
Performance of DCE RPC

A. M. Khandker

masud@citi.umich.edu

P. Honeyman

honey@citi.umich.edu

T. J. Teorey

teorey@eecs.umich.edu

1 Introduction

The Open Software Foundation's Distributed Computing Environment (OSF/DCE) platform for dis-
tributed computing has the goal of facilitating application level interoperability in a heterogeneous
environment [4]. DCE is a collection of tools and services for the development, use, and mainte-
nance of transparent distributed systems using the client/server architecture. The communication
paradigm supported by DCE is the synchronous remote procedure call (RPC). DCE also supports
multithreading within an address space for concurrency. To the programmer, RPC is similar to a
procedure call in a sequential program, therefore no major paradigm shift is required on the part of
the programmer, unless threads are employed for better concurrency.

Like any real-world computer system, the performance of DCE is crucial to its success. In mea-
suring performance, we focus �rst on the latency and throughput of RPC, which is fundamental
to the overall performance of DCE. Round trip time, also known as the latency, or response time,
includes the overhead associated with the RPC layer, as well as delays at the transport and net-
work layer. We also report on the e�ect of using application level DCE threads for improving the
throughput.

Second, we measure the average completion time of various steps of single inter-machine RPCs.
The �gures tell us how much time is spent in each of these steps and allow us to estimate how
much faster the RPC would be if certain improvements were made, enabling us to isolate the most
bene�cial optimizations.

We also investigate how the completion time of various steps contribute to the the round trip
time. Often, the steps at the client and the server are performed concurrently or overlap with
network transmission time. Hence, not all RPC steps performed by the client, server, or the network
contribute to the round trip time of the RPC. We show the steps in our environment, that do
contribute to the round trip time for RPCs with various data sizes. The close match between the
sum of the completion times of these steps and the measured round trip time veri�es the results
presented in this paper.

The round trip time that we found by summingup the completion time of steps on round trip path
does not take queueing delays into account, but our results can be fed into a more elaborate model
that does account for queueing delays. The measurement work described in this paper provides
groundwork for a larger goal of developing more elaborate performance models.

2 Related Work

Schroeder's detailed measurement of the elapsed time at various steps of Fire
y RPC serves as a
model and inspiration for our work [6]. Other related performance work includes the performance

-1-

Khandker/Honeyman/Teorey

of DCE RPC and threads on Sun SPARCstaions by Dasarathy et al. [1], and the performance of
Sun RPC by Rosenblum [5]. Performance comparison of several di�erent kinds of RPCs was done
by Rabenseifner et al. [3].

3 How RPC Works in DCE

Before a DCE client makes a remote procedure call, it obtains a binding handle. A binding handle
is a reference to binding information stored in the RPC runtime1, which identi�es the server that
will process the call.

In a general DCE setup, potential servers export descriptions of the service they provide into the
cell directory service (CDS), via the name service interface (NSI). A client imports such information
and choses a server from a set of compatible ones. This process is known as the binding process. At
this point the client is said to be partially bound because it knows only the network address (e.g., IP
address) of the server machine but does not know the transport layer address (e.g., TCP/UDP port
number) of the server within that machine. The transport layer address is obtained by communi-
cating with the server's endpoint mapper at the beginning of the �rst RPC. Once this is done, the
binding information is complete and the client is said to be fully bound. This binding information
can be used by the RPC runtime for making future RPCs to the remote interface.

There are other ways of creating a binding handle. The user might supply the binding information
as a string. In such cases, a binding handle can be created by parsing the string. This process is
referred to as string binding.

Creating a binding handle has a one time cost incurred before and during the �rst RPC. In the
case of string bindings, the client need not import information from the CDS, but the �rst RPC still
has some extra overhead.

Any amount of data can be sent with an RPC. This data is referred to as the request data.
Similarly, any amount of data can be received back from the call. This is known as the reply data.

3.1 Steps in an RPC

In this section we describe the steps involved in an inter-machine DCE RPC that generates only one
request packet and one reply packet. A few more steps are involved in the case of larger request data
and are described in the following section. With large data, the client sends a portion of data and
waits for an acknowledgement before sending more data. For brevity, we assume that there is always
a single reply packet and that there is no loss of packets (i.e., no retransmission). Our description
excludes the binding procedure and the extra communication incurred in the �rst RPC. Some of the
procedure names and their orderings used in the description are speci�c to the implementation that
we are working with.

When a client application calls a procedure in a remote interface, control is transferred to the
stub module for that interface in the caller's address space. Figures 1 and 2 show the RPC steps
followed by the client and the server. Each line segment, marked from C1 through C21 and from S1
through S14, shows a step of an RPC with a single request and a single reply packet. Step C22, S15
and S16 are needed for large data. Each step consumes some CPU time. The numbers, which are
the completion times of the respective steps in microseconds, are discussed in section 4.3. The steps
are usually performed in the order of increasing step number, except when transmission interrupts
are handled (i.e., steps C15 and S13).

In the case of large data, there are situations when a jump to a di�erent step occurs. These
jumps are shown by arrows in Figures 1 and 2. (The length of a line segment drawn in the �gure
is not in scale with the time that it takes to complete the corresponding step.) The CALL and
RETURN labels imply calling a C function, when the instrumentation is done outside the function

1RPC runtime provides general support for RPC operations and is layered on top of the transport protocol.

-2-

Performance of DCE RPC

C6

C5

C4

C3

C10

C7

C8

C9

C11

C12

C13

C14

C21

C20

C19

C18

C17

C16

C15

C22

C2

rpc() [CALL]

marshaling (end)

memory copy for marshall (begin)
memory copy for marshall (end)

1C
rpc_call_start() [CALL]
rpc_call_start() [RETURN]

154

63

2

62

0

45

marshaling (begin)
no operation

packet send (end)

219

190

packet send (begin)
sendmsg() [IN]81

85
sendmsg()[OUT]

233
select() [IN]
select() [OUT]

no operation

229 I/O interrupt for transmit
resume client

select() [IN]
374

resume idle process

rpc() [RETURN]
67

rpc_call_end() [OUT]
rpc_call_end() [IN]

65

453

254
recvfrom() [OUT]
recvfrom() [IN]

select() [OUT]
308

resume client
135

700

Packet sent to the controller

I/O interrupt for receive

804

572 (sendmsg’)

30 (sendmsg’’)

Figure 1. Steps followed by a client issuing an RPC. Steps shown by the

dotted lines are not usually included in the round trip time.

-3-

Khandker/Honeyman/Teorey

2S

3S

4S

5S

6S

7S

8S

15S

14S

13S

12S

11S

10S

9S

1S
123

241

519

4

91

61

resume server
select() [OUT]

recvfrom() [IN]
recvfrom() [OUT]

service procedure [CALL]
service procedure [RETURN]

packet send (begin)

S16 396

278

529

195

resume idle process
ignored

select() [IN]
183

resume server
176

no operation

I/O interrupt for transmit

242
select() [OUT]
select() [IN]

157

packet send (end)
60 sendmsg()[OUT]
108 (sendmsg’’)

374 (sendmsg’)

Packet sent to the controller

I/O interrupt for receive

sendmsg() [IN]

Figure 2. Steps followed by a server servicing an RPC. Steps shown by

the dotted lines are not usually included in the round trip time.

call, i.e., when the time includes the function call overhead. The IN and OUT labels imply calling
a C function, when the instrumentation is done inside the function call, i.e., when the time does
not include the function call overhead. The begin and end labels mark the beginning and end of an
activity. We now elaborate on some steps of special interest.

3.1.1 Client steps

C2: Start - A call handle is created from the binding handle and the negotiated transfer syntax
is obtained. (The current implementation supports only the Network Data Representation
(NDR) as the transfer syntax. No negotiation is done.) The call handle is used to hold the
state of the RPC.

C3: Marshal - The arguments are marshalled into the call packet using the transfer syntax from
step C2. The outgoing data in the call packet is represented by an iovector, which indicates
(possibly several) locations and sizes of data. No data copying is done at this point.

C5: Memcopy - The request data is copied into the call packet.

C6: Queue - The request packet is queued at the transmission queue.

C8: Sendmsg - The packet is sent using a sendmsg system call. It is the step where a device
driver routine is called for writing the packet out to the controller (i.e., the packet is actually
handed over to the controller for transmission). For this reason, we further divide this step
into two - called Sendmsg0 and Sendmsg00; the dividing point being the moment the �rst device
driver call within the sendmsg system call returns. Sendmsg00 is not included in the round trip
time of the RPC.

-4-

Performance of DCE RPC

C11: Select - By doing a select system call, the client checks for any incoming packet. This is a
non-blocking select call.

C12: SendIntH - The interrupt, generated by the Ethernet controller for the transmission of the
packet is handled. This step is performed asynchronously with other steps. For example, the
interrupts may come during step C11. In that case, because of the high priority of interrupts,
step C12 will be performed by preempting step C11.

C13: SetTimers - Nothing can be done at this point. Before making a blocking system call, some
wakeup timers are set.

C14: Idle - A blocking select is called that causes the the idle process to be dispatched and run.

C15: RecIntH - Reception of the reply packet by the Ethernet controller generates an interrupt.
The interrupt is handled at this step. The packet is copied into the kernel bu�er from the
controller. The IP and UDP layer code calculates the checksum, extracts the packet, �nds the
client process which had been waiting for the packet and the process is resumed.

C18: Recvfrom - The packet is received by the runtime RPC by the recvfrom system call.

C20: End - The runtime RPC marks the end of the call.

C21: Free - The memory is freed and the RPC returns.

3.1.2 Server steps

S1: RecIntH - Server handles the interrupt for the request packet, similar to the client step C15.

S2: Wakeup - The control is transferred to the user space of the application server process. The
listener thread starts to execute.

S4: Recvfrom - The packet is received by the runtime RPC in a bu�er in the user space by the
recvfrom system call.

S5: Finding what to do - Upon receiving the RPC packet, the listener thread in the server wakes
up one of the executor threads from a pool of threads waiting to provide service. The listener
thread then waits for more incoming packets. The executor thread, after some initial setups,
unmarshalls the arguments and calls the service procedure.

S6: Service procedure - The actual RPC (i.e., the service procedure) is called.

S9: Sendmsg - The result packet is sent using the sendmsg system call. Similar to step C8, we
can divide this step in Sendmsg0 and Sendmsg00.

S11: End execution - The executor thread goes back to the pool.

S12: Select - By doing a non-blocking select system call, the listener thread of the server checks
for any incoming packet. This is similar to client step C11.

S13: SendIntH - This interrupt, generated by the Ethernet controller for the transmission of the
reply packet, is handled. Like step C12, this step is performed asynchronously.

S14: Select - If nothing can be done at this point, some wakeup timers are set.

S15: Idle - A blocking select is called that causes the the idle process to be dispatched and run.

-5-

Khandker/Honeyman/Teorey

3.2 Steps with large data

When an RPC with large data is made over the UDP layer,
ow control is done in the RPC runtime
layer. The
ow control method could be implementation speci�c; The DCE implementation2 closely
follows Van Jacobson's method of congestion control [2]. The runtime RPC maintains a transmission
window which de�nes the maximum size of unacknowledged data at any point. The size of the
window at the beginning of an RPC is set to be 4 KB. The size is doubled after each acknowledgement
is received, up to a maximum of 32 KB. Whenever the client has more transmission data than the
current window size, it sends one window of data and requests an acknowledgement. On receiving the
data, the server knows that it has received only a fraction of the data and sends an acknowledgement
back, as per the client request. Sending an acknowledgement by the server does not involve steps
S5, S6, or S7. Instead, the server performs step S15 to construct the acknowledgement packet and
then goes to step S8 for sending the packet. This is shown in Figure 2 by the arrow from the end of
step S4 to step S15 and then to S8. Upon receiving a packet in step C18, the client goes to step C19

only when the RPC is completed (i.e., the packet received is the last of the reply packets). When
the client has more data to be sent, it follows step C22 and goes back to C7 where more data gets
sent.

The RPC runtime calls the sendmsg system call with a maximum of 4KB of data. Which means
that when the window is bigger than 4KB, sendmsg is called more than once. This situation is
shown in Figure 1 by the arrow from C9 back to C7.

If the size of the request data is bigger than the window size, only one window of data is copied
in step S6 before the �rst send. The remaining data is copied at a later time, when the client will
otherwise be idle (e.g., when the client is waiting for an acknowledgement). This can increase the
completion time of the step C10 in Figure 1 by the amount of memory copying time.

3.3 Network packets generated by an RPC

When an RPC with a large amount of request data is made, the RPC runtime layer takes a maximum
of 4016 bytes of data at a time, adds 80 bytes of header information, and gives it to the UDP layer.
So the maximum size of an RPC packet is 4096 bytes. The UDP header adds 8 header bytes to it,
chops the large packet into a maximum of 1480 bytes per packet, and gives them to the IP layer.
An IP header of 20 bytes makes a 1480 byte UDP packet, 1500 bytes | the maximum size of an
Ethernet packet. If we look at the packets generated by an RPC with a large amount of call data,
we see sequences of three packets; the �rst carries 1392 bytes of call data, the second one carries
1480 bytes, and the third 1144 bytes, resulting in the 4016 byte transfer. Given the size of data to
be sent with an RPC, it is possible to calculate the number of IP packets generated for that RPC
(assuming no retransmission). For example, if an RPC has 6000 bytes request data, the �rst 4016
bytes will generate three packets. The remaining 1984 bytes will require two more packets | the
�rst having 1392 bytes and the second one having the remaining 592 bytes. Thus, the total number
of packets will be �ve.

4 Measurement of RPC Performance

We measured RPC performance while making RPCs between a client and a server on two separate
machines in the same DCE cell. The cell is composed of several IBM RISC System/6000 machines
of model 520 and 530. All of them run AIX 3.2.4 and IBM version 1.2 of OSF DCE 1.0.2 and are
connected via 10 Mbps Ethernet.

A client/server interface is de�ned using the Interface De�nition Language (IDL) speci�ed by
OSF/DCE. The server exports one procedure for each RPC request data size we considered in our

2The DCE implementation, we are experimenting with, is from IBM, Austin.

-6-

Performance of DCE RPC

0

10

20

30

40

50

60

70

80

90

100

4K 8K 16K 32K

A
v
e
r
a
g
e

r
o
u
n
d

t
r
i
p

t
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
)

Message Size (bytes)

First RPC
Subsequent RPC

Figure 3. RPC round trip time without any security and zero

byte reply data. The �rst RPC always takes longer. The round trip

time of a subsequent NULL RPC is 6.17 milliseconds. RPC with 64256

byte request data (generating 48 ethernet packets) takes 81.82 millisec-

onds, and is able to achieve a throughput of 6.28 Mbps. Jumps in the

round trip time of subsequent RPCs are shown at various data sizes

when the last data byte over
ows into a new network packet.

test. (The server exports several other procedures that are not relevant to this paper. Altogether,
the server implements 27 remote procedures. The extra procedures have no measureable e�ect on
RPC performance.) The procedures accept various sizes of request data as a single parameter and
do not do anything (i.e., simply return). All data is passed as a �xed size array of characters. A
procedure called null(), which takes no arguments, does nothing, and produces no result, is used to
measure the base latency of the RPC mechanism.

The client uses string binding, which eliminates the necessity of communication with the CDS
and the endpoint mapper during the �rst RPC. The client application runs on a model 520 with 48
MB memory, while the server runs on a model 530 with 64 MB memory.

4.1 Latency

We measure the round trip time of an RPC with various data sizes. Figure 3 shows the average round
trip time for doing the �rst and subsequent RPCs. The �rst NULL RPC takes 18.63 milliseconds
to complete; subsequent ones take 6.19 milliseconds. The round trip time increases with data size,
but not linearly. Sometimes, the last byte of the data may result in one more packet, e.g., with 1393
byte data. (1392 bytes is the maximumRPC data that can be sent with one Ethernet packet.) That
extra packet with one byte data can result in one more send | receive cycle, e.g., at 4017 byte data.
(4016 bytes is the maximum RPC data that can be sent with the �rst sendmsg call.) The jumps
in the round trip time for subsequent RPCs are shown at 1393, 4017, 8033, 12049, 16065, 20081,
24097, 32129, 48193, and 64257 byte data size.

-7-

Khandker/Honeyman/Teorey

number of Calls to Null Calls to 4016byte send
caller completion time RPC/sec completion time throughput
threads (sec) (sec) (Mbps)

1 6.262 160 11.687 2.749
2 3.348 299 6.976 4.605
3 3.202 312 6.288 5.109
4 3.238 309 5.805 5.534
5 3.244 308 5.892 5.453
6 3.251 308 5.801 5.538
7 3.270 306 5.889 5.456
8 3.283 305 5.856 5.486
9 3.298 303 5.859 5.483
10 3.301 303 5.987 5.366

Table 1. Average completion time and throughput for 1000 RPCs.

0

100

200

300

0 1 2 3 4 5 6 7 8 9 10

N
u
m
b
e
r

o
f

N
U
L
L

R
P
C
/
s
e
c

Number of client threads

0

3

6

0 1 2 3 4 5 6 7 8 9 10

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

Number of client threads

Figure 4. Plot from Table 1. Three threads can make 312 NULL

RPCs per second. Four threads can achieve a caller-to-server throughput

of 5.53 Mbps with 4016 byte data transfer per call.

4.2 Throughput

We measure throughput by making 1000 back-to-back RPCs with various numbers of caller threads
for NULL RPC and RPC with 4016 byte request data. DCE provides user level threads for writing
multithreaded client applications. DCE client and server applications are inherently multithreaded.
In addition to that, multiple caller threads were employed to achieve higher throughputs. In addition
to RPC performance, the throughput gives an overall assessment of the thread performance.

Table 1 and Figure 4 show that 3 threads can make 312 NULL RPC calls per second. At this level
of multithreading, the server achieves its maximum utilization (as explained later). Four threads
can achieve a caller-to-server throughput of 5.53 Mbps with 4016 byte data transfer per call. For
comparison, a singly-threaded client is able to transfer at the rate of 6.28 Mbps with 64257 byte
data transfer per call.

-8-

Performance of DCE RPC

4.3 Completion time of steps

This section reports the average time to complete each step of an RPC described in section 2.1.
The cost of binding and the extra overhead for the �rst RPC is not included in the measurement.
The measurement involved instrumentation of code and generation of trace data. The overhead of
instrumentation and trace generation is discussed �rst.

4.3.1 Instrumentation overhead

To our great advantage, the RS/6000s maintain a high-precision clock in a register pair. Thus we can
read the clock directly using an assembly language procedure, called curtime, without the overhead
of making a system call for timing purposes. The clock granularity is 256 nanoseconds and it takes
about 440 nanoseconds to execute curtime. (A null procedure call takes about 200 nanoseconds.)
So curtime is acceptable for timing events with microsecond accuracy.

Curtime was used to instrument the runtime RPC code. Because of the unavailability of the
AIX kernel source code, we couldn't use curtime to time kernel events. Instead, the AIX kernel
trace facility was used. Unfortunately, the overhead of trace is not insigni�cant compared to the
granularity of our measurement. We found that every trace event generated, on an average, an
overhead of 4 microseconds. All trace-derived values reported in this paper are adjusted to account
for that overhead.

4.3.2 Hardware and system characteristics

The average time to do some basic operations and system calls are the characteristics of the machine
and the operating system. The completion time of some of the operations of interest are given below.
(All times are in microseconds.)

S bytes memory copy, Tmemcpy(S) = 0:029 � S (model 530)
= 0:042 � S (model 520)

Sendmsg with S byte data, Tsendmsg0(S) = 374 if S = 0 (model 530)

=

8<
:

572 if S = 0
747 if S = 1392
1097 if S = 4016

(model 520)

Tsendmsg00(S) = 108 if S = 0 (model 530)

=

8<
:

30 if S = 0
35 if S = 1392
309 if S = 4016

(model 520)

Recvfrom with S bytes of data, Trecvfrom(S) =

8<
:

195 if S = 0
257 if S = 1392
438 if S = 4016

(model 530)

= 254 if S = 0 (model 520)

Transmission interrupt handling, TtrINT = 176 (model 530)
= 229 (model 520)

-9-

Khandker/Honeyman/Teorey

Reception Interrupt handling :

Without waking up a process, TrecINT�nwk = 443 (model 530)

Wake up a process - S byte data, TrecINT (S) =

8<
:

529 if S = 0
656 if S = 1392
714 if S = 4016

(model 530)

= 700 if S = 0 (model 520)

4.3.3 Runtime overhead

Figures 1 and 2 show the average completion time of steps (in microseconds). When the completion
time of steps are variable, i.e., when they depend upon the data size, we give the value corresponding
to a NULL RPC.

4.3.4 The physical layer

The round trip time of an RPC includes delays at the RPC layer, at the network or UDP/IP layer,
and at the physical layer. The RPC and network layer delays are described in sections 4.3.2 and
4.3.3. Physical layer delay has three components: delay at the controller, transmission time, and
propagation time. Propagation time, in our environment, is very small and is ignored. The delay at
the controller and transmission time is estimated as follows.

Controller delay for sending S byte data is the di�erence between the time that a write is
performed on the controller bu�er and the time that the controller starts sending the packet. It
is impossible for us to measure this delay without instrumenting the device driver. Because of the
unavailability of the source code, we estimate the delay. We assume that a write is performed on
the controller bu�er when the call to the device driver routine returns (shown as the end of the
time segment sendmsg0 in Figures 1 and 2). The time that the controller starts sending a packet is
obtained by subtracting the time it takes to send the packet (i.e., the network transmission time)
from the time the controller interrupts after sending the packet. The controllers at the client and
the server machine are assumed to be identical.

Tcont�send(S) = 326 + 0:26 � S �s (estimated)

Controller delay for receiving data is the di�erence between the time that the controller receives
the whole packet and the time that it issues the interrupt. We estimate this value by making a
single packet RPC and measuring the total delay seen by the client between writing the request
packet to the controller bu�er for transmission and receiving the interrupt for the reply packet.
Subtracting the delay at the server, network, and the controller sending data from the total, we
get the combined reception delay at the controller on the client and the server machines. Assuming
identical controllers at the client and the server machines, the controller delay for receiving the data
is estimated to be the half of this combined reception delay.

Tcont�recv = 260 �s (estimated)

S bytes data transmission, Ttrans(S) = 0:8 � (S + 122) �s. [Assuming 10Mbps Ethernet]

-10-

Performance of DCE RPC

5 The Round Trip Path

Not all time segments shown in Figures 1 and 2 contribute to the round trip time of an RPC. When
steps in the client, server, or network overlap, the one with the largest completion time contributes
to the round trip time. For example, after sending the request packet for a NULL RPC at step
C8 in Figure 1, the client performs steps C9 through C14. The latter steps are actually performed
in parallel, while the packet is transmitted and handled by the server. In our environment, the
completion time of these steps combined is far less than the time required by the network and server
before the reply packet comes in, so the client blocks. In this case, the steps C9 through C14 do not
a�ect the round trip time of the NULL RPC. Nevertheless, they consume CPU and do a�ect DCE
performance when jobs are queued at the client. RPC steps that contribute to the round trip time
constitute what we call the round trip path or RTP.

RTP depends on the relative speed of the client, server, and network, and may vary signi�cantly
between environments. The RTP in our experiment for an RPC that has 24096 bytes of request
data is shown in Figure 5. Each vertical line segment represents the completion time of one or
more steps at the client, server, network, or controller. The time is shown in microseconds next to
each segment. The length of a line segment is not proportional to the time it takes to complete the
corresponding steps. The RTP is shown as a solid line; steps that do not fall on the path are shown
by a dotted line. The horizontal dotted arrows show the occurrence of an interrupt at the client or
server.

Once we know the RTP of an RPC and the average completion time of steps, we can calculate
the round trip time of that RPC by multiplying the completion time of a step that falls on the RTP,
by the number of times the step is expected to be performed, and then adding all the values.

Table 2 calculates the round trip time for RPCs with various request data sizes. Column 2 lists
all steps that can fall on an RTP and column 4 shows the time required to complete a step once.
Calculations are shown for NULL RPC, which sends no data and produces no result, and RPCs
that send data from �xed sized arrays and produce no results. A NULL RPC generates one request
and one reply packet. Both IP packets are 108 bytes long. RPCs with 1392, 4016, 8032, 16064 and
24096 bytes of call data produce 1, 3, 6, 12, and 18 request packets, respectively, and a single reply
packet (when no retransmission is required). Calculated round trip times are compared with the
actual measured values. The error is calculated as:

% Error =
(Measured time�Calculated time)�100

Measured time .

6 Conclusion and Future Work

The base latency of inter-machine DCE RPC over UDP in our experimental setup is 6.19 millisec-
onds. We believe that this is low enough to provide a good basis for building distributed applications
such as a distributed �le system. The user level thread package also has a very low overhead and
can be employed whenever there is the possibility to achieve concurrency within an application.

We now have an accurate model of where time is spent in DCE RPC. Given the size of data, our
model can predict the resource requirements of an RPC | for example, the time spent at the CPU
or network. We can also tell which of these time segments actually will contribute to the round trip
time of the RPC. Thus, the round trip time of an RPC can also be predicted when no concurrent
RPC is made.

The model in this paper does not take any queueing delays into account. Because queueing
delays are sure to be present in the real world, our goal is to incorporate the measurements of this
paper into a more elaborate model that does account for such delays. The resource requirements
calculated from this paper can serve as the service time of jobs at various devices in a queueing
network model.

-11-

Khandker/Honeyman/Teorey

1211

20

1211

20

1013

20

1211

20

1211

20

1013

T
C7

C9+C7
T

TrecINT-nwk* 3

trINTT

Tcont-recv

Tcont-recv

trINTT+

T
C18+C22+C7

+ TtrINT

T

Ttrans

Ttrans

688

1211

20

1211

20

1013

TtrINT

T

T

281

169

260

314

98

260

81

314

98

260

688

688

1211

20

1211

20

1013

20

1211

20

1211

20

1013

20

1211

20

1211

20

1013

260

260

314

98

260

Tsendmsg’

cont-send

Tcont-send

interpac

1097

229

229

Ttrans

1097 Tsendmsg’

309 Tsendmsg’’

229

229

229

229

229

700

81

T
C15+C16+C17+C18+C19+C20+C21

1982

1413

309

229

229

229

Tsendmsg’’

5478

3558

Tsendmsg’

108

930

176

374 Tsendmsg’

TtrINT

T
S16+S4+S15+S8

Tsendmsg’’

108 Tsendmsg’’

Tsendmsg’

818

108

930

374 Tsendmsg’

T
S16+S4+S15+S8

Tsendmsg’’

108

374 Tsendmsg’

T

Tsendmsg’’

108

T
S10+S11+S12+13+14

818

T

TtrINT

T

T

T
C1+C2+C3+C4

T
memcpy

T

Tmemcpy

TtrINT

Ttrans

T

T

T
S1+S2+S3+S4+S15+S8

T
S10+S11+S12+S13+S14

443

443

1855

T
C15+C16+C17+C18+C22

309

2478 Tsendmsg

Tsendmsg’’

T
C9+C10+C11

Tmemcpy

TtrINT

TtrINT

TtrINT

TtrINT

TtrINT

3558

Tsendmsg’

T
S1+S2+S3+S4+S15+S8

T

T

T443

443

108

T
S10+S11+S12+13+14

818

Tsendmsg’’

T

T

Tsendmsg

C9+C7
T

T
C9+C10+C11

Tsendmsg

T
C9+C10+C11

trINTT

Tsendmsg’
1097

TrecINT

T
C15+C16+C17+C18+C22

T
C7

T
S1+S2+S3+S4+S15+S8

TtrINT

TtrINT

TtrINT

CLIENT
TIME

CONTROLLER
TIME

NETWORK
TIME

CONTROLLER
TIME

SERVER
TIME

(4016)

(4016)

(4016)

(4016)*4

C9+C10+C11
+

(1392)

(1392)

(1392)

interpac

(1144)

recINT-nwk

recINT-nwk

(0)

(0)(0)
(0)

recINT-nwk

recINT-nwk

(0)

(0)

(0)

(0)

(0)

(0)

(0)
(0)

sendmsg’’

(0)
(0)

trINT +

+ TrecINT-nwk

TrecINT-nwk

+

374

(4016)

(4016)

(4016)

(4016)

+

+
+

+

+

443

443

+

+

* 2

recINT-nwk

recINT-nwk

619

1062

(4016)

(4016)

(4016)

(4016)

*5

C6+C7
126

2201

2201

S16+S4+S5+S6+S7+S8
1509

recINT-nwk * 3 +

1064

835

T

T

C15+C16

C15+C16

Figure 5. The round trip path (RTP) for 24096 byte data. Each vertical line segment represents

one or more steps of the RPC. Time to complete those steps, by various devices, is shown in mircoseconds.

The length of a line segment is not proportional to the time it takes to complete the corresponding steps.

Steps shown with dotted lines are performed in parallel with those shown by solid lines, and do not directly

contribute to the round trip time. The path indicated by solid lines shows the round trip path.

-12-

Performance of DCE RPC

No. of times the step is performed
Machine/ Step Completion time Unit cost NULL RPC with request data (byte)
Device (if variable) RPC 1392 4016 8032 16064 24096
Client C1+2+3+4 281 1 1 1 1 1 1

C5 Tmemcpy(0) 0 1
Tmemcpy(1392) 58 1
Tmemcpy(4016) 169 1 1 1 1

C6 45 1 1 1 1 1 1
C7 81 1 1 1 2 3 3
C8 Tsendmsg0(0) 572 1

Tsendmsg0(1392) 747 1
Tsendmsg0(4016) 1097 1 2 3 3

C12 TtrINT 229
C15 TrecINT 700 1 1

Controller Tcont�send(0) 326 1
Tcont�send(1392) 688 1 1 2 3 3

Network Ttrans(0) 98 1
Ttrans(1392) 1211 1 2 4 6 6
Ttrans(1144) 1013 1 2 3 3
Tinterpac 20 2 4 6 6

Controller Tcont�recv 260 1 1 1 2 3 3
Server S1 TrecINT (0) 529 1

TrecINT (1392) 656 1
TrecINT (4016) 714 1 2 3 3
TrecINT�nwk 443 3 9

S2+3 364 1 1 1 3
S4 Trecvfrom(0) 195 1

Trecvfrom(1392) 257 1
Trecvfrom(4016) 438 1 2 3 5

S5+6+7 614 1 1 1 1 1 1
S15 278 1 2 4
S16 396 1 2
S8 61 1 1 1 2 4 5
S9 Tsendmsg0(0) 374 1 1 1 2 3 3

Tsendmsg(0) 482 1 2
S13 TtrINT 176 2

Controller Tcont�send(0) 326 1 1 1 2 3 3
Network Ttrans(0) 98 1 1 1 2 3 3
Controller Tcont�recv 260 1 1 1 2 3 3
Client C15 TrecINT 700 1 1 1 2 3 3

C16+17 443 1 1 1 2 3 3
C18 Trecvfrom(0) 254 1 1 1 2 3 3
C19+20+21 585 1 1 1 1 1 1
C22 804 1 2 2

Summation of segments in RTP 6454 8351 11315 22018 32691 41070

Measured round trip time 6169 8490 11414 21686 34881 44853
%Error -4.62 1.64 0.87 -1.53 6.28 8.43

Table 2. Calculation of round trip time of RPCs. Round-trip time is the sum of the completion

time of steps along the round trip path. All times are in microseconds.

-13-

Khandker/Honeyman/Teorey

Acknowledgements

We thank William Andros Adamson for help instrumenting the DCE RPC code and Sarr Blumson
for his critical review of this paper. Special thanks to Mary Jane Northrop for editing. This work
was supported by a research partnership with IBM.

References

[1] Balakrishnan Dasarathy, Khalid Khilily, and David E. Ruddock. \Some DCE Performance Anal-
ysis Results". In Proceedings, International DCE Workshop, University of Karlsruhe, Germany,
1993. Published as Lecture Notes in Computer Science, No. 731, A. Schill (Ed.), Springer-Verlag,
1993.

[2] Van Jacobson. \Congestion Avoidance and Control". Proceedings, ACM SIGCOMM'88 Stanford,
CA, pages 314{329, August 1988.

[3] Rolf Rabenseifner and Armin Schuch. \Comparison of DCE RPC, DFN-RPC, ONC and PVM".
Proceedings, DCE - The OSF Distributed Computing Environment, International DCE Work-
shop, Karlsruhe, Germany, pages 39{46, October 1993.

[4] Ward Rosenberry, David Kenny, and Gerry Fisher. \Understanding DCE". O'Reilly and Asso-
ciates, Inc., 1992.

[5] Mendel Rosenblum. \The Performance of Sun's Remote Procedure Call". Technical report, CS
266, University of California, Berkeley, 1986.

[6] Michael D. Schroeder and Michael Burrows. \Performance of Fire
y RPC". ACM Transactions
on Computer Systems, 8(1):1{17, February 1990.

-14-

