fid2 oname2 nname2 name1 = oname2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 mkdir Did1 name1 Id1:Id2 mkdir Did1 nname2 Did1 = Fid2 &&

Id2 rename Fid2 oname2 nname2 name1 = oname2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Id1 rename Fid1 oname1 nname1 Id1 rename Fid1 oname1 nname2 Fid1 = Fid2 &&

Id2 rename Fid2 oname2 nname2 nname1 = oname2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2: Replacement rules for namespace optimization. This table
lists the replacement rules applied during the optimization of the nam-
ing operations.

3.3. The Postprocessor

The final component of our system is the postprocessor, which restores the output from the optimizer to the
original log format. This procedure includes reordering the log to correspond to its original order, and col-
lapsing expanded operations into their original form. The former step ensures that all file modifications
show the same relative time ordering, so that tools such as make and rcs work properly.

4. Performance

Applied to logs gathered from our own use of disconnected AFS, the peephole optimizer removed almost
three-quarters of the logged operations. Measurements were made using 13 log files collected during our
travels, each containing between 173 and 4727 mutating operations. (The overwhelming majority of the
vnode operations logged are non-mutating ones — over 95%.) The long logs represent disconnected
operation intervals of a day or more. The average log contained 1334 operations before optimization, 360
operations afterward.

- 6 -



Peephole Log Optimization

Table 3 summarizes the results of our measurements. While replay time tends to be dominated by RPC
latency, store operations also require significant network transit time, especially over slow links.

Operation Total Operations % Removediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
create 1612 44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
mkdir 11 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
remove 1699 36iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
rmdir 3 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
link 9 100iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
symlink 121 100iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
rename 1172 33iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
store 6671 84iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
setattr 6046 85iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Total 17344 27iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3: Fraction of operations removed. This table lists each mu-
tating operation along with the fraction of operations removed during a
typical optimization. The numbers following each operation give the
percentage of these operations that are removed during optimization.
The store and setattr operations are removed during the data op-
timization phase, all other operations are removed during namespace
optimization.

Measurements made on a 33 Mhz Intel 486 running Mach 2.5 show that it takes an average of 33 seconds
to optimize a log, with 9% of the time spent in preprocessing, 18% of the time in data optimization, 64% in
namespace optimization, and 9% of the time in the postprocessor. The optimizer is CPU bound: on a 20
Mhz Intel 386SX running identical software, the same optimizations take almost five times as long, with
approximately the same time distribution for the different phases.

5. Conclusions

We have described a way to implement log optimization for a disconnected file system that performs log-
ging at the vnode layer. Our mechanism builds on the well understood principles of compiler peephole
optimization, and uses an off-the-shelf optimizer with minimal changes. The aspects of our approach that
are implementation specific are the pre- and postprocessor, which are easy to construct when the log struc-
ture is known.

While it would be possible to perform log transformations ‘‘on the fly,’’ i.e. , when appending to the log,
this would add overhead to each operation. With our approach, the optimizer runs while the file system is
quiescent. It could be run immediately before invoking the replay code, to reduce the amount of time
needed for replay, or at any time that disk space becomes scarce, to free up more space.

6. References

1. B. Blaustein, H. Garcia-Molina, D. Ries, R. Chilenskas, and C. Kaufman, ‘‘Maintaining Replicated
Databases Even in the Presence of Network Partitions,’’ Proc. of the IEEE EASCON Conf. (September
1983).

2. Jack W. Davidson and Christopher W. Fraser, ‘‘The Design and Application of a Retargetable
Peephole Optimizer,’’ ACM TOPLAS 2(2), pp. 191−202 (April 1980).

3. Christopher W. Fraser, ‘‘A Compact, Machine-Independent Peephole Optimizer,’’ pp. 1−6 in Proc. of
the 6th Ann. ACM Symp. on POPL, San Antonio (January 1979).

4. John H. Howard, ‘‘An Overview of the Andrew File System,’’ pp. 23-26 in USENIX Conf. Proc., Dal-
las (Winter 1988).

5. L. B. Huston and P. Honeyman, ‘‘Disconnected Operation for AFS,’’ pp. 1−10 in Proc. of the 1993

- 7 -



Huston and Honeyman

USENIX Symp. on Mobile and Location-Independent Computing (August 1993).

6. J.J. Kistler and M. Satyanarayanan, ‘‘Disconnected Operation in the Coda File System,’’ ACM TOCS
10(1), pp. 213−225 (February 1992).

7. James J. Kistler, ‘‘Disconnected Operation in a Distributed File System,’’ Ph.D. Thesis, Carnegie Mel-
lon University (May 1993).

8. S.R. Kleiman, ‘‘Vnodes: An Architecture for Multiple File System Types in Sun UNIX,’’ pp. 238−247
in USENIX Conf. Proc., Atlanta (Summer 1986).

9. David Alex Lamb, ‘‘Construction of a Peephole Optimizer,’’ Software — Practice and Experience
11(6) (June 1981).

10. W. M. McKeeman, ‘‘Peephole Optimization,’’ CACM 8(7), pp. 443−444 (July 1965).

11. D. Walsh, B. Lyon, G. Sager, J.M. Chang, D. Goldberg, S. Kleiman, T. Lyon, R. Sandberg, and P.
Weiss, ‘‘Overview of the Sun Network Filesystem,’’ in USENIX Conf. Proc., Dallas (Winter 1985).

- 8 -


