

ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 93Ð5

The Design and Implementation of an AFP/AFS
Protocol Translator

Thomas J. Hacker

hacker @citi.umich.edu

This paper gives an overview of the design and implementation of the AFP/AFS protocol
translator currently in use at the University of Michigan. The protocol translator is an im-
plementation of the AppleTalk protocol suite on BSD UNIX and BSD UNIX derivatives.
The translator exploits currently existing UNIX TCP/IP mechanisms (such as sockets), and
provides a programming interface to the session and transport layers of AppleTalk.

The translator is designed to export AFS and UNIX local file system components as AFP
volumes. This ability enables users to access files in the large AFS file system using the na-
tive Macintosh interface. Additionally, the translator software on the Macintosh provides
Kerberos authentication to the AFS client (AFS Kerberos), reauthentication for expired to-
kens (AFS Log), and the advantages of the rich access control mechanisms provided by
AFS.

August 4, 1993

Center for Information Technology Integration 1

The Design and Implementation
of an AFP/AFS Protocol

Translator

Thomas J. Hacker

August 4, 1993

This paper describes the design and implementation of the AFP/AFS protocol translator

1

 currently
in use at the University of Michigan. Part of the Institutional File System (IFS) project [1], the pro-
tocol translator is an implementation of the AppleTalk [2] protocol suite on BSD UNIX [3] and BSD
UNIX derivatives. The translator exports AFS [4] and UNIX local file system components as AFP
volumes, enabling IFS users to use the native Macintosh interface to access files in the large AFS file
system. Additionally, the translator software on the Macintosh provides Kerberos authentication
to the AFS client (AFS Kerberos), reauthentication for expired tokens (AFS Log), and the advan-
tages of the rich access control mechanisms provided by AFS.

AppleShare, using the AppleTalk Filing Protocol (AFP), is the native Macintosh file-sharing mech-
anism. A Macintosh client running AppleShare makes AFP requests to a server. The server then
translates these requests into appropriate AFS requests, receives and caches the file returned by the
server, and returns the file to the requesting client using the AFP.

1. Motivation and Background

As components of the Institutional File System (IFS) at the University of Michigan, protocol trans-
lators enable clients running operating systems other than UNIX to access the IFS. Protocol trans-
lation is a vital component in achieving the vision of the IFS project to extend AFS (its file system
base) to support multiple platforms and a potential 30,000 workstations on the University of Mich-
igan campus.

Protocol translators convert file system requests from one file system protocol to another. More
than half of the campus community use Macintosh computers. Without the AFP/AFS protocol
translators, these users would become isolated from the campus-wide, distributed computing en-
vironment.

2. User Interface Issues

The protocol translator looks like an AFP server to a Macintosh client. No changes were made to
the AFP protocol or to existing software running on the client. However, some additional software

1. For programming-level details on the AFP/AFS protocol translator (formerly called Netatalk), refer to [5].

2

Center for Information Technology Integration

Thomas J. Hacker

was installed on the Macintosh client to provide secure authentication and to manage AFS access
control lists.

Accessing an AppleShare volume exported by a translator is no different than accessing a normal
AppleShare volume. Users open the Chooser dialog box and select the file server they wish to ac-
cess. After selecting a file server, they are prompted for authentication information. After authen-
tication, users are presented with a list of available volumesÑat minimum, their home directories.

To define the list of mountable volumes that appear after authentication, users can create a config-
uration file in their AFS home directories that maps a volume name to the corresponding portion
of the AFS file tree. Figure 1 shows a sample list.

Figure 1.

Sample Volume List

Selecting one or more volumes results in those volumes appearing on the desktop. For example,
selecting the volumes CITI and Mac_Archives places the volume icons shown in Figure 2 on the
desktop.

Figure 2.

IFS volumes on the Macintosh desktop

 Users manipulate these volumes as they would any other AppleShare volume. An AppleShare vol-
ume exported by an AFS server is simply a portion of the AFS tree.

2.1 Navigation

Macintosh users navigate the AFS file system as though it were a normal Macintosh volume. Dou-
ble-clicking on an AFS volume icon opens it. Folders and files appear as the user expects. Users ma-
nipulate the directory hierarchy as they do regular Macintosh files.

Center for Information Technology Integration 3

The Design and Implementation of an AFP/AFS Protocol Translator

2.2 Availability of AFS Commands

AFS provides several commands that allow users to view various characteristics of the file system.
For example, commands exist that indicate the status of the available file servers.

For the Macintosh environment, however, only the authentication and ACL manipulation com-
mands are currently available. (Most other commands have specific meaning only for AFS files.)
Users do not use the AFS command itself, but instead use a program that fits the Macintosh para-
digm and presents an equivalent capability. So instead of issuing a UNIX style command, users
make choices and fill in values in a dialog box.

2.3 File Naming

File name compatibility presents a few problems. Most of the allowable characters in the Macintosh
operating system are supported by AFS and vice versa. The notable exceptions are spaces, colons,
and slashes. (The translator includes a mechanism that translates these characters into allowed
UNIX file name characters.) Additionally, the Macintosh Finder imposes a maximum name length
of 31 characters. File names in AFS that are longer than that appear truncated.

2.4 Authentication

The privacy of large scale file systems is important. Kerberos, developed by the Massachusetts In-
stitute of Technology, provides a mechanism that keeps user authentication secure and avoids the
transmission of passwords in clear text over campus data networks. However, the Macintosh client
does not directly support Kerberos. In conjunction with the AFP/AFS protocol translator, authen-
tication occurs through a new Macintosh program module that implements the Kerberos authenti-
cation mechanism through the Alternative UAM mechanism provided by the Chooser. Users select
the Kerberos authentication method to access AFS file servers. After that, the user authentication
dialog is identical to that for logging on to an AppleTalk server.

2.5 Permission Mapping (ACLs)

AFS uses access control lists (ACLs) that allow the user to specify permissions for AFS directories.
Because AFP does not support identical permission modes, a new Desk Accessory (DA) is included
with the translator. The AFS Privileges DA appears in the Apple desktop menu and enables users
to set ACLs for folders (directories) contained in an AFS volume (Figure 3).

Figure 3.

AFS Privileges Interface

4

Center for Information Technology Integration

Thomas J. Hacker

3. Architecture

Underlying the user interface concerns, addressed above, is the internal architecture of the AFP/
AFS protocol translator. The translator implements the AppleTalk protocol suite on BSD UNIX and
its derivatives, exploiting currently existing UNIX TCP/IP mechanisms and abstract communica-
tion components such as bind, socket, sendto, and recvfrom. Some of the features of AFP/AFS pro-
tocol translator include the ability to ping AppleTalk hosts (aecho), to perform name lookups
(NBP), a file service (AFP), and additional print services to the Macintosh (PAP).

Figure 4 shows the relationship of the various layers of the translator protocol stack and how they
relate to the traditional ISO/OSI networking model.

Figure 4.

Translator Protocol Stack

The AFP /AFS protocol translator is implemented primarily in the kernel of an intermediate server
[6]. Besides the kernel level, the translator includes libraries (Libatalk) that provide a programming
interface to the session and transport layers of its protocol. Libatalk provides the components nec-
essary to implement such services as the AppleTalk Filing Protocol (AFP). The translator also sup-
ports native ports for implementing services such as AppleTalk aecho. Additionally, the translator
provides network information table maintenance by supporting the Name Binding, Routing Table
Maintenance, and Zone Information Protocols [5].

AppleTalk
Information

Table
Maintenance

Application

Presentation

Session

Transport

Network

Data Link

Physical

Translator
Kernel

Components

Printer
Access

Protocol
(PAP)

AppleTalk
Filing

Protocol
(AFP)

AppleTalk Session
Protocol (ASP)

AppleTalk Transac-
tion Protocol (ATP)

}Libatalk

Center for Information Technology Integration 5

The Design and Implementation of an AFP/AFS Protocol Translator

3.1 Translator Kernel Level

The AFP/AFS protocol translator includes kernel modules that process incoming and outgoing Da-
tagram Delivery Protocol (DDP) packets and manage the AppleTalk Address Resolution Protocol
(AARP) tables used for routing.

3.2 Information Table Maintenance

Outside the kernel level, the translator creates and maintains tables for the Name Binding Protocol
(NBP), Routing Table Maintenance Protocol (RTMP) and Zone Information Protocol (ZIP) through
a daemon process,

atalkd

. The translator provides several utilities to query and modify these ta-
bles. An additional application,

aecho

, allows a user to ÒpingÓ a host in a fashion similar to the
TCP/IP ping.

3.2.1 NBP

The NBP portion of

atalkd

 contains a linked list of structures describing the objects available from
the AppleTalk stack on the host. Each structure describes an object, and a type. (For example, if
ÒPoohbahÓ is an object and ÒLaserWriterÓ is a type, when an NBP query for =:= or =:LaserWriter
is received, Poohbah:LaserWriter is returned.)

3.2.2 RTMP

The RTMP portion of

atalkd

 receives RTMP information broadcast by routers, and manages a
linked list of structures describing AppleTalk routes based on that information.

3.2.3 ZIP

The ZIP table maintained by

atalkd

 is a linked list of structures describing the zone name. The
mapping between zone name and network number is done by looking through the RTMP table.

3.2.4 AppleTalk Ports

The translator also supports the native AppleTalk ports: Routing Table Maintenance Protocol
(RTMP), Name Binding Protocol (NBP), AppleTalk Echo Protocol (AEP), and Zone Information
Protocol (ZIP). The complete list, formatted in a similar fashion as TCP/IP ports, appears as fol-
lows:

rtmp 1/ddp Routing Table Maintenance Protocol
nbp 2/ddp Name Binding Protocol
echo 4/ddp AppleTalk Echo Protocol
zip 6/ddp Zone Information Protocol

3.3 Libatalk: Translator Libraries

Above the kernel, Libatalk is a set of libraries that consists of the AppleTaIk Transaction Protocol
(ATP), which handles packet management, and the AppleTalk Session Protocol (ASP), which main-
tains session information. Libatalk provides layers above the translator kernel level to support the
higher-level applications AFP and the Printer Access Protocol (PAP). Programmers can use Li-
batalk to write additional applications at this level.

3.4 AFP Translator Implementation

AFP is AppleÕs remote file service. It allows mounting of remote volumes, and has mechanisms for
access control and user authentication. The translator provides a platform for AFP on UNIX. AFP
runs as a daemon process, and provides Kerberos authentication using the Alternative User Au-
thentication Mechanism (UAM) on the Macintosh [7, 8], and translates AFP calls into file accesses
to the UNIX file system.

6

Center for Information Technology Integration

Thomas J. Hacker

3.5 PAP Translator Implementation

PAP, as it exists in the translator, provides print server service to Macintoshes accessible to the
translator via AppleTalk. The print jobs it receives are queued up via the normal UNIX

lpq

 mech-
anisms, and hence can be either printed locally or remotely through a TCP/IP network using the
remote network printing capabilities of

lpq

.

4. Library for AppleTalk (Libatalk)

The Libatalk portion of the translator consists of two protocol layers that provide libraries and util-
ity routines used in applications such as

afpd

 and aecho. The first protocol layer and the lower of
the two, ATP, supports a loss free delivery of client packets from a source socket to a destination
socket. ATP does windowing for groups of packets, and ensures proper sequences. The second
layer, ASP, uses the services of the ATP layer and is responsible for setting up and tearing down
sessions, sending commands to a server, receiving command replies, writing blocks of data from
the workstation to the server, and other services.

4.1 ATP

The AppleTalk Transaction Protocol (ATP) layer provides a loss free delivery of packets from a
source socket to a destination socket. The translator kernel implementation of ATP implements ex-
actly-once (XO) transactions, but not at-least-once transactions (ALO). The XO transactions guar-
antee non-duplicate requests, and the delivery of up to eight packets of data per request. ATP
sequences packets (in most cases) and guarantees the packets are delivered in order.

The calls that Libatalk provides for using ATP are

: atp_open

,

atp_rreq

,

atp_rresp

,

atp_sreq

, and

atp_sresp

. The

atp_handle

 (from include

/atalk/atp.h

) structure repre-
sents the open sockets in the ATP layer. The structure of

atp_handle

 is:

struct atp_handle {

int atph_socket; /* ddp socket */

struct sockaddr_at atph_saddr; /* address */

u_short atph_tid; /* last tid used */

u_short atph_rtid; /* last received (rreq) */

u_char atph_rxo; /* XO flag from last rreq */

struct atpbuf *atph_sent; /* packets we send (XO) */

struct atpbuf *atph_queue; /* queue of pending packets */

int atph_reqtries; /* retry count for request */

int atph_reqto; /* retry timeout for request */

u_char atph_rbitmap; /* bitmap for request */

struct atpbuf *atph_reqpkt; /* last request packet */

struct atpbuf *atph_resppkt[8]; /* response to request */

/* the following for dynamic adaptive reqto */

#define NTRELS 4

struct timeval atph_treldly[NTRELS];/* delays for last N trel's */

u_char atph_trels; /* next trel to use */

};

typedef struct atp_handle *ATP;

Center for Information Technology Integration 7

The Design and Implementation of an AFP/AFS Protocol Translator

Another structure is the ATP parameter block, used in the ATP calls to get data in and out of the
ATP layer. The structure of

atp_block

 is:

struct atp_block {

struct sockaddr_at *atp_saddr; /* from/to address */

union {

struct sreq_st sreqdata; /* For send request. */

#define atp_sreqdata atp_data.sreqdata.atpd_data

#define atp_sreqdlen atp_data.sreqdata.atpd_dlen

#define atp_sreqtries atp_data.sreqdata.atpd_tries

#define atp_sreqto atp_data.sreqdata.atpd_to

 struct rres_st rresdata; /* for response. */

#define atp_rresiov atp_data.rresdata.atpd_iov

#define atp_rresiovcnt atp_data.rresdata.atpd_iovcnt

 struct rreq_st rreqdata; /* for request data */

#define atp_rreqdata atp_data.rreqdata.atpd_data

#define atp_rreqdlen atp_data.rreqdata.atpd_dlen

 struct sres_st sresdata; /* for response */

#define atp_sresiov atp_data.sresdata.atpd_iov

#define atp_sresiovcnt atp_data.sresdata.atpd_iovcnt

} atp_data;

u_char atp_bitmap; /* response buffer bitmap */

};

The following table describes the translator ATP Libatalk routines:

TABLE 1.

Translator ATP Kernel Routines

Routine Function Internal Actions

atp_open

() Takes a socket (port number) used
for listening for requests on that
port, creates an

atp_handle

 struc-
ture, and returns a pointer to it.

Opens a socket and performs a
bind call to establish the socket.

atp_rreq()

Waits on an open

atp_handle

 for
a request from a specific address on
a specific port. The data for the
request arrive in the parameter
block.

Calls

recv_atp

 to receive
request.

recv_atp

 uses a

recvfrom

 to
wait for an input packet from the
kernel.

atp_rresp()

Waits for a response on an open

atp_handle

. The data for the
request is passed back in the param-
eter block.

atp_sreq()

Sends a request on an open

atp_handle

. The parameters are
received in a parameter block.

Builds an ATP request packet,
and calls

sendto

 to send it to the
kernel.

atp_sresp()

Sends response packets on an open

atp_handle

. The parameters are
received in a parameter block.

8

Center for Information Technology Integration

Thomas J. Hacker

4.2 ASP

Libatalk implements the following ASP routines:

asp_init

,

asp_getsession

,

 asp_close

,

asp_attention

,

asp_getrequest

,

asp_cmdreply

,

asp_wrtcontinue, asp_wrtreply

,
and

asp_kill

. The ASP structure (

include/atalk/asp.h

) contains the information about an
ASP session. The structure of

ASP

 is:

typedef struct ASP {

ATP asp_atp; /* The ATP information for this session. */

struct sockaddr_at asp_sat; /* The source AppleTalk address for this

 session */

u_char asp_wss;

union {

 struct {

 char *as_status;

 int as_slen;

 } asu_status;

u_short asu_seq;

 } asp_u;

#define asp_status asp_u.asu_status.as_status

#define asp_slen asp_u.asu_status.as_slen

#define asp_seq asp_u.asu_seq

int asp_flags;

u_char asp_sid; /* ASP session ID. */

} *ASP;

The following table describes the translator ASP Libatalk routines:

TABLE 2.

Translator ASP Kernel Routines

Routine Function

asp_init

() Allocates room for an ASP structure and adds the ATP structure
passed to it as a parameter to the ASP structure it allocates.

asp_getsession()

Waits for and acts upon ASP control requests. If an

OpenSess

 is
sent by a Macintosh client, a child process is forked that handles
that session.

asp_getsession

 also manages sending status and
replying to tickle packets.

asp_close()

Closes an open session.

asp_attention()

Sends an Attention message to the client, to inform it that the
server needs attention.

asp_getrequest()

Receives a request from a client and allocates enough buffer space
for the receipt of requests from the client.

asp_cmdreply()

Used to reply to commands received through

asp_getrequest

.

asp_wrtcontinue()

Transfers data from the server to the client as part of a write call
sequence. The timeouts on the packets for

WrtContinue

 are
determined adaptively from the ATP layer Transaction Release
delay times.

Center for Information Technology Integration 9

The Design and Implementation of an AFP/AFS Protocol Translator

5. Information Table Maintenance

The AFP/AFS protocol translator maintains table information with the daemon

atalkd

. This dae-
mon adds, deletes, and expires RTMP, NBP, and ZIP table entries. It also replies to incoming pack-
ets for AppleTalk Echo Protocol (AEP). Figure 5 shows the interaction between the components of

atalkd

.

Figure 5.

Information Table Maintenance (

atalkd

)

After parsing the command line arguments to

atalkd

 and setting up the appropriate interfaces,

main

 proceeds to open sockets for the DDP services

RTMP

,

NBP

,

AECHO

, and

ZIP

. The

main

 routine
calls the initialization routines in the supporting routines for each protocol, and then enters an in-
finite for loop that sleeps on a file descriptor, waiting to be woken by the socket layer, for the sock-
ets it has open. When a packet is received for one of the protocols

main

 handles, an appropriate
routine is called and passed the socket from which to read.

asp_wrtreply()

Terminates the write call chain.

asp_kill()

Sends a signal to all of the current sessions.

TABLE 2.

Translator ASP Kernel Routines

Routine Function

Incoming data from ddp_input
in kernel (via socket mechanism)

main

NBP

RTMP

ZIP

AEP

RTMP Table NBP TableZIP Table

Outgoing data to ddp_output
in kernel (via socket mechanism)

System Routing Table

R
ep

ly
 g

en
er

at
ed

10

Center for Information Technology Integration

Thomas J. Hacker

6. AppleTalk Filing Protocol (AFP)

The AFP/AFS protocol translator provides a platform for AFP on UNIX. A daemon (

afpd

) runs,
waiting for Macintosh users to connect to a file server advertised by a particular invocation of a dae-
mon (i.e. one daemon per server advertised). When a user connects to a server and logs in,

afpd

forks a process to serve the userÕs requests. The requests come in as an index into a switch table that
contains the pointer to an appropriate routine. When a volume is dismounted, the process created
to serve the user terminates.

6.1 What is “AppleDouble”?

The Apple ÒAppleDoubleÓ file format [9] addresses the issues that arise from the Macintosh using
a typed file system whereas UNIX uses an untyped file system. Every Macintosh file has a set of
attributes and resources associated with it that is separate from the data (hence the data and re-
source forks). UNIX has no mechanism for distinguishing between those attributes and the data in
a file. Thus, the attributes and resources associated with a UNIX file must be stored in a separate
file. The resource fork contains data used by an application, such as program code, icons, dialog
boxes, and menus. The data fork of an application contains the data specific to that application.

For example, to store the application Microsoft Word on an AFP volume hosted on a UNIX system
in your home directory, the data fork would be stored in your home directory under the name ÒMi-
crosoft WordÓ, and the resource fork would be stored (in the AFP implementation of the translator)
in a subdirectory named Ò.AppleDoubleÓ in your home directory. The name of the resource fork
file would also be ÒMicrosoft WordÓ. Contained in every AFS directory that has Macintosh files
with resource and data forks is an Ò.AppleDoubleÓ directory that contains the resource forks for the
files in that directory.

This naming convention creates a problem when you use the UNIX copy or move command to
move a Macintosh file with both resource and data forks. If you simply copy an application from
your home directory to another UNIX location, the resource fork is left behind, and attempts to
launch the application will fail. Make sure that if you move the data fork, you also move the corre-
sponding resource fork into the .AppleDouble directory of the target directory.

The resource fork file is formatted as follows:

Magic Number 4 For AppleDouble is 0x00051607
Version Number 4 0x00010000
Filler 16
Number of Entries 2 SpeciÞes the number of TYPES of entries
Entry descriptor for each entry

Entry ID 4 Entry type identiÞer
 Offset 4 Offset from the beginning of the Þle to the

start of the date for the entry.
 Length 4 Length of the entry data in bytes.

Center for Information Technology Integration 11

The Design and Implementation of an AFP/AFS Protocol Translator

The possible entry types are:

Type Number Type Name Type Description
1 Data Fork Data Fork
2 Resource Fork Resource Fork
3 Real Name The fileÕs Macintosh name
4 Comment Macintosh comment string
5 Icon, B&W Black & White Icon
6 Icon, Color Color Icon
8 File Dates Information File date attributes
9 Finder Info Macintosh Finder information

10 Macintosh File Information Macintosh file information, attributes, etc.
13 Short Name AFP short name
14 AFP File Information AFP file information
15 Directory ID AFP Directory ID

6.2 The Desktop Database

Another important component of the translatorÕs AFP implementation is the Desktop database.
The Desktop database is used by the Macintosh Finder to associate applications and documents
with icons, to store the icon itself, to locate an appropriate application when a user opens a docu-
ment, and to store comments for files and directories. The

afpd

 daemon stores the Desktop data-
base in a directory under the AFP volume mount point in a directory named Ò.AppleDesktopÓ. The
Desktop database entries are stored in subdirectories, named with the first letter of the CREATOR
of the entry. Each CREATOR consists of two files:

CREATOR.appl

 and

CREATOR.icon

.

The

.appl

 file contains the path name of the application with which the CREATOR is associated,
and also may hold a user-defined tag and a comment string. The

.icon

 file contains the icon bit-
maps (tagged by icon type) that are associated with the CREATOR. The Finder, indirectly, makes
calls to the Desktop database to retrieve the information used to find the appropriate application
for a document being opened, to get the bitmaps for icons, and to get the comment strings for files.
The

afpd

 daemon has a data structure to represent the currently open desktop entry that is used
for representing the currently open

.icon

 and

.appl

 desktop files. Beyond that, there is no addi-
tional caching of this information.

For icons, the following data structure represents the current open

.icon

 file (for a given CRE-
ATOR). For application mappings, this data structure represents the current open

.appl

 file.

struct savedt {

u_char sdt_creator[4]; /* The CREATOR of the file. */

int sdt_fd; /* The file descriptor to the open file. */

int sdt_index; /* The index (1, 2, 3,...) icon or appl

 mapping in the file. */

short sdt_vid; /* The volume identifier of the volume this

 goes with. */

};

12

Center for Information Technology Integration

Thomas J. Hacker

6.3 Authentication

The Macintosh supports a mechanism called Alternative UAM (User Authentication Mechanism)
that is used to do Kerberos authentication with the AFP server running on UNIX. The server re-
turns an encrypted session key in response to the

LoginCont

 call from the Macintosh. The Ker-
beros ticket is stored on the Macintosh in the

skey

 resource in AFS Kerberos. Also, a utility named
ÒAFS LogÓ can ÒrefreshÓ an expired ticket, much as

klog

 does on UNIX.

6.4 The AFP

main

 Routine

The translatorÕs AFP implementation has two large switch arrays that are indexed by the AFP func-
tion number. One array is preauthentication commands, the other is postauthentication com-
mands. The entries in the arrays are function pointers to routines that read the data in the packet,
perform the specified action, formulate a response, and return the response.

The

 main

 routine is the primary module that handles the dispatching of the functions. Upon entry
(when

afpd

 is started), it opens an ATP and ASP session, and registers the AFP server in the local
NBP database. An infinite loop is then entered, waiting for an ASP command. If the ASP command
is

ASP_CLOSE

, the session is closed. If the ASP function is another command,

main

 reads the AFP
command byte from the packet, and calls the appropriate function, with space allocated for the re-
ply. The ASP reply is sent via

asp_cmdreply

. If the ASP command is

WRITE

,

 main

 reads the com-
mand byte, and calls the appropriate function. The response is sent via

asp_wrtreply

. Other ASP
commands cause an error (Òasp_getrequest: bad returnÓ) to be logged via

syslog

.

The function calls in

afpd

 include functions grouped in the following categories: server, volume,
directory, file, combined file and directory, fork, desktop database, and additional AFP calls. The

main

 routine dispatches these calls via switch arrays in

switch.c

, where the arrays are indexed
by the AFP call number. The functions

afp_login

 and

afp_logincont

 (located in the preau-
thentication switch array) may be called before authentication.

Center for Information Technology Integration 13

The Design and Implementation of an AFP/AFS Protocol Translator

7. Printer Access Protocol (PAP)

A daemon (

papd

) runs, waiting for connections from a Macintosh. The daemon spools the data to
a printer using the traditional UNIX print mechanisms, and sends print jobs to UNIX-connected
PostScript [10] printers (figure 6).

Figure 6.

PAP Netatalk Implementation

7.1 The

main.c

 Routine

When

papd

 starts, it reads configuration information from the

papd.conf

 file. It then opens an
ATP listening socket and remains in an infinite processing loop where it first waits for a job (via

pap_getnextjob

), and then forks off a child process to process the job (via

process_job

). When
the job is processed, that ATP socket is closed and the loop returns to

pap_getnextjob

 where it
waits for another connection (figure 7).

papd

Translator
Kernel

ATP

UNIX
Print
System

local
TCP/IP
network
printing

Another
network
host

Translator
UNIX

Macintosh

14

Center for Information Technology Integration

Thomas J. Hacker

Figure 7.

The

main.c

 routine

8. Future Work

The IFS includes working protocol translators for the Macintosh and SunÕs Network File System
(NFS). The AFP/AFS protocol translator enables the largest segment of the campus computing
community, Macintosh users, to use the IFS to easily share data and files with the rest of the UM
campus. A new release of the AFP/AFS protocol translator is currently in beta test on the UM cam-
pus.

9. Acknowledgments

Wes Craig and Mark Smith wrote the original (phase I) version of Netatalk. Mike Stolarchuk ported
the phase I code to IBM RS/6000 AIX. Marcus Watts provided helpful comments and improve-
ments to the phase II work described here.

This work was supported by IBM.

main()

)Infinite job loop

pap_getnextjob()

readprocsetdir()

fork()

pap_slclose()

processjob()

pap_slclose()

exit(0)

ChildParent

Center for Information Technology Integration 15

The Design and Implementation of an AFP/AFS Protocol Translator

10. References

1.

Ted Hanss, “University of Michigan Institutional File System,”

/AIXTRA: The AIX Technical Review

, pp.
25–32 (January 1992).

2.

Gursharan S. Sidhu, Richard Andrews, and Alan B. Oppenheimer,

Inside AppleTalk,

Second Edition,
Addison-Wesley, Reading (1990).

3.

Samuel J. Lefler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman,

The Design and
Implementation of the 4.3 BSD UNIX Operating System

, Addison-Wesley, Reading (1989).

4.

J. H. Howard, “An Overview of the Andrew File System,” pp. 23–26 in

Winter 1988 USENIX Confer-
ence Proceedings

, Dallas (February 1988).

5.

Thomas Hacker, “Netatalk Architecture,” Internal CITI document, The University of Michigan, August,
1992.

6.

James Howe, “Intermediate File Servers in a Distributed File System Environment,” CITI Technical
Report 92–4, University of Michigan, (June 1992).

7.

William Doster, “Kerberos User Authentication Method (UAM) for Use by Macintosh Users of Apple-
Unix File Server (AUFS),” unpublished CITI internal document, February 1990.

8.

William Doster, Jim Rees, “Third-Party Authentication in the Institutional File System,” CITI Technical
Report 92-1, University of Michigan, (February 1992).

9.

“AppleSingle/AppleDouble Formats for Foreign Files Developer’s Note,” Apple Computer, Inc. (1990).
Available from the Apple Product Developer’s Association (APDA).

10.

Ed Taft and Jeff Walden,

PostScript Language Reference Manual

, Second Edition, Addison-Wesley,
Reading (1990), Appendix G, “Document Structuring Conventions—Version 3.0,” pp. 611–708.

11. Availability

Copies of the translator may be requested from

info@citi.umich.edu

. The package will be dis-
tributed Òas is,Ó without CITI support.

