
Nonmonotonic Cryptographic Protocols

CITI Technical Report 93-9

A. D. Rubin

rubin@citi.umich.edu

Center for Information Technology Integration

Dept. of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48103-4943

November 18, 1993

Abstract

This paper presents a new method for specifying and analyzing cryptographic protocols. Our method
o�ers several advantages over previous approaches.
Our technique is the �rst to allow reasoning about nonmonotonic protocols. These protocols

are needed for systems that rely on the deletion of information. There is no idealization step in
specifying protocols; we specify at a level that is close to the actual implementation. This avoids
errors that might otherwise render a speci�cation that passes the analysis, useless in practice.
In our method, knowledge and belief sets for each principal are modi�ed via actions and inference

rules. Every message is considered to be broadcast, and we introduce the update function to
maintain global knowledge. We show how our method uncovers the known
aw in the Needham
and Schroeder protocol [11], and that the revision by the same authors [12] does not contain this

aw. We also show that our method correctly handles protocols that are trivially insecure, such as
Nessett's noted example. [13]
We then apply our method to our khat protocol [14]. The analysis reveals a serious, previously

undiscovered
aw in our nonmonotonic protocol for long-running jobs; one that seems obvious in
hindsight, but escaped the attention of the authors and over 300 USENIX conference attendees.
In addition, our analysis reveals a previously unknown vulnerability in phase II of khat. These are
stunning con�rmations of the importance of tools for analyzing cryptographic protocols.

Nonmonotonic Cryptographic Protocols

1 Introduction

In computer networks, communicating parties
must share a set of rules describing the mes-
sages they will send and receive. These rules,
or protocols, are the foundation on which mod-
ern networks are built. As protocols are nec-
essary to establish any useful communication,
standard sets of rules are published and made
widely available. This allows users all over
the world to communicate with each other and
share information on networks such as the In-
ternet.

Unfortunately, the availability and
widespread knowledge of communication pro-
tocols has also facilitated the malicious inter-
ference of active intruders on the network. To
combat this, cryptographic protocols that rely
on the encryption of data were developed. It
is widely accepted that the security of data in
networks should rely on the underlying cryp-
tographic technology, and that the protocols
should be open and available. [18] However,
many protocols have been found to be vulnera-
ble to attacks that do not require breaking the
encryption, but instead manipulate the mes-
sages in the protocol to gain some advantage.
The advantages potentially gained by an at-
tacker range from the compromise of con�den-
tiality to the ability to impersonate another
user.

Analysis techniques have been developed to
help discover
aws in protocols before they are
trusted. Flaws were discovered in such well
known protocols as the Needham and Schroed-
ers key distribution protocol [5] and the CCITT
X.509 protocol [2]. The BAN logic of Burrows,
Abadi, and Needham [2] and its descendents
[3, 4, 6, 7, 9, 15], have been pivotal in the abil-
ity to use knowledge and belief in the analysis
of cryptographic protocols to discover
aws.

All of the logics developed to date reason
monotonically. That is, once something is
known, it is always known. This fact has been
a fundamental obstacle in providing a complete
logic because negation is missing. This means
that there are valid formulas that cannot be de-
rived. There have been two attempts to remedy
this. Abadi and Tuttle [1] provide a semantics
for the BAN logic that includes a new construct
for negation. Moser [10] provides a nonmono-

tonic logic of belief. However, neither of these
deal with nonmonotonicity of knowledge. The
di�erence between nonmonotonicity of knowl-
edge and nonmonotonicity of belief is discussed
in Section 3.
At the Center for Information Technology

Integration (CITI), we are researching a new
method for analyzing protocols. This is the
�rst method proposed for reasoning nonmono-
tonically about knowledge in cryptographic
protocols. Our approach is a variation on the
protocol speci�cation techniques of Woo and
Lam [19] where each principal's actions are de-
�ned separately. In addition, we do not require
protocol idealization, and thus avoid many of
its associated pitfalls as described by Mao and
Boyd. [9] The notation we use is based on the
original BAN logic [2], and we use a similar
reasoning mechanism.
We show how our new method can be

used to specify and analyze the Needham and
Schroeder protocol. We then use it to analyze
the khat protocol [14], which uses nonmono-
tonicity of knowledge, and we show that no
other analysis techniques can be used to ana-
lyze this protocol. Finally, our method is used
to uncover the
aw in a famous protocol pre-
sented by Nessett [13] that he used to demon-
strate a weakness in BAN logic.

2 Protocol Speci�cation in

a Distributed System

A typical protocol speci�cation consists of a list
of messages between principals. For example,
the Needham and Schroeder protocol speci�ca-
tion [11] can be seen in Figure 1. A ! B : M
means that principal A sends message M to
principal B. A protocol designer thus speci-
�es a protocol by listing the messages principals
send to each other.
Although such a speci�cation is intuitive, it

does not represent the way a protocol is im-
plemented in a distributed system. In a dis-
tributed network, each principal need be aware
only of his potential role in a protocol. For ex-
ample, in the Needham and Schroeder protocol
presented above, principal S is not concerned
with messages 3, 4 and 5. In addition, there
are calculations and actions (such as decryp-

1

Rubin

1. A! S : A;B;Na

2. S ! A : fNa; B;Kab; fKab; AgKbs
gKas

3. A! B : fKab; AgKbs

4. B ! A : fNbgKab

5. A! B : fNb � 1gKab

Figure 1: The Needham and Schroeder
protocol speci�cation. Protocols are speci-

�ed by a principal name, followed by an arrow and

another principal name, followed by a message.

tion and encryption) performed by principals
during the run of a protocol that are not cap-
tured by the speci�cation.
The need to idealize protocols before analyz-

ing them is a weakness in this form of proto-
col speci�cation. This paper proposes a new
method for specifying protocols that conform
to the distributed system model, one that does
not require idealization.
The model of Woo and Lam [19] assigns roles

to the principals in a protocol and treats them
as independent processes. The actions of the
principals are described with no regard to the
actions of others in the system. Our method
for protocol speci�cation and analysis is based
on this notion.
Specifying protocols as in Figure 1 has an-

other disadvantage. Protocol analysis is seen as
a process separate from the speci�cation. Cur-
rent analysis techniques take a completed spec-
i�cation as input and attempt to reason about
the completed protocol.1 For example, Figure
2 is a depiction of the BAN logic. [2]
We suggest that protocol analysis should be

integrated with the speci�cation process. Thus,
as a protocol is developed, beliefs and states of
knowledge that represent the current state of
the system are updated. At any point, an in-
consistency can be detected. This has the ad-
vantage of identifying potential causes of prob-
lems as well as the actual
aws. When a proto-

1A notable exception is the NRL Protocol Analyzer
by Syverson and Meadows [16]. However, this system
is not modeled after the BAN type of reasoning about
belief and knowledge, but uses the term-rewriting alge-
braic properties of a protocol.

Proceed
Cannot

Idealized Protocol

Formulas attached

to protocol steps

Apply Rule

Protocol Specification Initial Assumptions

Conclusion Reached

Figure 2: Protocol analysis with the BAN
logic. The input to BAN is a protocol speci�ca-

tion and the initial assumptions. At each step, for-

mulas are attached to the protocol messages, and

either a rule is applied, or the logic must halt. If

possible, the desired conclusion is reached.

col has been completely speci�ed, the analysis
is complete as well.

3 Nonmonotonicity of

Knowledge vs. Non-

monotonicity of Belief

With few exceptions, previous work in the ap-
plication of the logic of knowledge and belief
to the analysis of cryptographic protocols has
considered only monotonic reasoning systems.
In these systems, once something is believed, it
is always believed. The same applies for knowl-
edge.

The di�erence between knowledge and belief
is subtle. A principal knows that his key is K.
A principal believes that a nonce is fresh. In
general, a principal knows things like secrets
and data; a principal believes meta-data, or in-
formation about the data, such as freshness.

Monotonic systems have trouble reasoning
with incomplete information. A belief that is
assumed in the absence of other information,
can be nulli�ed by the introduction of new in-
formation. However, a monotonic system has
no mechanism to do this. In fact, most previ-
ous systems have no refutation. The ability to

2

Nonmonotonic Cryptographic Protocols

Bi(p) Bi(q) Bi(p) unless Bi(q)

t t f

f t t

t f t

f f x

Figure 3: The de�nition of Moser's unless
operator. The x in the last row indicates a spe-

cial case. x is true i� 9r : Bi(p) unless Bi(r) 2 F ,

where F is a conjunction of formulas containing the

unless operator.

refute beliefs is important for reasoning about
protocols. For example, if a session key is com-
promised, we need to change our belief that this
is a good key.
Moser [10] gives a nonmonotonic logic of be-

lief. This logic is biased towards belief in the
absence of information. Thus, a �nal inter-
pretation of a formula is believed unless there
is some information that makes it inconsis-
tent. The logic uses a construct called unless to
achieve this. The value of a formula using un-

less can be seen from the truth table in Figure 3
(where F is a conjunction of formulas contain-
ing the unless operator and Bi(p) means that
principal i believes p). The x in the last row is
a special case and is de�ned as follows:

x =

8<
:

t if 9r : Bi(p) unless Bi(r) 2 F

and Bi(r) is true
f otherwise

The logic of Moser su�ers from intractabil-
ity. In addition, the logic deals only with non-
mononicity of belief. There is no known reason-
ing system that deals with the nonmonotonicity
of knowledge. A situation where such reasoning
applies is a protocol that requires a principal
to no longer possess information it previously
knew. This is di�erent from a principal not
believing a statement it previously believed.
The khat protocol [14], described in Section

4, is an example of a protocol that requires
reasoning with nonmonotonicity of knowledge.
The protocol relies on a public workstation
\forgetting" some information. The BAN logic,
along with its extensions, does not provide a
way for representing this behavior.

In this paper, we introduce a method for an-
alyzing protocols such as khat, where informa-
tion is erased and no longer known by a prin-
cipal. Our method uses observers sets for each
secret that contain the principals who know
it. These are similar to the knowledge sets of
Kailar et al. [8] However, Kailar et al. use these
sets to reason about belief, whereas we apply
the concept in a slightly di�erent way to reason
about the nonmonotonicity of knowledge.

4 The KHAT protocol

The khat system of Rubin and Honeyman [14]
was built to solve the problem of long running
jobs in an authenticated environment where a
trusted server issues tickets with limited life-
times for services. Khat stands for Kerberized
at, and is based on the UNIX at command.
When using this service, a user schedules a job
for a future time and date, with the option of
renewing tickets until the job completes.
When a user submits a khat job, the program

creates a spool �le containing everything nec-
essary to run the job at a later date, such as
environment variables, and sends it to the khat
server. The server stores the spool �le for the
job, and the user's workstation erases it from
memory. The khat client generates a new key,
N , which is used to encrypt the secret key, K,
that will serve as the session key when it is time
for the job to run, and the server and client
need to communicate. N is also stored by the
server and erased by the client. The process
of securing the session key, K on the client is
depicted in Figure 4.
The khat protocol is initiated by the usual

ticket granting method in Kerberos. A ticket
for the khat service is granted to the client af-
ter the initial authentication. This process is
well known and is believed to be secure. Tous-
saint provides a proof that the kerberos ticket
granting protocol is secure. [17] We take the
results of the ticket granting process as the ini-
tial assumptions in our analysis. Thus, the khat
protocol begins after ticket granting completes.
The khat system can be divided into two

phases. Phase I works as follows.

1. A Kerberos ticket for khat is granted to the
client and a session key is established.

3

Rubin

KHAT Server Client

K K

SF

{N}K

N

N

KHAT Server Client

K

SF

KHAT Server Client

K

SF

{K}

{K} N

 N

Figure 4: How K is secured on the client
in khat. The �rst step is illustrated in the top di-

agram. The spool �le, SF is stored by the server,

and the client and server share a secret session key,

K. The client generates a new key, N . Then, as

shown in the next diagram, N is used to encrypt

the session key, K, which remains on the client ma-

chine, while, N is sent to the server, sealed under

the session key. Finally, as shown in the bottom

diagram, K and N are stored on the server. When

it is time for the job to run, N is sent to the client

to unseal fKgN .

2. The client generates a spool �le for the job.

3. The spool �le is sent to the server under
the session key.

4. The server stores the spool �le.

5. The client generates a new key, N , sends
fNgK to the server, and erases the spool
�le and N from its memory.

6. The server stores N .

Phase II occurs when it is time for the job to
run. The server wakes up once a minute to see
if any khat jobs are ready. If so, phase II is
initiated as follows:

1. The server sends N to the client.

2. The server sends the spool �le to the client
under the session key, K.

3. The client runs the job.

For a more complete discussion of khat, the
reader is referred to the original paper. [14]
It is clear that this protocol cannot be speci-

�ed as a simple list of messages such as in Fig-
ure 1. The speci�cation method we present in
this paper is more appropriate because we can
include steps such as step 5 in Phase I.
The analysis depends on the assumptions in

our threat model. We are concerned with an
active intruder who has access to all network
resources and can intercept, replace or delete
any message. In addition, we are concerned
with vacant workstations and information on
them that can be useful to an intruder. This
threat is also discussed in the khat paper [14].
In that paper, an informal discussion of the se-
curity risks of khat is given. The method we
present here grew out of an attempt to analyze
khatmore formally, and to provide a method for
analysis of any system that must reason about
nonmonotonicity of knowledge.

5 Specifying a Protocol

In this section we provide de�nitions and no-
tation for specifying a protocol. There are two
types of de�nitions. Those in the �rst type are
global to the protocol, and de�nitions of the
second type are local to each principal.
To accommodate di�erent levels of trust

among principals, we place the beliefs of the
principals in the local sets. If the assumption
were to be made that each principal in the sys-
tem is either trusted by everyone or trusted by
no one, as is the case in many simple authen-
tication systems, then we could have put these
beliefs in the global set. To maintain general-
ity, the level of trust and belief will be local.
Thus, jurisdiction, the ability to assign session
keys, is a belief that must be held by the parties
sharing the keys, but not by everyone else.
The protocol designer may wish to specify

and analyze a protocol for a system with un-
trustworthy principals. We include a trust ma-
trix in the speci�cation where the trust between

4

Nonmonotonic Cryptographic Protocols

each pair of principals is established. This is
explained in Section 5.3.
As pointed out by Mao and Boyd, some

statements in the BAN logic are not intuitive,
such as the notion of believing a key or a nonce.
[9] To remedy this, we de�ne two local sets.
One set is composed of the items that a prin-
cipal possesses, such as encryption keys and
nonces. The other set contains the principal's
beliefs, such as the freshness of a key, or the
possessions of another principal. Items in the
possession sets are labeled by their origin. Each
possession is accompanied by information that
either states that it was generated by the prin-
cipal himself, or states from whom it was re-
ceived.
We de�ne actions for dealing with the knowl-

edge in a protocol, and inference rules for rea-
soning about belief. The actions are speci�ed
by the protocol designer and can be chosen
from a speci�c set of actions de�ned below.
Inference rules can be added by the designer
although they will usually be the same across
protocols.

5.1 Global Sets

The �rst step of the speci�cation of any proto-
col using our method is to instantiate the global
sets with values. It should be noted the con-
tents of these sets change as a protocol run is
simulated in the analysis. The speci�cation of
a protocol is simply the starting point of the
analysis. In this section we give the de�nitions
of the global sets used for protocol speci�ca-
tion. We introduce W, for world, to represent
all the principals. Also, for each set, the sub-
set n represents its cardinality, but this value
changes from set to set.

Principal Set: This set contains the princi-
pals who participate in a protocol. P =
fP1; P2; � � � ; Png. Any Pi may be marked
as an initiator of the protocol. We will as-
sume there is only one initiator.

Free Variable Set: This set contains vari-
ables that can be instantiated with any
value. FV = fV1; V2; � � � ; Vng.

Bound Variable Set: This set contains vari-
ables that are bound to certain values.
BV = fX1; X2; � � � ; Xng.

Rule Set: This set contains inference rules for
deriving new statements from existing as-
sertions. These are the same as the in-
ference rules in the BAN logic. R =
fR1; R2; � � � ; Rng where Ri is of the form
C1;C2;���;Cn

D
, Ci is a condition and D is a

statement.

Secret Set: This set contains all of the secrets
that exist at any given time in the system.
The cardinality of this set changes during
the analysis as new secrets, such as session
keys, are added. S = fS1; S2; � � � ; Sng.

Observers Sets: For each Si, Observers(Si)
contains all the principals who could pos-
sibly know the secret Si by listening to
network tra�c or generating it themselves.
The members of the Observers sets can be
stated explicitly or maintained as formulas
representing their membership.

The set, P , contains names of the participants
in a protocol. A typical example might be,
P = fA;B;ASg, where A and B are regular
principals and AS is the authentication server.
Recall that in BAN logic #(X) means that

X is fresh. The set BV contains variables such
as X in the following rule (nonce veri�cation):

P believes #(X); P believes Q said X

P believes Q believes X

The �rst occurrence of the variable X can take
on any value. However, the other Xs in the
rule are bound to the value of the �rst X once
it is instantiated; so X is in BV . The set FV
contains variables such as the Y in the rule:

ffY gKgK = Y

Here, Y can take on any value independent of
the rest of the protocol.
An example of the set S is fKab;Kas;Kbsg.

This set contains secret keys held among A

and the authentication server, among B and
the authentication server, and a session key
among A and B. The session key would not
be a member of S in a speci�cation where
Kab is distributed in the protocol, but would
be added to the set during the analysis at
the point in which it was generated by the
authentication server. This process is dis-
cussed in the analysis section. In this example,

5

Rubin

Observers(Kab) = fA;Bg, Observers(Kas) =
fA; Sg, and Observers(Kbs) = fB; Sg. Also,
W 2 Observers(K) means that all principals
know K.

5.2 Local Sets

Local sets are private to each principal in a pro-
tocol speci�cation. In this section we de�ne
these sets. Later, we will show how they are
used in the actual speci�cation and analysis of
a protocol. For each principal, Pi, we de�ne
the following sets:

Possession Set(Pi) This set contains all the
data relevant to security that this prin-
cipal knows or possesses. This includes
secret encryption keys, public keys, data
that must remain secret, and any other in-
formation that is not publicly available.
POSS(Pi) = fposs1; poss2; � � � ; possng.
possi contains two �elds: the actual data
and the origin of the data.2

Belief Set(Pi) This set contains all the be-
liefs held by a principal. This includes
the belief that the keys it holds be-
tween itself and other principals are good,
beliefs about jurisdiction, beliefs about
freshness, and beliefs about the posses-
sions of other principals. BEL(Pi) =
fbel1; bel2; � � � ; belng.

Behavior List(Pi) This item is a list rather
than a set because the elements are or-
dered. BL = fAL; bvr1; bvr2; � � � ; bvrng.
AL is an action list as will be de�ned be-
low.

Figure 5 shows the structure of BL. The �rst
element of BL, is an action list. The remain-
ing elements, bvri, are pairs, (Mess;AL) con-
sisting of a message operation, Mess, and an
action list, AL.
A message operation is one member of

the set fSend(Pj ;msg); Receive(Pj ;msg)g.
Send(Pj ;msg) means that Pi sends the mes-
sage, msg to Pj. Similarly, Receive(Pj ;msg)
means that Pi receives message msg from Pj.

2Note that the second �eld represents whether or
not Pi generated the data, or who sent it to Pi. It does
not represent who originated the data.

BEHAVIOR LIST

action1; action2; action3; � � �

Message operation
action1; action2; action3; � � �

Message operation
action1; action2; action3; � � �

Message operation
action1; action2; action3; � � �

� � �

END OF LIST

Figure 5: The structure of a behavior list.
The list contains a list of actions, followed by a

list of pairs, (message operation, action list). After

each action, any relevant inference rules are ap-

plied.

In this case, msg will be marked as coming from
Pj and added to POSS(Pi).

In a send operation, msg contains the in-
formation transmitted. In a receive operation
msg contains the �elds of the expected mes-
sage. This represents Pi's expectation about
the structure of the message. This is similar to
the notion of recognizability of the GNY logic.
[7]

An action list is an ordered list of zero or
more actions that are performed by Pi. Actions
consist of operations such as encryption and
decryption, deletion of information, application
of functions, and the decision whether to abort
the protocol. They are covered in more detail
in section 5.5. Every action is followed by a
check of the inference rules. If the conditions
of a rule are satis�ed as a result of the action,
then the rule is applied. These rules are used
to update the belief sets of the principals.

Action lists play an important role in proto-
col speci�cation. Previous approaches to cryp-
tographic protocol analysis take the actions of
the principals for granted. Operations such as
encryption and decryption are implicit. Our
method makes every action explicit, including
veri�cation that the operations completed suc-
cessfully, and an abort in case they did not.
This method is a better model of protocol ex-
ecution in a real system than previous ap-

6

Nonmonotonic Cryptographic Protocols

proaches because all of the actions are included
as part of the speci�cation instead of implicitly
assumed.

5.3 The Trust Matrix

Our method does not require that any assump-
tions be made about trust between principals.
Instead, the protocol designer explicitly speci-
�es the trust relationship between every pair of
principals. We de�ne the matrix, TRUST:

TRUST [i; j] =

�
1 if Pi trusts Pj
0 if Pi does not trust Pj

The rows and columns enumerate the princi-
pals in P . Obviously, when i = j, TRUST[i,j]
= 1. Pi trusts Pj means that Pi behaves as
though Pj will follow the protocol. We give an
example of this using a nonmonotonic protocol.
Say that A believes that B possesses X. Now

say that the protocol requires that B forget
X. As both A and B know the protocol, B
should now remove the belief that B possesses
X from its belief set. However, if B does not
trust A, then he cannot be sure that A actually
no longer possesses X. In the actions described
below, we stipulate the condition that A trusts
B before removing a belief about the posses-
sions of A.

5.4 A Word About Nonces

Message freshness can be guaranteed only with
time-stamps and nonces. Conceptually, a
nonce is a large random number whose purpose
is to link a challenge and a response. If A sends
a nonce, Na, to S, then any message including
f(Na), for some function f , and encrypted un-
der Kas, is assumed to be fresh if and only if
the following conditions are satis�ed:

1. No previous message containing f(Na) has
been received.

2. Kas is fresh. That is, we assume Kas is
known only to A and S.

Our method uses inference rules to propa-
gate belief about freshness. In section 5.5, we
introduce a new construct, LINK(Na) to link
a response to a challenge. When a principal
generates a nonce, Na, the formula LINK(Na)

is added to his belief set. When a message is
received containing, Na, the LINK item is re-
moved from the belief set, and all parts of that
message are labeled as being fresh. A reply to
the challenge can be accepted only once. If that
message were to be received again, the absence
of the LINK item in the belief set would hin-
der the conclusion that this message is fresh.
In fact, this is how our analysis technique ex-
poses the weaknesses in protocols vulnerable to
replay attacks. Our analysis of the Needham
and Schroeder protocol (Section 6.1) gives an
example of this.

5.5 Actions

Actions describe how a principal constructs
messages, encrypts and decrypts data, com-
putes functions, aborts a protocol, and per-
forms any other operation. The action lists
that precede and followmessage operations in a
principal's behavior list determine sequence of
events performed by the principal during a pro-
tocol run. As demonstrated below, some of the
actions replace inference rules in the BAN logic,
and others explicitly represent operations that
were taken for granted in previous approaches.
In this section we de�ne the actions used in

our method, and the following section presents
and discusses the inference rules. Our method
requires some new notation and dispenses with
some previous constructs. As will be shown,

the said, sees, controls, and Q
K
$ P , constructs

of the BAN logic are not needed. The new
de�nitions follow:

X contains Y means that Y appears as a
submessage of the message X, more for-
mally, for some (possibly null) x1; x2, X =
x1 � Y � x2.

3 It is always the case that X
contains X.

S := f(S) represents assignment. The value of
S is replaced by the value of the function
f applied to S.

X from P means that X is labeled as having
been received fromP. This will also be true
if P generated X.

3We adopt the usual convention of � for
concatenation.

7

Rubin

LINK(Na) is used to link challenges and re-
sponses. This formula is added to the
belief set of a principal who generates
the nonce Na, and allows only one sub-
sequently received message to contain the
nonce Na. After such a message is re-
ceived, the formula is removed from the
belief set.

With these new de�nitions, we now de�ne the
actions for a given principal, Pi. Although
not speci�ed in the de�nitions, we assume that
from labels are inherited in operations. For ex-
ample, if fXgk is from Q, and is in POSS(Pi),
and this is decrypted, then X is also labeled
\from Q" when it is added to POSS(Pi).

1. Encrypt(X; k)

condition: X; k 2 POSS(Pi); Pi 2
Observers(k)

result: POSS(Pi) := POSS(Pi) [
ffXgkg

description: This action is used when a
principal encrypts data. If Pi pos-
sesses X and knows k then he can
possess fXgk.

2. Decrypt(fXgk; k)

condition: Pi 2 Observers(k),
fXgk; k 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [fXg

description: This action is used when a
principal decrypts data. If Pi pos-
sesses X, encrypted under k, and Pi
knows k, then Pi can possess X.

3. Generate-nonce(N)

result: POSS(Pi) := POSS(Pi) [fNg,
BEL(Pi) := BEL(Pi) [LINK(N)

description: This action is used when a
principal generates a nonce to link a
challenge and a response. LINK(N)
is removed from BEL(Pi) when the
response is received. This is used to
determine freshness.

4. Generate-secret(s)

result: S := S [fsg, Observers(s) =
fPig, POSS(Pi) := POSS(Pi)[fsg,
BEL(Pi) := BEL(Pi) [#(s)

description: This action is used when
a principal generates a secret data
item, such as a key. A new secret,
s, is added to S, and the Observers

and possession sets are updated.

5. Concat(X1; X2; � � � ; Xn)

condition: X1; X2; � � � ; Xn 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [
fX1 �X2 � � �Xng

description: This action is used when a
principal constructs a message, X,
out of submessages X1; X2; � � � ; Xn.

6. Split(X)

condition: X contains x1 � x2 � � �xn,
X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [
fx1; x2; � � � ; xng

description: This action is used to break
a message into its components. Split
is the opposite of concatenation.

7. Forget(X)

condition: X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) � fXg,
8 Pj 2 P if TRUST [j; i] = 1 then
BEL(Pj) := BEL(Pj) � fX 2
POSS(Pi)g

description: This action is used when Pi
no longer is in possession of X. All
principals who trust Pi believe that
Pi no longer possesses X.

8. Forget-secret(s)

condition: Pi 2 Observers(s); s 2
POSS(Pi)

result: Observers(s) := Observers(s) �
fPig,
POSS(Pi) := POSS(Pi) � fsg,
8 Pj 2 P if TRUST [j; i] = 1 then
BEL(Pj) := BEL(Pj) � fs 2
POSS(Pi)g

description: This action is used when Pi
no longer knows the secret s. All
principals who trust Pi believe that
Pi no longer possesses s.

9. Apply(f;X)

8

Nonmonotonic Cryptographic Protocols

condition: f;X 2 POSS(Pi)

result: POSS(Pi) := POSS(Pi) [
ff(X)g

description: This action is used when Pi
applies the function f to X. After
the application, Pi possesses f(X).

10. Check-freshness(X)

condition: X 2 POSS(Pi)

result: BEL(Pi) := BEL(Pi) [f#(X)g

description: This action is used to verify
that time-stamp X is fresh.

11. Abort

condition: Protocol run is illegal.

result: Analysis reports failure.

description: This could happen under
various circumstances where there is
an inconsistency or other
aw in the
protocol speci�cation.

The di�erence between actions such as gener-
ate and actions such as generate-secret is that
items generated as secrets are expected to be
sent encrypted, and others are expected to be
transmitted in the clear at some point. Many
protocols send challenges in the clear; there-
fore, there is no need to maintain these items
as secrets.
The actions described above are used to con-

trol the knowledge and possessions of the prin-
cipals in a protocol. Except for Check-freshness
and abort, all of the actions modify the posses-
sion or Observers sets. Inference rules are used
to modify the belief sets.
The di�erence between actions and inference

rules is that actions are explicitly speci�ed as a
part of the protocol. Rules, however, are used
to reason about the beliefs of principals as the
protocol executes. The protocol builder does
not explicitly state how belief evolves in a pro-
tocol, but rather, states the inference rules that
will mechanically control the propagation of be-
lief.

5.6 The Update Function

Before discussing inference rules, we de�ne an
important function for processing send message

UPDATE(X;W)

if X = NULL then return;

if X = x1 then
Observers(x1) := Observers(x1) [
W ;
return;

if X = fY1gk then
update(Y1; Observers(k) \W);
return;

if X = Y1 � Y2 then
update(Y1;W); update(Y2;W);
return;

END;

Figure 6: The Update function. In this
function, x1 is a single, unencrypted data el-
ement, such as a nonce or a key. Y1 and Y2 are
formulas containing combinations of clear or
encrypted elements such as these. The param-
eter W represents the principals to be added to
the knowledge set of a secret.

operations. When a principal, Pi sends a mes-
sage to Pj on the network, any principal can
read it. In our threat model, we view any mes-
sage as being broadcast and available to all. As
pointed out by Nessett, the BAN logic does not
deal with protocols in which a principal pub-
lishes a secret key [13]. (This is discussed in
Section 6.3.) The purpose of the update func-
tion is to update the Observers sets of all se-
crets that are sent on the network. Update is
de�ned in Figure 6.
If a secret, x1, is sent in the clear, then

Observers(x1) is set toW to indicate that any
principal now knows x1. The union of W with
any set is W.
The initial call after a send operation,

Send(X;Pj) is Update(X,W). If a submes-
sage, fY gk is contained in X, update will re-
curse after it is called. Then, W will con-
tain Observers(k) because only the principals
in this set should be added to the Observers

sets of the elements of Y .
WhenX is of the form fY1gk, update is called

with Observers(k) \ W . This is because for

9

Rubin

a secret nested in the encryption by di�erent
keys, only principals possessing all of the keys
should be added to the Observers set. For ex-
ample, in the call update(ffXgk1gk2,W), the
principals added to Observers(X) should be in
both of Observers(k1) and Observers(k2).

There is a subtle
aw in the update function
that we will demonstrate by example and �x.
Take update(ffXgk1 ; k1gk2 ;W). Now, say we
have a principal, P , who is in Observers(k2),
but is not in Observers(k1). After the function
call, P will be added to Observers(k1). How-
ever, P will not be added to Observers(X).
The problem is that update recurses on fXgk1
before P is added toObservers(k1). To �x this,
update is called continuously until no more Ob-
servers sets change. We will assume this im-
plicitly in our protocol speci�cations.

We now give an example (see Figure 7). Take
X = Na � fKab; Tsgk1 � fdatagk2. The initial
call is update(Na � fKab � Tsgk1 � fdatagk2,W).
This will match the last condition, so update

will now be called twice, update(Na,W) and
update(fKab �Tsgk1 �fdatagk2,W). The �rst call
will cause Observers(Na) to be W, as desired.

The second call
will further split into two calls, update(fKab �
Tsgk1 ;W) and update(fdatagk2 ;W). The �rst
of these will match the third rule and result in
update(Kab � Ts,Observers(k1)). After further
iterations, the principals in Observers(k1) will
be added to the Observers sets of Kab and Ts.
Similarly,Observers(data) will be the union of
itself with Observers(k2).

5.7 Inference Rules

When using our method, the protocol devel-
oper must choose from the eleven actions de-
�ned above. However, as in the BAN logic, he
is given the freedom to specify his own inference
rules. Some rules, such as the nonce veri�ca-
tion rule, will be used by any useful protocol.
In our method, this protocol is speci�ed a bit
di�erently.

The nonce veri�cation rule as de�ned by Bur-
rows et al. [2] is not entirely intuitive. Their
rule is:

P believes #(X); P believes Q said X

P believes Q believes X

It is not clear what it means for Q to believe X,
if X is a nonce. In our method, if P received
X fromQ, then X 2 POSS(Pi), and X will be
labeled as being from Q. We de�ne the nonce
veri�cation rule as follows:

#(X) 2 BEL(P); X from Q 2 POSS(P)

BEL(P) := BEL(P) [fQ believes #(X)g

Thus, P can establish that Q believes that X
is fresh, and this fact is added to P 's belief
set, BEL(P). Notice that rules are used to
propagate belief during a protocol run, whereas
actions deal with knowledge.
The message meaning rule is de�ned in BAN

as:

P believes Q
K
$ P, P sees fXgK

P believes Q said X

This rule states that if P believes that Q and P
share a secret key, K, and P sees X, encrypted
under K, and P did not encrypt X under K,
then P believes that Q once said X. This im-
plies that knowing a principal shares a secret
key with another principal is enough to guar-
antee that any message encrypted under that
key was sent by that principal. In our rule,
this requirement is made explicit. We de�ne
the message meaning rule as follows:

fXgk from Q 2 POSS(P); fP;Qg � Observers(k)

BEL(P) := BEL(P) [fX 2 POSS(Q)g

This rule states that if fXgk was received by
P , from Q, and both P and Q know the key
k, then P believes that Q possesses X. This
is possible because messages are labeled with
their origin when they are added to the pos-
session set. When principal P applies action 2
(decrypt), X will be in his possession set.
Another rule is needed to reason about the

freshness of submessages:

#(x1) 2 BEL(P),

fX contains x1; X contains x2g � POSS(P)

BEL(P) := BEL(P) [#(x2)

This rule states that if P believes that x1 is
fresh, and P possesses a formula containing
both x1 and x2, then P believes that x2 is
fresh. This rule re
ects the fact that any part
of a message which contains something fresh, is
fresh.

10

Nonmonotonic Cryptographic Protocols

W = Worldab k1 k2N , {K , T} ,{data}X = a

W = WorldaN X = X = {K , T} ,{data}ab k1 k2 W = World

:= WorldUObs(N)aObs(N)

X = K ab X = T

X = ab K , T

:=Obs(data) Obs(data) U

X = data 2W = Obs(k)

2

a

Obs(k)1

1

1

ab

W = Obs(k)

W = Obs(k)W = Obs(k)

abObs(K) := Obs(K) U Obs(T) := Obs(T) U Obs(k)1 Obs(k)1

Figure 7: The update function. This diagram shows the recursive tree for an example of the
update function. The initial call is update(Na � fKab �Tsgk1 � fdatagk2,W). Solid rectangles represent
internal nodes on the tree, and the leaves in the rounded rectangles show the action that is taken.
This examples shows how the Observers sets of secrets are updated when a message is sent.

The following rule is the most important in-
ference rule for reasoning about freshness in a
protocol. The only way for a message to be
fresh is for it to contain a valid time-stamp or
a nonce that has never previously been used in
a response. The rule for determining freshness
using a nonce is the linkage rule:

#(k) 2 BEL(P); P 2 Observers(k);
LINK(Na) 2 BEL(P); X contains f(Na);

X contains x1; fXgk from Q 2 POSS(P)

BEL(P) := (BEL(P) � LINK(Na)) [f#(x1)g

This rule is simpler than its unfortunate length
makes it appear. It is the only rule that can
be used to add information about the freshness
of an item which is not known to contain fresh
submessages, to a principal's belief set.
The linkage rule states that the submessages

of a message X are believed to be fresh under
certain conditions. If LINK(Na) is in P 's be-
lief set, then the nonce Na has not been used
before. This is the �rst condition. If the rule is
applied successfully, the LINK item is removed.
So the rule could not �re again for the same

nonce. Other conditions state that the nonce
Na must be sealed under a key that is fresh,
and must be available to P .

The rule states that message X must con-
tain f(Na) to represent the fact that sometimes
a function of a nonce, rather than the actual
nonce is used to respond to a challenge. The
net result of applying this rule is that any sub-
message of a valid response to a challenge is
believed to be fresh by the recipient of the re-
sponse. Also, there is a guarantee that any re-
play of a valid response will not result in a prin-
cipal believing that the submessages are fresh.

6 Examples

The best way to explain how a protocol is ana-
lyzed using our method is by example. In sec-
tion 6.1, the Needham and Schroeder protocol
is speci�ed, and we step through the analysis.
In section 6.2, we apply our method to the khat
protocol.

11

Rubin

6.1 Needham and Schroeder

First we specify the protocol, and then we show
how our method can be used to analyze it. We
demonstrate that the known
aw in the proto-
col exists; principal B cannot achieve the belief
that the session key with A is fresh. Then, we
show how the addition of two messages, as pro-
posed by Needham and Schroeder (in a later
paper [12]) to solve the problem, allows B to
achieve the desired belief.

6.1.1 The Speci�cation

The Needham and Schroeder protocol assumes
that bothA andB trust S. So, the trust matrix
contains 1s in the appropriate spots to repre-
sent this. The trust between A and B is irrel-
evant, and so the matrix values do not matter.
First we de�ne the global sets. P =

fS;B;Ag. A is marked as the initiator of the
protocol. R contains the rules de�ned in Sec-
tion 5.7. S = fKas;Kbsg. Each of these secret
keys has an Observers set. Observers(Kas) =
fA; Sg and Observers(Kbs) = fB; Sg. Some of
these sets will change once the analysis begins.
Next, we de�ne the initial values of the local

sets. Notice that initially, principals believe in
the freshness of the key they share with the
server, S. Similarly, the server believes in the
freshness of its shared secret with each princi-
pal. Also, P 1 Kpq represents the key, Kpq and
the fact that it is to be used for communicating
with principal P . In this protocol, the function
f subtracts one from its argument.

Principal A

POSS(A) = fKasg
BEL(A) = f#(Kas)g
BL(A) =
� Generate-nonce(Na)
Concat(A;B;Na)
Send(S; fA �B �Nag)
Update(fA �B �Nag;W)
Receive(S; fNa �B 1 Kab � fA 1 KabgKbs

gKas
)

Decrypt(fNa �B 1 Kab � fA 1 KabgKbs
gKas

;Kas)
Split(fNa �B 1 Kab � fA 1 KabgKbs

g)
Send(B; fA 1 KabgKbs

)
Update(fA 1 KabgKbs

;W)
Receive(B; fNbgKab

)
Decrypt(fNbgKab

;Kab)

Send(B;Encrypt(Apply(f;Nb);Kab))
Update(ff(Nb)gKab

;W)

Principal B

POSS(B) = fKbsg
BEL(B) = f#(Kbs)g
BL(B) =
Receive(A; fA 1 KabgKbs

)
Decrypt(fA 1 KabgKbs

;Kbs)
Generate-nonce(Nb)
Send(A,Encrypt(Nb ;Kab))
Update(fNbgKab

;W)
Receive(A; ff(Nb)gKab

)
Decrypt(ff(Nb)gKab

;Kab)

Principal S

POSS(S) = fKas;Kbsg
BEL(S) = f#(Kas);#(Kbs)g
BL(S) =
Receive(A; fA �B �Nag)
Split(fA �B �Nag)
Generate-secret(Kab)
Send(A,Encrypt(Concat(Na ; B 1 Kab;

Encrypt(A 1 Kab;Kbs));Kas))
Update(fNa �B 1 Kab � fA 1 KabgKbs

gKas
;W)

Once the protocol has been speci�ed, the anal-
ysis begins. However, the analysis technique
described here can be used to test the protocol
as it is being developed.

The �rst action in BL(A) is marked with a �
because A is the initiator of the protocol. For
each action, its condition is tested. If it does
not hold, the protocol analysis is aborted, and
the speci�cation is infeasible. If the condition
holds, then the result is applied and the re-
quired sets are updated. Next, the inference
rules are examined to see if any apply. Finally,
the action is marked with a � to show that it
has been successful, and the mark, �, is moved
to the next action.

Every Send action is followed by an Update

action. The Send action speci�es to whom the
message is sent. After an Update action, the
mark moves to the �rst Receive action with no
� of the principal identi�ed in the correspond-
ing Send action.

12

Nonmonotonic Cryptographic Protocols

6.1.2 The Analysis

The �rst four actions in BL(A) are executed
resulting in new members of the sets POSS(A)
and BEL(A). Also, the Update action causes
Observers(Na) =W. So far, no inference rules
can be applied.

POSS(A) = fKas; Na; fA �B �Nagg
BEL(A) = f#(Kas);LINK(Na)g
BL(A) =
� Generate-nonce(Na)
� Concat(A;B;Na)
� Send(S; fA �B �Nag)
� Update(fA �B �Nag;W)
Receive(S; fNa �B 1 Kab � fA 1 KabgKbs

gKas
)

� � �

After the Update action, the next action to
be executed is in S's behavior list because the
Send action speci�es S.

� Receive(A; fA �B �Nag)

The �ve actions of BL(S) are executed. There
are still no relevant inference rules. The set
S now contains fKas;Kbs;Kabg. After apply-
ing the Update function, Observers(Kab) =
fS;Ag because A 2 Observers(Kas). The term
fA 1 KabgKbs

does not cause B to be added
to the Observers set of Kab because B is not a
member of Observers(Kas), and so B is not in
Observers(Kas) \ Observers(Kbs). The pos-
session set contains subparts of messages that
were built as the messages were constructed,
but we omit these here for space consideration
as they do not contribute in any way to the
analysis. The new values of S's local sets are:

POSS(S) = fKas;Kbs; fA �B �Nag from A,
Kab; fNa �B 1 Kab � fA 1 KabgKbs

gKas
g

BEL(S) = f#(Kas);#(Kbs);#(Kab)g
BL(S) =
� Receive(A; fA �B �Nag)
� Split(fA �B �Nag)
� Generate-secret(Kab)
� Send(A,Encrypt(Concat(Na ; B 1 Kab;

Encrypt(A 1 Kab;Kbs));Kas))
� Update(fNa �B 1 Kab � fA 1 KabgKbs

gKas
;W)

The next action is in A's BL.

� Receive(S; fNa �B 1 Kab � fA 1 KabgKbs
gKas

)

The term fNa � B 1 Kab � fA 1 KabgKbs
gKas

is added to POSS(A). The next action to be
executed is:

� Decrypt(fNa �B 1 Kab � fA 1 KabgKbs
gKas

;Kas)

This will add the term fNa � B 1 Kab � fA 1

KabgKbs
g to POSS(A). The next action,

Split will add the individual components too.
At this point, the conditions for the linkage

rule are satis�ed. We take X to be the term
fNa � B 1 Kab � fA 1 KabgKbs

g that was just
added to POSS(A). The reader can verify that
the following are all true:

1. #(Kas) 2 BEL(A)

2. A 2 Observers(Kas)

3. LINK(Na) 2 BEL(A)

4. X contains g(Na), where g is the identity
function

5. fXgKas
from S 2 POSS(A)

Once the linkage rule is applied, the freshness
of each subpart of X is added to belief set of
A. Also, the LINK formula is removed from
the belief set so that the nonce Na cannot be
used again.
At this point, the global sets have not

changed. The sets for principal A are as fol-
lows (We omit items in the possession and be-
lief sets, such as large concatenated messages,
that serve no further purpose.):

Principal A

POSS(A) = fKas; Na; B 1 Kab; fA 1 KabgKbs
g

BEL(A) = f#(Kas);#(Kab);#(fA 1 KabgKbs
)g

BL(A) =
� Generate-nonce(Na)
� Concat(A;B;Na)
� Send(S; fA �B �Nag)
� Update(fA �B �Nag;W)
� Receive(S; fNa �B 1 Kab � fA 1 KabgKbs

gKas
)

� Decrypt(fNa �B 1 Kab � fA 1 KabgKbs
gKas

;Kas)
� Split(fNa �B 1 Kab � fA 1 KabgKbs

g)
� Send(B; fA 1 KabgKbs

)
Update(fA 1 KabgKbs

;W)
Receive(B; fNbgKab

)
Decrypt(fNbgKab

;Kab)
Send(B;Encrypt(Apply(f;Nb);Kab))
Update(ff(Nb)gKab

;W)

13

Rubin

The Send and Update actions in A's behavior
list are executed next. The Update function
adds B to Observers(Kab). The next action to
be executed is in B's behavior list, as speci�ed
by the last Send action.

� Receive(A; fA 1 KabgKbs
)

The next action on B's behavior list is:

� Decrypt(fA 1 KabgKbs
;Kbs)

After this action is executed, fA 1 Kabg is
added to POSS(B). However, the linkage rule
does not apply because there is no LINK state-
ment in BEL(B). Thus, B cannot conclude

that Kab is fresh!

In fact, when B receives ff(Nb)gKab
from A,

it cannot apply the linkage rule because one of
the conditions is that Kab is fresh. For the re-
mainder of the protocol, B can never conclude
that anything received under Kab is fresh.
This is the same
aw discovered in the Need-

ham and Schroeder protocol by Denning and
Sacco. [5] We apply Needham and Schroeder's
�x [12] by adding several actions to the be-
ginning of the behavior lists of A and B. To
BL(A), we add the actions:

Send(B; fAg)
Update(fAg;W)
Receive(B; fA; JgKbs

)
Decrypt(fA � JgKbs

;Kbs)
Split(fA � Jg)

And to BL(B), we add the actions:

Receive(A; fAg)
Generate-nonce(J)
Send(A; Encrypt(Concat(A; J);Kbs))
Update(fA � JgKbs

;W)

Then, A will include J in the original message
to S, and S will include it in fA 1 KabgKbs

that gets forwarded to B.
It is clear that when B generates J , a LINK

statement is added to BEL(B). When B re-
ceives the message containing Kab from A, it
will be able to conclude #(Kab). Also, because
Observers(Kbs) = fB; Sg throughout the pro-
tocol, no intruder could generate or modify the
forwarded message from A to B that is sealed
under Kbs.
Thus, our analysis reveals no
aws in the re-

vised Needham and Schroeder protocol.

6.2 KHAT

Our method for analyzing cryptographic pro-
tocols does not include temporal reasoning.
Thus, we specify and analyze the two phases
of the khat protocol separately.
One advantage of our method is that the khat

protocol can be speci�ed in the same manner as
the Needham and Schroeder protocol; we spec-
ify all the global and local sets. The behavior
lists will contain actions that precisely describe
the protocol. Section 4 showed that the pre-
vious method of listing the messages between
principals is inadequate as a speci�cation tech-
nique.
Our analysis reveals a signi�cant
aw in the

khat protocol. We provide a �x to the protocol,
and use the analysis to demonstrate that the

aw no longer exists.

6.2.1 The Speci�cation

The khat protocol involves two principals: the
client (C) and the server (S). In this protocol,
the trust matrix must re
ect the fact that they
trust each other. The client trusts the server
to issue valid tickets, and the server trusts the
client to forget the information speci�ed in the
protocol. If the TRUST[i; j], where i is the
server and j is the client, is not 1, then the
server will not believe that the client no longer
possesses information which should be forgot-
ten. Thus, a fundamental assumption of the
protocol is identi�ed.
When phase I begins, we assume that a se-

cure channel has been established using the
Kerberos ticket for the khat service. Thus,
K is the session key between C and S, and
Observers(K) = fC; Sg. P = fS;Cg, C is
marked as the initiator, and S = fKg. In this
speci�cation, SF represents the spool �le for
the user's job. The local sets are now de�ned:

Client

POSS(C) = fKg
BEL(C) = f#(K)g
BL(C) =
� Generate-secret(SF)
Generate-secret(N)
Encrypt(K,N)
Send(S,Encrypt(Concat(SF;N);K))

14

Nonmonotonic Cryptographic Protocols

Update(fSF �NgK;W)
Forget-secret(N)
Forget-secret(SF)4

Phase II
Receive(S; fN � fSF � TGTCgKg)
Split(fN � fSFgKg)
Decrypt(fKgN ; N)
Decrypt(fSF � TGTCgK ;K)
Split(fSF � TGTCg)
Check-Freshness(TGTC)

Server

POSS(S) = fKg
BEL(S) = f#(K)g
BL(S) =
Receive(C; fSF �NgK)
Decrypt(fSF �NgK ;K)
Split(fSF �Ng)

Phase II
Generate-secret(TGTC)
Send(Concat(N ,Encrypt(Concat(SF; TGTC);
K)))

Update(fN � fSF � TGTCgKg, W)

6.2.2 The Analysis

We begin our analysis with Phase I of the
protocol. After the analysis reaches the �rst
Forget-secret statement, the local sets are
as follows (once again, for the sake of clarity,
we omit some encrypted items in the posses-
sion and belief sets that don't contribute to the
analysis):

Client

POSS(C) = fK;SF;N; fKgN ; g
BEL(C) = f#(K);#(N);#(SF)g
BL(C) =
� Generate-secret(SF)
� Generate-secret(N)
� Encrypt(K,N)
� Send(S,Encrypt(Concat(SF;N);K))
� Update(fSF �NgK;W)

4For completeness sake, we should also specify to
forget fSF �NgK and other formulas that are added to
POSS(C) by Concat and Encrypt, but we will omit
these from the BL for clarity. They would be in-
cluded in an actual speci�cation (and their existance
helped the author discover a bug in the actual khat
implementation).

� Forget-secret(N)
Forget-secret(SF)

Server

POSS(S) = fK;N; SFg
BEL(S) = f#(K)g
BL(S) =
� Receive(C; fSF �NgK)
� Decrypt(fSF �NgK;K)
� Split(fSF �Ng)

Notice that the server cannot conclude #(SF)
or #(N). This is a serious
aw because an in-
truder can use a replay attack for the remainder
of the session5 to reschedule the user's job.
To solve this problem, we modify the proto-

col so that along with the khat ticket, the server
sends a list of fresh nonces to the client. Each
time the user schedules a job, he includes an
unused nonce in the message. In the analysis,
the server will have a collection of LINK state-
ments in its belief set, and the freshness of N
and SF can be guaranteed.

6.2.3 The Corrected Protocol

The corrected protocol is as follows:

Client

POSS(C) = fKg
BEL(C) = f#(K)g
BL(C) =
Part of ticket granting
Receive(S,fN1; N2; � � �Nng)
Split(fN1; N2; � � �Nng)

Phase I
Generate-secret(SF)
Generate-secret(N)
Encrypt(K,N)
Send(S,Encrypt(Concat(SF;N;Ni

6);K))
Update(fSF �N �NigK ;W)
Forget-secret(N)
Forget-secret(SF)

Phase II
Receive(S; fN � fSF � TGTCgKg)
Split(fN � fSFgKg)
Decrypt(fKgN ; N)

5That is, the remaining lifetime of the khat ticket
from the ticket granting service.

15

Rubin

Decrypt(fSF � TGTCgK ;K)
Split(fSF � TGTCg)
Check-freshness(TGTC)

Server

POSS(S) = fKg
BEL(S) = f#(K)g
BL(S) =
Part of ticket granting
� Generate-nonce(N1)
Generate-nonce(N2)
� � �
Generate-nonce(Nn)
Send(C,Concat(N1; N2; � � � ; Nn))
Update(fN1; N2; � � �Nng;W)

Phase I
Receive(C; fSF �N �NigK)
Decrypt(fSF �N �NigK ;K)
Split(fSF �N �Nig)

Phase II
Generate-secret(TGTC)
Send(Concat(N ,Encrypt(Concat(SF; TGTC);
K)))

Update(fN � fSF � TGTCgKg;W)

Now, after the analysis reaches the �rst
Forget-secret statement, BEL(S) contains
(among other things) #(K), LINK(N2); � � � ;
LINK(Nn), #(SF), and #(N). The
aw
described earlier no longer exists. If an in-
truder attempts to replay the message con-
taining the spool �le, the server will recognize
that the nonce, Ni has already been used. In
the analysis, this is re
ected by the absence
of LINK(N1) from BEL(S). The linkage rule
cannot be applied in this case. Thus, the server
will not conclude that the spool �le in the re-
played message is fresh, and the protocol will
be aborted.
We continue our analysis with the client's ac-

tions:

� Forget-secret(N)
Forget-secret(SF)

After these actions, N and SF are removed
from POSS(C). Also, the beliefs that C pos-
sesses N and SF are removed fromBEL(S) be-
cause S trusts C according to the trust matrix.

6Ni is the �rst unused nonce in the list received from
the server.

At this point phase I is over. It is clear from
the values of the Observers sets, which are up-
dated with every Send action, that nobody can
learn the value of SF from the messages sent.
Also, the possession set of C represents what an
intruder can learn by compromising the work-
station while a job is pending. The only use-
ful possession is fKgN . Of course, without N ,
this is useless. Because Observers(N) = fSg,
no intruder can gain anything by compromising
the workstation before phase II begins.
To preserve space, we include only the most

interesting part of the analysis that remains.
When phase II begins, the next three actions
are the server's.

� Generate-secret(TGTC)
Send(Concat(N ,Encrypt(Concat(SF; TGTC);K)))
Update(fN � fSF � TGTCgKg;W)

After the Update action, Observers(N) = W.
Thus, if an intruder has compromised the work-
station and obtained fKgN , then the secrecy
of K has also been lost. Thus, analysis reveals
that once it is time for the job to run, a pre-
vious compromise of the workstation results in
an insecure session key. This further results in
the compromise of the TGT .
Our analysis reveals a new vulnerability in

phase II of khat. Although the analysis did
not mechanically produce this result, use of our
technique generated conclusions from which
the vulnerability became apparent. In Section
7 we discuss how to test a protocol for known
weaknesses.

6.3 Nessett criticism

In his well known note [13], Nessett criticizes
the BAN logic. He presents the following pro-
tocol that uses assymetric keys:

A! B : fNa;KabgKa
�1

B ! A : fNbgKab

The problem is that Kab is encrypted under A's
private key. Thus, anyone intercepting the �rst
message can decrypt it with the corresponding
public key and obtain the session key.
Although the inference rules needed for pub-

lic keys are not included in this paper, it is a
simple matter to construct them. The global

16

Nonmonotonic Cryptographic Protocols

set R of inference rules was intentionally left
for the user to specify to provide ways of ex-
tending the analysis.
Once the protocol is speci�ed, our analy-

sis immediately reveals the
aw. After the
�rst message is sent, the update function sets
Observers(Kab) to W because the Observers

set of the public key Ka is W. In addition, B
does not believe that Kab is fresh.
Interestingly, our analysis also reveals that in

addition to its obvious and intended
aw, the
Nessett protocol uses nonces improperly.

7 Analyzing Known

Threats

Our speci�cation and analysis technique can
also be used to test a protocol against a known
attack. This can be done by including the in-
truder, Z, in the set of principals. BL(Z) con-
tains the actions that the intruder performs.
The analysis determines what Z is able to learn
during the course of the protocol. The trust
matrix can even be used to analyze what hap-
pens when Z is actually trusted.
By specifying BL(Z) di�erently, one can de-

termine whether an intruder could trick a par-
ticipant into revealing some sensitive informa-
tion using a given attack. In this sense, a user
can interact with the analysis to check a new
protocol for given
aws and vulnerabilities.

8 Conclusions

In this paper, we introduce a new method for
specifying authentication protocols that o�ers
several advantages over existing methods. The
method also includes a logical analysis based
on the propagation of belief and knowledge. A
fundamental assumption in our threat model is
that any message in the system is essentially a
broadcast.
We specify protocols as a collection of inde-

pendent processes. This model closely resem-
bles the structure of the actual distributed sys-
tem in which the protocols are implemented.
Our speci�cations are designed to resemble the
actual implementation as much as possible.
This eliminates
aws introduced in the process

of converting a speci�cation (which may con-
tain no
aws itself) to an actual program.

One weakness of many analysis techniques
that require protocol idealization is that
aws
in the protocol may not appear in the ideal-
ized version. Thus, the analysis is incapable of
revealing them. Our method does not require
idealization and thus avoids this problem.

We demonstrate that our method can be
used to reason about a new class of proto-
cols for which previous approaches are inad-
equate. We use actions such as Forget and
Forget-secret along with knowledge and be-
lief sets to reason about nonmonotonicity of
knowledge in protocols.

The Needham and Schroeder protocol has
become a benchmark used by designers of anal-
ysis techniques to test their methods. We
demonstrate how the known
aw in that proto-
col is revealed. In addition, we use our method
to uncover a new
aw in our khat protocol and
to discover a vulnerability in phase II of the
protocol. Finally, we show that our method
easily uncovers
aws in protocols, such as Nes-
sett's, that methods such as BAN cannot de-
tect.

9 Future Work

The method presented in this paper has been
successful to the extent that it discovered a new

aw in the khat protocol and also revealed an
unknown vulnerability. The analysis would be
even better if we could make some claim about
the soundness and completeness of the reason-
ing. One possible way to do this is to de�ne the
semantics of the logic. However, it is not clear
that these properties hold, and useful seman-
tics of logics of authentication are extremely
rare because of the di�culty of de�ning them.

We would like to use the techniques we have
developed to specify and analyze other proto-
cols as well as the ones presented here. In par-
ticular, the ability to specify and analyze proto-
cols with nonmonotonicity of knowledge opens
the door to a whole new class of protocols. One
possible application of this method involves an-
alyzing aspects of public key systems, which
rely on forgetting some large primes, in a new
way. Previous approaches take for granted that

17

Rubin

when a principal generates a key, it discards the
pieces necessary to reconstruct it. Our method
gives a user the
exibility to analyze the system
at a �ner granularity.
It is our hope that methods such as the one

we present in this paper will help in the devel-
opment of protocols with higher assurance of
security.

Acknowledgements

The author thanks Peter Honeyman for his help
in editing this paper, guidance, and motivation;
Atul Prakash for his excellent advice to pur-
sue this topic; Edna Brenner and Mary Jane
Northrop for proofreading; and Paul Syverson
for providing valuable reference materials. This
work was partially funded by IBM.

References

[1] Martin Abadi and Mark R. Tuttle. A se-
mantics for a logic of authentication. Pro-
ceedings of the Tenth Annual ACM Sym-

posium on Principles of Distributed Com-

puting, pages 201{216, August 1991.

[2] M. Burrows, M. Abadi, and R. Needham.
A logic of authentication. ACM Transac-

tions on Computer Systems, 8, February
1990.

[3] Claudio Calvelli and Vijay Varadhara-
jan. An analysis of some delegation pro-
tocols for distributed systems. Proceed-

ings of the Computer Security Founda-

tionn Workshop V, pages 92{110, 1992.

[4] E. A. Campbell, R. Safavi-Naini, and P. A.
Pleasants. Partial belief and probabilistic
reasoning in the analysis of secure proto-
cols. In Proceedings of the Computer Secu-
rity Foundationn Workshop V, pages 84{
91, Washington, 1992.

[5] Dorothy E. Denning and Giovanni Maria
Sacco. Timestamps in key distribution
protocols. Communications of the ACM,
24(8):533{536, August 1981.

[6] Klaus Gaarder and Einar Snekkenes. Ap-
plying a formal analysis technique to the

CCITT X.509 strong two-way authentica-
tion protocol. Journal of Cryptology, 3:81{
98, 1991.

[7] Li Gong, Roger Needham, and Raphael
Yahalom. Reasoning about belief in cryp-
tographic protocols. Proceedings of the

IEEE Computer Society Symposium on

Security and Privacy, pages 234{248, May
1990.

[8] R. Kailar and V. D. Gilgor. On belief evo-
lution in authentication protocols. Pro-

ceedings of the Computer Security Foun-

dation Workshop IV, pages 103{116, June
1991.

[9] Wenbo Mao and Colin Boyd. Towards for-
mal analysis of security protocols. Pro-

ceedings of the Computer Security Founda-

tionn Workshop VI, pages 147{158, June
1993.

[10] Louise E. Moser. A logic of knowledge and
belief for reasoning about computer secu-
rity. Proceedings of the Computer Secu-

rity Foundation Workshop II, pages 57{63,
1989.

[11] R.M. Needham and M.D. Schroeder. Us-
ing encryption for authentication in large
networks of computers. Communications

of the ACM, 21(12):993{999, December
1978.

[12] R.M. Needham and M.D. Schroeder. Au-
thentication revisited. Operating Systems

Review, 21:7, January 1987.

[13] D. M. Nessett. A critique of the burrows,
abadi and needham logic. Operating Sys-

tem Review, 24(2):35{38, April 1990.

[14] A. D. Rubin and P. Honeyman. Long
running jobs in an authenticated environ-
ment. USENIX Security Conference IV,
pages 19{28, October 1993.

[15] Einar Snekkenes. Exploring the ban ap-
proach to protocol analysis. Proceedings of
the 1991 IEEE Computer Society Sympo-

sium on Research in Security and Privacy,
pages 171{181, May 1991.

18

Nonmonotonic Cryptographic Protocols

[16] Paul Syverson and Catherine Meadows.
A logical language for specifying crypto-
graphic protocol requirements. Proceed-

ings of the 1993 IEEE Computer Society

Symposium on Research in Security and

Privacy, pages 165{177, May 1993.

[17] M. J. Toussaint. A new method for ana-
lyzing the security of cryptographic proto-
cols. Journal of Selected Areas in Commu-

nication, 11(5):702{714, June 1993.

[18] V. L. Voydock and S. T. Kent. Security
mechanisms in high{level network proto-
cols. Computing Surveys, 15(2):135{171,
June 1983.

[19] Thomas Y.C. Woo and Siman S. Lam. A
semantic model for authentication proto-
cols. Proceedings of the 1993 IEEE Com-

puter Society Symposium on Research in

Security and Privacy, pages 178{194, May
1993.

19

