
-- --

CITI Technical Report 93−8

The Rx Hex

D. Bachmann
bachmann@austin.ibm.com

P. Honeyman
honey@citi.umich.edu

L.B. Huston
lhuston@citi.umich.edu

ABSTRACT

At CITI, we run dataless AFS clients over dialup IP networks. Improving Rx perfor-
mance is critical to that task. In this paper, we report on our progress in adapting Rx to
networks characterized by low bandwidth, high delay, or variable round-trip time. Our
focus is on adding facilities for congestion avoidance and control, and on compressing
Rx headers. Although our work is ongoing, we have overcome several hurdles, and are
now getting impressive data transfer rates over ordinary dialup lines.

November 2, 1993

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

-- --

Bachmann/Honeyman/Huston

-- --

The Rx Hex

D. Bachmann
bachmann@austin.ibm.com

P. Honeyman
honey@citi.umich.edu

L.B. Huston
lhuston@citi.umich.edu

1. Introduction

AFS [1] was designed with high-speed network-
ing and continuous connectivity as a given, and
this bias is reflected in the AFS transport layer, a
UDP-based [2] remote procedure call (RPC)
package, called Rx [3, 4].

Rx is a general-purpose remote procedure call
(RPC) package used by AFS and its utilities. Rx
accommodates the special needs of distributed file
systems by offering a streaming interface to the
service layer. This lets AFS transfer as much
data as it wants in a single call; the amount of
data in a single RPC can be over a gigabyte.

Rx uses a windowing strategy with packet-level
acknowledgements. This avoids the ‘‘send-and-
wait’’ behavior typical of Sun’s Open Network
Computing Remote Procedure Call (ONC RPC)
[5]: because ONC RPC limits the size of any RPC
request, large files must be transferred in multi-
ple, non-overlapping calls.

Because Rx is based on UDP, not TCP [6], it
must provide its own mechanisms for flow-
control, selective retransmit, and authentication.
Necessarily, Rx has had to reinvent some of the
mechanisms previously developed for TCP. As
we shall see, in a number of ways, Rx did not
copy TCP closely enough.

Like much in the UNIX† programming environ-
ment, the most accurate specification of Rx is that
defined by the source code. Perusing source
code, it’s clear that Rx is intended to accommo-
date the vagaries inherent in internetworking,
such as networks with varying packet sizes and
capacity. Yet the implementation is extremely
hhhhhhhhhhhhhhhhhh
† UNIX is a Trademark of AT&T Bell Labora-
tories.

rigid in its ability to cope with variability. In par-
ticular, Rx assigns constants to parameters that
should be dynamically adjusted.

1.1. Frame size

Rx assumes a 1.5 KB maximum transmission unit
(MTU). If the MTU is smaller than 1.5 KB, Rx
implicitly employs IP fragmentation [7]. Yet, IP
fragmentation is widely held to be inimical to
robust internetworking [8].

1.2. Retransmission timeout

In AFS 3.1, the retransmission timeout (RTO) in
Rx is set to two seconds in the source code. If not
acknowledged within that interval, Rx assumes a
packet is lost and retransmits it. Every fourth
packet is tagged with the ‘‘please ACK’’ bit, so a
clump of four packets has to transfer in less than
two seconds or else the ACK is late and the whole
clump is retransmitted. This process recapitulates
the problems of IP fragmentation above the tran-
sport layer!

In our tests, we use a 9.6 Kbps SLIP [9] connec-
tion with a 576 byte MTU, so a single packet
takes 0.6 seconds to traverse the network. Two
seconds is not enough time for four packets to
move across the SLIP link; without modifications
to Rx, the RTO timer constantly fires prema-
turely, retransmissions are rampant, and
throughput is abysmal, as we shall see.

1.3. Window size

Rx uses a 15 packet window with no support for
adjusting the window in the face of congestion.
Combined with the fixed retransmission timeout,
this results in disaster.

With a 576 byte Rx packet, it takes over 9

- 1 -

-- --

Bachmann/Honeyman/Huston

seconds for a 15 packet window to traverse the
SLIP network. (Our SLIP network uses RS-232
character framing, so a single byte requires ten bit
times to transmit.) Nine seconds is more than
four RTOs, so the last packet in the first window
is retransmitted by the sender four times before it
first arrives at the receiver!

Worse yet, with a 1.5 KB packet, a full window
spends almost 24 seconds in transit, and exhausts
the serial line buffers on our SLIP gateway.

2. Experimental Setup

To design and test our modifications of Rx, we
configured three identical UNIX workstations as
shown in Figure 1 to emulate a congested net-
work.

RxClient

Ethernet

gateway

SLIP

RxServer

Figure 1. Experimental test bed. The three comput-
ers shown are IBM RT workstations running the AOS
4.3 BSD UNIX operating system. RxClient and
RxServer are test programs that push Rx packets
from the client to the server. At the same time, the
client produces voluminous per-packet diagnostics,
which we massage into the figures shown in the next
sections.

The workstations are identical IBM RT worksta-
tions running 4.3 BSD and up-to-date networking
software, including cslipbeta from Lawrence
Berkeley Labs. The basic experiment consists of
attempting to move 100 KB of data from the
server to the client via a path that includes a 9.6
Kbps SLIP connection. To separate Rx perfor-
mance from disk performance, the experiments
were carried out using a pair of programs that talk
directly to the Rx interface, RxClient and
RxServer, a pair of diagnostic applications pro-
vided with AFS. To control variation in
throughput due to the operating system, the
machines were run in single-user mode.

In the experiments that follow, we vary Rx
parameters, such as packet size and RTO, and
process the output from RxClient to extract
quantitative information.

3. IP Fragmentation

As shipped, Rx has a static packet size, 1.5 KB,
and a constant window size, 15 packets. With
every fourth packet, the sender requests an ack-
nowledgement packet from the receiver; this
packet acknowledges the sequence number of the
packet that requested the ack, as well as all prior
sequence numbers when things are going well. If
a packet is not acknowledged before the two-
second timeout expires, the sender retransmits.
It’s easy to see that any network not capable of
delivering 90 Kbps will experience many point-
less retransmissions.

Figure 2 shows what happens in a Rx session
over a 9.6 Kbps network. The chart shows packet
sequence number vs. the time the packet was
sent; multiple dots on the same ordinate represent
retransmissions. Although 70 packets are
required to complete the transfer, the server never
gets past packet 28. Obviously, something is very
wrong here. Under these conditions, we found
AFS service so poor that it was impossible to
accomplish any work: even fetching a single file
was precluded.

pkt
seq
no

seconds

0

10

20

30

0 15 30 45 60

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..
..

..

..

..

..

..

..

.
.
..

..

..

..

..

..

..

..
..

..

..

..

..

..

..
..
..

..

..

..

..
.

..

.

..
..

..

..

..
..

..

..

..
..

..

..

..
.

..

..

..
..

..

..

..

..

..

.

..

.
..

.

..

..

..

..

.

..

.

.

..

.

.

..

..

..

.

..

.

.

..

.
..

..

..

.

.

..

.

.

..

.
..

..

..

.

.

..

.

.

..

.
..

..

..

.

.

..

.

.

..

.
..

..

..

.

.

..

.

.

..

.
..

..

..

.

.

.

..

..

.
..

..

..

.

.

.

..

..

.
..

..

..

.

.

.

..

..

.
..

..

..

.

.

.

..

..

.
..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.
..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.

..

..

..

.

.

.

..

..

.

Figure 2. MTU = 1.5 KB, RTO = 2. This figure
shows the ‘‘two steps forward, one step back’’ pattern,
characteristic of congested networks with a broken
packet retransmission strategy. (In actuality, it’s more
like ‘‘15 steps forward, 14 steps back.’’) In this case,
after attempting over 1,400 times to get the first 28
packets through, the network is so clogged with re-
transmitted packets that the Rx connection times out.

This is the first problem encountered by Rx in our
environment. For good interactive performance,
SLIP links are usually set up with an MTU of 296
bytes [10]. A combined Rx/UDP/IP header size
is 56-bytes (see Section 8), which is almost 19%
of a 296-byte frame. We place a somewhat
higher priority on file system throughput, so to we
set our MTU to 576 bytes, a value commonly
chosen for trans-Internet packets, and we
modified Rx to assume this smaller packet size if

- 2 -

-- --

The Rx Hex

the peer is on a different subnet, as is the case for
SLIP peers.

With this change, Rx is able to get all 193 packets
across the link, but it isn’t pretty. Figure 3 plots
packet sequence number against time after modi-
fying Rx to avoid IP fragmentation.

pkt
seq
no

seconds

0

50

100

150

200

0 250 500 750 1000

..........

..................

................

...............

..........

.

.....

.....

......

...

.

....

.

..

.......

.

....

.

..

.......

.

....

.

..

.......

.

....

.

..

.......

.

....

.

..

......

.

..

....

........

.

..

....

........

.

..

....

........

.

..

....

........

.

..

..

...

......

.........

......

.........

......

.........

......

.........

......

....

.....

.........

.....

........

.....

........

.....

.......

.....

.......

.....

.......

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

...

.

.

..

...

...

...

...

..

..

..

..

.........

............

............

............

............

............

............

............

............

............

............

............

............

............

............

..........

...............

..............

................

..............

..............

..............

..............

..............

.............

.............

.............

............

............

............

............

...........

..........

....

.....

.........

...

.....

...

....

...

....

...

....

...

....

.........

....

....

....

....

....

....

....

....

....

....

....

....

....

...

....

...

....

...

...

...

...

...

...

..

...

..

...

..

...

..

...............

........

...............

...............

...............

...............

.......

........

.......

........

.......

........

.......

..........

..

......

.......

..

......

.......

..

......

.......

..

......

.......

..

......

.......

..

......

.......

.......

.......

.......

......

.........

.

..

.........

.

..

.........

.

..

........

.

..

.....

.

..........

.

.

.

..........

.

.

.

.........

.

.

.

.........

.

.

.

.........

.

.

.

........

.

.

.

........

.

.

.

........

.

.

.

........

.

.

.

.......

............

...........

...........

...........

...........

...........

....

....

...

..

....

..

..

....

..

..

....

..

..

......

......

......

......

......

.....

.....

......
..
.
..
.
.
.
.
.
...........
..
.........
.....
.........
.....
.........
.....
.........
.....
.........
...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.....................
....
..........
....
..........
....
..........
....
..........
....
..........
....
..........
....
.........
....
.........
....
.........
....
........
....
........
....
........
....
.......
....
......
..
......
.
......
.
......
.
....................................
...
.....
...
....
...
....
...
....
...
....
...
....
...........
....
.....
....
.....
....
.....
....
.....
....
.....
....
.....
.....
....
.....
....
.....
..
.....
..
.....
..
.....
..
.....
..
.....
..
.....
..
.....
..
.........
....
...
....
...
....
...
....
...
....
...
...
...
...
..
...
.
...
.
...
.
...
.
...
.
...
.
...
.
...
.
...
.
.........
....
.
.........
....
.
.........
....
.
.........
....
.
.........
....
.
.........
....
.........
.....
........
.....
........
...................
....
...........
....
...........
....
...........
....
...........
....
...........
....
...........
....
...........
....
...........
.....
..........
.....
..........
.....
..........
.....
..........
.....
.........
....
.........
....
........
...
........
...
........
...
........
...
........
...
........
...
........
...
........
...
........
...
........
..
......
...
.....
...
.....
...
.....
...
....
...
....
..
....
.
....
.
....
.
....
.
...
.
...
.
...
.
...
.
...
.
...
.
...
...
..
...
..
...
..
...
..
...
..
...
..
......
......
......
......
...........
.
.........
.....
.
.........
.....
.
.........
.....
.
.........
.....
.
.........
.....
.
..
.
.
..
...........
...............
...............
...............
...............
...............
................
.....
..........
.....
..........
.....
..........
.......
.........
.............
...............
..............
..............
..............
....
.......
....
.......
....
.......
....
.......
....
.......
....
.......
....
.......
....
......
..........
..........
......
........
........
.......
.......
......
............
...
............
...
............
...
............
...
............
...
.
.
..........
...
.
.
..........
...
.
.
..........
...
.
.
..........
...
.
.
........
....
.
.
.
........
....
.
.
.
........
....
.
.
.
........
....
.
.
.
........
.....
.
........
.....
.
........
.....
.......
...........
...........
...........
...........
..........
..........
..................
.............
.............
......................
....
.........
....
........
....
........
....
.......
....
.......
............
....
.......
....
.......
....
......
.....
......
.....
....
.....
....
....
...
....
...
.......
...........
.........
.........
.........
.........
.........
....
....
....
....
....
....
....
...
....
...
..................
....
........
....
........
....
........
....
.......
....
.......
...........
...........
............
....
.......
....
.......
....
.......
....
.......
....
.......
....
......
....
.....
....
.....
....
.....
...
.....
...
.....
...
...
...
..
...............
............
...........
...........
...........
...........
...........
...........
...........
.......
............
...............
..............
..............
..............
..............
.............
............
............
............
............
............
............
............
............
...........
...........
..........
........
........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......................................

Figure 3. MTU = 576, RTO = 2. Of 4,798 packets
transmitted, 4,605 (96%) were retransmissions. The
average number of retransmissions was 25; packet
number 93 was retransmitted 80 times. The total
throughput for the 100 KB file was 873 bps, which is
11% of the peak rate.

Setting the packet size to the MTU of the path
does more than eliminate IP fragmentation, it also
reduces the total round-trip time (RTT): one
window’s worth of 1.5 KB packets takes almost
three times as long to send as a window’s worth
of 576-byte packets, 24 seconds vs. 9 seconds. 9
seconds is much closer to the two second RTO
than is 24 seconds. Adjusting the fixed RTO to 6
seconds (slightly less than the 9 second RTT) and
12 seconds (slightly greater than the 9 second
RTT), we get the results shown in Figures 4 and
5, respectively.

Figure 5 proves that the RTO can be adjusted by
hand to achieve good performance. But the
parameters are very sensitive to prevailing net-
work conditions. For example, if another transfer
starts up in the middle, we are again
overwhelmed by retransmissions, as shown in
Figure 6.

So while the 12 second RTO works when a single
session has the entire bandwidth to itself, it is
unstable, and a bit of resource competition is
enough to throw the network into a stable, cong-
ested state. To make Rx work for a single ses-
sion, we can tune it for a specific link speed. But
to run Rx over a connection that involves greater
delay, e.g. , a satellite link or a 2.4 Kbps link, we
are forced to fiddle with the RTO again. The
solution to this problem is to teach Rx to adapt to
the speed of the environment it encounters.

pkt
seq
no

seconds

0

50

100

150

200

0 100 200 300 400

..........

...........
..
......
.....
....
....
...
.....
....
...........
...
.
..
......
.
...
.....
........
.......
..
.
......
...........
....
.........
.....
.
....
.....
.
.
...
.
.
........
.
......
.....
..
....
.....
.....
..
...
............
...
.....
.........
.......
.......
.
..
..
.
......
.....
.
..
.
.
...
.
.
....
......
.....
.....
..........
.....
..........
....
.............
.........
.......
...
.
..
.
...........
.....
..........
.................
....
...........
...........
..
......
.....
..............
............
.....
..........
.....
.........
.........
.......
...........
.............
.............
............
............
........
.
.
.
.
.
.
.
.
.
.
...........
....
...........
..........
....
......
...
...............
.............
.
...
......
.
....
...............
........
..
..
.
..........
..
..
.
..........
..
..
.
...
.........
...
..
............
...........
............
...........
..
.......
......
..
...
.
..........
...
...
...
........
.........
.
.....
.
...
............
....
..........
............
...........
.......
.......
..
...
...
.
.
.

Figure 4. MTU = 576, RTO = 6. RTO is set to 6
seconds, slightly less than the 9 second RTT. While
less extreme than Figure 3, the retransmission patterns
are still observable here. The parallel threads of re-
transmissions, spaced 6 seconds apart, are visible, as is
the occasional dropped packet, leading to a horizontal
string of retransmissions bogging things down until a
packet finally gets through and frees up a new
window-full (the vertical bursts). The throughput in
this experiment is 1.9 Kbps, 25% of the available
bandwidth, after taking header overhead into account.

pkt
seq
no

seconds

0

50

100

150

200

0 25 50 75 100

..........

...........
..........

...........
...........

..........
...........

..........
...........

..........
...........

..........
...........

...........
..........

...........
..........

...........
...

Figure 5. MTU = 576, RTO = 12. The 12 second
RTO is slightly more than the 9 second RTT. Here we
have achieved our goal of transmitting each packet ex-
actly once. The initial window is evident as a vertical
line on the left side, followed by smooth, self-clocking
transfer of packets, uninterrupted by retransmissions.
The throughput for this experiment is 7.4 Kbps, 96% of
the available bandwidth, after taking header overhead
into account.

4. Congestion Control

Our strategy for improving performance in the
face of congestion is to use careful measurement
of packet round-trip times (RTT) to adjust the
retransmit timeout (RTO). Following Jacobson’s
approach [11], we also estimate the variance of
the RTT by calculating an estimator of the mean
deviation of the RTT, and use this to adjust the
RTO timer.

In the SLIP environment, the slow serial line con-
tributes most to RTT. Because the SLIP line is
dedicated, it has stable delay characteristics and
the deviation of RTT is small. When the network

- 3 -

-- --

Bachmann/Honeyman/Huston

pkt
seq
no

seconds

0

50

100

150

0 100 200 300 400

..........

...........
..........
...........
..........
...........
..........
...........
...........
..........
...........
.......

..........

.....

...........
.

..

.

.

.

.

.

..........

..

..

.

.

.

.

..

..

.

.

.

..

..

...

.

.......
..

..

..

.

.

.

..

...

.

......

.

...

.

..

.

.

...........

..

.

..

.

.

...

.

..

.

...

.

..

.

.

.

..

..

.

.

.

........

.

.

.....

.

....

.

...

.

.

.....
..

...

...

......

....

.....

......

..

...

....

....

..

.....

.

...

....

....

..

.......

..........

.

...

....

....

..

.

.......

..........

..

.

.

...

....

.

...

.

.....

...

.......

.

....

..

..

......

.

..
..

.

.....

.......

.

..

..

..

....

.

.

........

.......

.

..

.....
.......

........

..

..
........

.......
.....

.......

...
...........
...

.

..

.

.

.

..

.

.
...........
...........
..................

...........
.................
...........
..........
.
....
.
..
.....
.........
........
..
..
.
.
.
....
........
.......
.....
..
.
..
...
.
....
........
.......
...
......
.
....
......
........
.....
...
..
.
.
..
.
...
.............

Figure 6. MTU = 576, RTO = 12. The second
transfer begins at 66 seconds with a full window of
packets, which increases the RTT seen by subsequent
packets to 18 seconds, due to additional queueing delay
at the gateway. Consequently, both sessions start re-
transmitting packets, as they are expecting acks within
12 seconds. The increase in the number of packets in
circulation leads to a further increase in RTT and yet
more retransmissions. At this point, we are seeing the
now familiar behavior shown in Figure 4. Even after
the first session finishes, the second session remains in
a permanently congested state. The extra retransmis-
sions lead to two windows, i.e. , 30 packets, in circula-
tion, with a resulting RTT of 18 seconds. Each packet
is retransmitted once (at 12 seconds) before it is ack-
nowledged (at 18 seconds), continuing the cycle.

bottleneck is eliminated in an Ethernet workplace,
other components become principal contributers
to RTT delay, and the RTT deviation varies much
more widely. Processing time on the AFS server
becomes the major factor in RTT, and load varia-
tion on the server may have the effect of increas-
ing RTT variance. To study these effects, our
remaining experiments focus on transfers
between a client and server running on multipro-
grammed computers on the same Ethernet.

As Jacobson recommends, we modified Rx to
keep estimators for the RTT and its mean devia-
tion (MDEV). We then experimented with set-
ting the RTO to the sum of the estimated RTT
and the mean deviation, with results depicted in
Figure 7.

While this is an improvement, it’s apparent that
we are not reacting quickly enough to congestion
at the server. Almost two seconds into the experi-
ment, RTT rises suddenly. Because the Mdev
component does not play a large enough role in
RTO calculation, service delay is accommodated
as increased RTT; this condition is stable, result-
ing in the remainder of the packets being
transmitted twice. Doubling the MDEV com-
ponent in the RTO eliminates the stable cong-
ested state, with the results shown in Figure 8.

The excess retransmissions here are due to our

pkt
seq
no

seconds

0

50

100

150

0 2 4 6

.........
.........
..........
.........
...........

.

..

.......
..
.
.
....
.
.
.
........
.
..
.
....
.
...
........
....
.....
.
.
.
.
.
..
.
.
....
.
..
..
...
.....
.
......
.

..
......
......

......
.
....
.....
.
.
.
.....
..
........
......
.
.
...
...
..
.
...
....
........
......
...
....
..
.
....
.......
........
...
........
.
..
.
......
........
.......
..
.
.......

Figure 7. RTO = RTT + MDEV. While the situation
is much improved over the static SLIP tests shown ear-
lier, in this Ethernet experiment, we are not being ag-
gressive enough in dealing with variations in delay.
The parallel tracks evident in the figure indicate a
stable congested state in which all packets are transmit-
ted twice.

pkt
seq
no

seconds

0

50

100

150

0 1 2 3 4

.........
.........

..........
.........

......
.........
.........

..........
.........

...... ..
.
..
..
..

.....
.....
....

.

..
.....
.
.........

.........
.........

.........
.........

..........
...

Figure 8. RTO = RTT + 2 × MDEV. Here the
response to congestion is much improved over the pre-
vious figure.

incorrect assumption that packet RTTs are
independent. If one packet is delayed, it is almost
certain that the succeeding packets will also be
delayed. Thus we modified Rx so that the RTO
timers of outstanding packets were updated after
every acknowledgement; if an ACK is delayed,
we assume that ACKs for other outstanding pack-
ets will be similarly delayed. Figure 9 shows that
we are approaching our goal of avoiding
retransmissions.

In the next section, we consider the response to
rapidly rising RTT, usually due to congestion.

5. To Karn or not to Karn

TCP ACK does not offer a way to tell whether the
first or last (or other) instance of a retransmitted
packet is being acknowledged. It is therefore
impossible to determine the RTT from an ACK if
the packet was retransmitted. Karn’s algorithm
[12] simply ignores the potential RTT informa-
tion from such ACKs.

- 4 -

-- --

The Rx Hex

pkt
seq
no

seconds

0

50

100

150

0 1 2 3

.....
..........

.........
......

.........
.........
.........

..........
.........

..........
..........

.........
..........

.........
.........

..........
.........

.

Figure 9. Timers updated after experiencing delay.
In this experiment, the RTOs for outstanding packets
are updated to reflect the delay experienced by earlier
packets. The changing slope of the curve indicates that
packets experienced unexpected delay at about the one
second mark, yet Rx finally seems to be behaving well
in the face of changing network conditions.

This behavior, while correct, is unfortunate.
When an ACK is delayed because of congestion,
its RTT is of critical importance for adjusting the
RTO, otherwise unnecessary retransmissions
ensue. Figure 10 shows the effect of ignoring
RTT information in ACKs of retransmitted pack-
ets.

RTO
and
RTT

seconds

0

0.2

0.4

0.6

0 1 2 3 4

××
×

×
××××

×
×

×
×

× ××××××
×

××
×

×

×

×

××××××
×××××

×
×××××××

××
××××

×
××

×××
×
×

∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆

× × × measured RTT
calculated RTO

∆ retransmissions
Figure 10. Using Karn’s algorithm. If RTT exceeds
RTO, acknowledgements time out and retransmissions
begin. Using Karn’s algorithm, we discard RTT infor-
mation for retransmitted packets. Consequently, RTO
is not updated until RTT falls below RTO and we begin
getting RTT information for packets that were not re-
transmitted.

Two seconds into the experiment, RTT rose
rapidly, causing timers to expire as soon as RTT
exceeded the current RTO, at which point a flurry
of retransmissions ensued. Because Karn’s algo-
rithm doesn’t allow the new RTT information
(the ×’s) to be used, neither the estimated RTT
nor the estimated MDEV could be updated. This
is evident in the graph where the calculated RTO

remains constant for a long time despite many
ACKs and associated RTT samples. During this
time retransmissions are rampant. With Karn’s
algorithm (absent exponential backoff for RTO),
the condition is stable: until RTT falls below
RTO, retransmissions are frequent and inevitable.

Unlike TCP, Rx ACKs for retransmitted packets
can be distinguished by their serial number. We
modified the Rx sender to remember the send
times of the first and last transmission of a packet.
This makes RTT information from delayed pack-
ets available in most cases, so that Rx can react
quickly to congestion as new RTT information
arrives, as shown in Figure 11.

RTO
and
RTT

seconds

0

0.5

1

1.5

2

0 2 4 6

×××
××
×××

×

×××
××××××××××

××

×××××
×××××
××

××
×
×

××
×××

×××
×××

×
×

××

×

×∆∆∆∆∆∆∆∆∆ ∆∆ ∆

× × × measured RTT
calculated RTO

∆ retransmits
Figure 11. Using available RTT. In this experiment,
we update the RTO, using the RTT available in re-
transmitted packets. When RTT exceeds RTO, packets
are retransmitted. However, the increase in RTT, and
especially in MDEV, allows Rx to adapt almost im-
mediately with an increase in RTO.

Three seconds into this experiment, the RTT rose
rapidly. In the absence of any further ACKs, two
packets were retransmitted as their RTO (still set
at 0.5 seconds from the last ACK) expired. When
an ACK finally came in at four seconds the new
RTT information was used to push the RTO to
1.5 seconds, eliminating further retransmissions.

6. Congestion Control Summary

By manually adjusting the constant RTO of the
off-the-shelf AFS to 12 seconds (from two), we
were able to get satisfactory throughput. But, as
illustrated in Figure 6, we had to be careful not to
disturb the data transfer (e.g., with TELNET
traffic, or a simultaneous FETCH and STORE),
or the whole thing would fall to pieces, and you’d
be staring at the blinking lights on your modem
wondering what the hell was going on.

Careful measurement and use of RTT and MDEV

- 5 -

-- --

Bachmann/Honeyman/Huston

make SLIP Rx connections behave very well.
Repeating the 100 KB SLIP transfer is much
more satisfactory now, as illustrated in Figure 12.
Data movement is nearly perfect, and the RTO
calculation easily accommodates rapid changes in
RTT.

pkt
seq
no

seconds

0

50

100

150

200

0 25 50 75 100

..........

...........
..........

...........
...........

..........
...........

..........
...........

..........
...........

..........
...........

...........
..........

...........
..........

...........
...

Figure 12. MTU = 576, RTO = 2. Performance of
fully adaptive Rx with 576-byte packets in a dedicated
SLIP line is nearly perfect.

To compare to Figure 6, if we start up a second
adaptive Rx session a minute into the first, the
results shown in Figure 13 ensue.

pkt
seq
no

seconds

0

50

100

150

200

0 50 100 150 200 250

..........

...........
..........
...........
...........
..........
...........
..........
...........
..........
...........
..........
...

..........

.....
.........
...............
............
.........

..

......

.........

.

...........
.

.

..

.

.

...

...........

....

.

...........

.........

....
.

......

..

....

....

..

...........
..........
.

..........

.....

......

..

..

.

.

.

.

..

..

.

.

.

.

.......
....

...........
...........
...........
..........
...........
..........
...........
..........
.......

Figure 13. As the initial disruption due to the second
session starting at 73 seconds works its way through
the system, the first session adapts, retransmitting only
two packets that were dropped from the router’s queue
when it overflowed, and continues smoothly to comple-
tion. In this experiment the first session had no un-
necessary retransmissions. The second session re-
transmits every 2 seconds (the default timeout) until it
gets its first acknowledgement, whereupon it increases
its timeout to match the 18 second RTT experienced.

Figure 13 makes apparent that our work is not
complete: the ‘‘blob’’ that corresponds to the start
of the second connection can be addressed by
improving our initial guess for the RTT, perhaps
by using historical data. Slow-start or bandwidth
estimation might also play a role here.

7. Header Compression

Having followed Van Jacobson’s work as closely
as possible so far, we continue with his TCP
header compression algorithms [10]. Rx/UDP/IP
headers, shown in Figure 14, consume almost
10% of AFS bandwidth with a 576-byte MTU.

Vers IHL TOS Total Length
Identification Flgs Frag offset
TTL Protocol Header Checksum

Source Address
Destination Address

Source Port Destination Port
Length Checksum

Epoch
Connection ID

Call
Sequence
Serial

Type Flags Status Security
Service ID Verifier

Figure 14. IP, UDP, and Rx headers. The headers
for the network, transport, and RPC layers are shown,
separated by double lines. Most of the fields in the
combined headers can be predicted from an earlier
packet or are constant.

Just as TCP/IP headers can be compressed by
predicting the expected case, so can Rx/UDP/IP
headers. The Van Jacobson approach is to elide
header fields that remain constant, such as desti-
nation address, or that can be predicted most of
the time, such as RPC sequence number.

An Rx connection can be uniquely characterized
by the combination of its source and destination
IP addresses, source and destination UDP ports,
Rx connection ID, and Rx epoch. We refer to
these fields as the Rx connection’s signature.

When the sender encounters a new signature, it
stashes a private copy of the combined headers,
and forwards the (uncompressed) packet to the
receiver. Thereafter, the private copy is refer-
enced by a one-byte index. The sender alerts the
receiver with a bogus IP version number and
tucks the index into the IP protocol field. The
receiver fixes the IP header and stashes it for later
use.

When the sender encounters a packet with a
known signature, it uses a different bogus IP ver-
sion number, and sends the index of the packet in
lieu of the signature fields. The receiver fills in
the signature fields from its stashed copy of the
uncompressed headers. This alone replaces the
20 signature bytes with a one-byte index.

- 6 -

-- --

The Rx Hex

A 12-bit wide mask is used to control the remain-
ing fields. A bit indicating the absence of a field
indicates that the value can be calculated from the
stashed copy. Values that change are encoded in
the compressed headers in the Van Jacobson
style, so that small changes, denoted ∆, can be
sent in one byte. We had some bits left over, so
we coded some common, special cases, such as
the Rx call number increasing by one.

Rx compression is indicated with the IP version
number. This four-bit field is usually set to4.
TCP header compression uses the values from 7
on. We use 5 and 6. Figure 15 shows the com-
mon two-byte preamble of compressed Rx
headers.

IP Vers. A B C D
E F G H I J K L

Figure 15. Compressed Rx/UDP/IP header pream-
ble. The four-bit IP version number and a 12-bit mask
are sent with each packet. Fields that are not predict-
able from a previous packet are appended. The bit
mask indicates precisely which fields are appended and
which should be calculated.

7.1. Bit mask rules

The bit mask rules are as follows.

A If the Rx sequence number bit (bit F) is set
and ∆ is one, then this bit is set. This elim-
inates the need to send ∆ for a common case.

B If the Rx call number bit (bit E) is set and ∆
is one, then this bit is set. This eliminates the
need to send ∆ for a common case.

C If the packet signature differs from the previ-
ous packet, then this bit is set and the Rx
index is included in the compressed header.

D If the IP packet ID is not one greater than the
value seen in the last packet with the same
signature, then this bit is set and ∆ is included
in the compressed header.

E If the Rx call number differs from the call
number in the previous packet with the same
signature, then this bit is set. If ∆ is one, bit
B is set, otherwise ∆ is included in the
compressed header.

F If the Rx sequence number differs from the
sequence number in the previous packet with
the same signature, then this bit is set. If ∆ is
one or if the new sequence number is zero, bit
A or L is set, respectively. Otherwise ∆ is
included in the compressed header.

G If the Rx serial number is not one greater than
the value seen in the last packet with this sig-
nature, then this bit is set and ∆ is included in
the compressed header.

H If the Rx type field is not the same as the
value seen in the last packet with this signa-
ture, then this bit is set and the type is
included in the compressed header.

I If the Rx flags field is not the same as the
value seen in the last packet with this signa-
ture, then this bit is set and the flags are
included in the compressed header.

J If the Rx status field is not the same as the
value seen in the last packet with this signa-
ture, then this bit is set and the status is
included in the compressed header.

K If the packet has a non-zero Rx verifier, this
bit is set and the two-byte verifier is included
in the compressed header.

L If the Rx sequence number bit (bit F) is set
and the new sequence number is zero, then
this bit is set. This eliminates the need to send
∆ for a common case.

For example, the IP packet ID is almost always
one greater than that sent on the last packet. If
that is the case, bit D is set and the IP packet ID
is not sent. Otherwise, the sender includes the
encoded IP packet ID in the compressed header.

Figure 16 shows the order format of the remain-
ing fields in a compressed Rx/UDP/IP header,
most of which are optional and under the control
of the bit mask.

iiiiiiiiiiiiiiiiiiiiiii
Header indexiiiiiiiiiiiiiiiiiiiiiii
UDP checksumiiiiiiiiiiiiiiiiiiiiiii

∆ IP IDiiiiiiiiiiiiiiiiiiiiiii
∆ Rx Calliiiiiiiiiiiiiiiiiiiiiii

∆ Rx Sequenceiiiiiiiiiiiiiiiiiiiiiii
∆ Rx Serialiiiiiiiiiiiiiiiiiiiiiii

Rx Typeiiiiiiiiiiiiiiiiiiiiiii
Rx flagsiiiiiiiiiiiiiiiiiiiiiii
Rx Statusiiiiiiiiiiiiiiiiiiiiiii

Rx Service IDiiiiiiiiiiiiiiiiiiiiiii
Verifieriiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

Figure 16. Compressed Rx/UDP/IP header fields.
Most of these fields are optional. The bit mask in the
header preamble tells which fields are present in the
packet.

To test the effectiveness of the Van Jacobson
approach to Rx header compression, we moni-
tored Rx headers in two sessions. The first ses-
sion ran overnight, recording all Rx activity over
a SLIP line to the home of one of the authors.

- 7 -

-- --

Bachmann/Honeyman/Huston

The second session monitored Rx activity on an
Ethernet for five hours while a staff member went
about her work, mostly building and testing UNIX
kernels. The first trace has 6,435 compressed
headers; the second trace has 14,416. We used a
Network General Sniffer to collect the traces and
wrote a simulator to calculate the average number
of bits sent for each field of the compressed
headers. Figure 17 shows the simulation results
for the combined traces.

Field Bitsiiiiiiiiiiiiiiiiiiiiiiiiiiii
IP Vers. 4
Bit mask 12
Header index 4.8
UDP checksum 16
∆ IP ID 2.4
∆ Rx Call 0.04
∆ Rx Sequence 0.99
∆ Rx Serial 0.076
Rx Type 1.3
Rx flags 3.4
Rx Status 0.086
Verifier 3.3
Long ∆ 2.8iiiiiiiiiiiiiiiiiiiiiiiiiiii

TOTAL 51.1iiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 17. Average length of compressed
Rx/UDP/IP header fields. Using a trace driven simu-
lator, we calculated the number of bits used in each of
the fields of compressed Rx/UDP/IP headers. Three
fields — IP Version number, bit mask, and UDP check-
sum — are never compressed. Several fields associated
with Rx, such as Call, Serial, and Status, are very
predictable.

The entry labeled ‘‘Long ∆’’ accounts for
differences that do not fit into one byte.

Although the UDP checksum can be derived from
other information in the packet, it is our only
assurance of end-to-end reliability, so it is never
elided, and always takes up two bytes. So when
things are going well, the compressed header size
is six bytes for an authenticated connection — the
two-byte preamble containing the bit map, the
UDP checksum, and the Rx verifier — and four
bytes for an unauthenticated connection.

The table shows that on average, the remaining
fields add about two bytes to the total header
length. In the traces we collected, over 95% of
the headers were sent compressed; the weighted
average length of all Rx headers, compressed and
uncompressed, was 8.2 bytes. This represents a
dramatic improvement over the 56-byte headers
sent in uncompressed packets.

7.2. Synchronization

If a packet gets lost or corrupted, the sender and
receiver lose the synchronization required to
reconstitute compressed packets. In this case, the
receiver uncompresses headers incorrectly and
hands bogus packets to the IP layer. Because the
UDP checksum is almost certainly incorrect for
packets so constructed, the UDP layer later dis-
cards them. This continues until a new
uncompressed packet is received, at which time
the sender and receiver can restore synchroniza-
tion.

The sender uses Rx retransmissions to detect syn-
chronization error; the UDP layer on the receiver
is tossing packets with abandon, so ACKs are not
being generated. Eventually, the service provider
will start retransmitting. This is apparent to the
sender, as the Rx sequence number jumps back-
wards. Under these circumstances, the sender
sends an uncompressed packet, and synchroniza-
tion is restored.

Synchronization error can have a very detrimental
effect on throughput. Suppose a large file is
being fetched from the server to a client. If a sin-
gle byte is lost or corrupted in the transfer across
the SLIP line, the client begins discarding pack-
ets. More than likely, an entire window’s worth
of packets is discarded. After the first discarded
packet times out, the server begins to retransmit,
restoring synchronization. In the mean time,
though, a single bit error has been magnified into
a 15 × 576 × 8 bits retransmitted, i.e., the error
cascades almost 70,000-fold. For this reason, we
put special effort into engineering the asynchro-
nous device driver to avoid data overruns.

8. Throughput

We conducted a series of experiments to measure
the performance of AFS servers running with our
changes to Rx. In these experiments we fetched a
100 KB file from the server to the client. The
SLIP endpoints are IBM RTs, running 4.3BSD
(rt_aos4) as dataless AFS 3.1 clients. During
the tests, they ran normal background tasks, but
were otherwise idle. The modems are US Robot-
ics Courier V.32bis locked at 14.4 Kbps link and
19.2 kbps interface speeds. The RT asynchro-
nous interface is known to operate at 57.6 Kbps.
AFS fetches are from cold cache to /dev/null.
FTP is in binary mode, from server /tmp to
client /dev/null.

The interface rate is 19.2K, allowing a maximum
1920 bytes/sec. (V.32bis over V.42 can support

- 8 -

-- --

The Rx Hex

1724 bytes/sec. [13]; 11% compressibility and
V.42bis delivers up the remainder.)

There are no measurements for the unmodified
AFS server. Prior to our congestion avoidance
changes, AFS performance over Rx was so
chaotic that it was difficult to measure reliably.
The off-the shelf AFS product imposes both IP
fragmentation and massive retransmissions when
deployed over a low-speed network. Prior to
lowering the Rx packet size to fit in a single IP
frame, service was non-existent. With a smaller
Rx frame, service remains poor, tending to be in
the 100−200 bytes/sec. range.

The following table shows the effect of conges-
tion avoidance and Rx header compression over a
SLIP interface. The Rx columns show the
throughput in bps for the improved Rx with
(Rx/HDR) and without (Rx/RTT) header
compression while transferring different types of
files.† For comparison we also show throughput
using FTP over TCP/IP with compressed headers.
The values in parentheses show the fraction of the
maximum rate.‡

In most cases, we achieve 95% or more of the
available throughput. We can’t explain the infe-
rior performance when pushing uncompressible
files, but we suspect V.42bis is confused.

9. Summary and Future Work

Our modifications to Rx have moved us from a
system that was initially unusable in highly cong-
ested or low-speed environments, to one that
easily accommodates prevailing network condi-
tions. This effort pays off in high-speed nets as
well, because Rx can now more quickly accom-
modate packet loss or corruption. Work remains
to done, though. Rx still needs exponential
hhhhhhhhhhhhhhhh
† vmunix.Z is a 697,180 byte, compressed file.
vmunix is a 1,036,474 byte, binary executable.
troffsrc is 266,949 bytes of C source code.
tenrisks is 241,202 bytes of Email text.
‡ IP MTU is 576 bytes. SLIP framing adds two
bytes, so the ‘‘wire’’ frame is 578 bytes. SLIP
byte stuffing is accounted for in the file sizes
shown. Uncompressed AFS headers are 56 bytes.
For authenticated requests, compressed Rx headers
are six bytes. Compressed TCP/IP headers are
three bytes.

The maximum data rate is

1920 ×
578

(578 −2 − hdrsize)hhhhhhhhhhhhhhhh

if the file is compressible with V.42bis; otherwise,
replace 1920 with 1724.

iii
Rx/RTT Rx/HDR FTPiii

V.42bis on 1727 1893 1903iii
c
c
c
c

V.42bis off cc
c

1551 cc
c

1700 cc
c

1709 c
c
c
c

iii
Maximal bytes per second

Rx/RTT Rx/HDR FTPiii
vmunix.Z 1030 (.6) 1234 (.71) 1420 (.75)iii
vmunix 1622 (.94) 1838 (.97) 1891 (.99)iii
troffsrc 1628 (.94) 1841 (.97) 1854 (.97)iii
c
c
c
c
c

tenrisks c
c
c
c
c

1630 (.94) c
c
c
c
c

1855 (.98) c
c
c
c
c

1899 (.998) c
c
c
c
c

iii
Measured bytes per second

Figure 18. SLIP throughput. The tables show maxi-
mal and measured throughput for Rx transfers with and
without header compression, and for FTP with header
compression. Maximal throughput takes into account
framing overhead at the various network layers.

backoff on successive retransmissions. Slow-start
must be studied to determine whether a smoother
approach to the equilibrium state is valuable in
the context of a streaming RPC oriented toward
bulk data transfer.

Other studies and improvements planned for Rx
include window adjustments when congestion is
detected (or suspected), and real IP MTU
discovery. We are in search of a means to esti-
mate end-to-end bandwidth, from which we can
derive pipe size, which we hope to use to deter-
mine the optimal window size. Rx is used in
environments that differ in pipe size by many ord-
ers of magnitude. This presents a real challenge
to the implementation of a high-performance
transport layer.

Acknowledgements

Work at CITI was partially supported by IBM and
Telebit.

References

1. J.H. Howard, ‘‘An Overview of the Andrew
File System,’’ pp. 23−26 in Winter 1988
USENIX Conf. Proc., Dallas (February, 1988).

2. J.B. Postel, ‘‘User Datagram Protocol,’’ RFC
768, Network Information Center, SRI Inter-
national, Menlo Park, CA (August 1980).

3. Edward R. Zayas, ‘‘AFS−3 Programmer’s
Reference: Specification for the Rx Remote
Procedure Call Facility,’’ Report FS-00-
D164, Transarc Corporation (August, 1991).

4. R.N. Sidebotham, ‘‘Rx: Extended Remote
Procedure Call,’’ in Proceedings of the
Nationwide File System Workshop, Informa-
tion Technology Center, Carnegie Mellon
University, Pittsburgh (August, 1988).

- 9 -

-- --

Bachmann/Honeyman/Huston

5. Sun Microsystems, Inc., ‘‘RPC: Remote Pro-
cedure Call Protocol specification: Version
2,’’ RFC 1057, Network Information Center,
SRI International, Menlo Park, CA (June
1988).

6. J.B. Postel, ‘‘Transmission Control Proto-
col,’’ RFC 793, Network Information Center,
SRI International, Menlo Park, CA (Sep-
tember 1981).

7. J.B. Postel, ‘‘Internet Protocol,’’ RFC 791,
Network Information Center, SRI Interna-
tional, Menlo Park, CA (September 1981).

8. Christopher A. Kent and Jeffrey C. Mogul,
‘‘Fragmentation Considered Harmful,’’ Proc.
SIGCOMM ’87 Workshop, Stowe, VT,
pp. 390−401 (August 1987).

9. J.L. Romkey, ‘‘Nonstandard for transmission
of IP datagrams over serial lines: SLIP,’’ RFC
1055, Network Information Center, SRI
International, Menlo Park, CA (June 1988).

10. V. Jacobson, ‘‘Compressing TCP/IP Headers
for Low-Speed Serial Links,’’ RFC 1145,
Network Information Center, SRI Interna-
tional, Menlo Park, CA (February 1990).

11. V. Jacobson, ‘‘Congestion Avoidance and
Control,’’ Proc. ACM SIGCOMM ’88, Stan-
ford, CA, pp. 314-329 (August 1988).

12. P. Karn and C. Partridge, ‘‘Improving
Round-trip Time Estimates in Reliable Tran-
sport Protocols,’’ Proc. ACM SIGCOMM ’87,
Stowe, Vermont, pp. 2−7 (1987).

13. Toby Nixon, ‘‘Estimate of V.32bis
throughput,’’ comp.dcom.modems (24
Sep 91).

- 10 -

