

ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 93Ð2

Integrating Mass Storage and File Systems

C. J. Antonelli

cja@citi.umich.edu

P. Honeyman

honey@citi.umich.edu

This paper describes current and anticipated work at the University of MichiganÕs Center
for Information Technology Integration (CITI) in developing and integrating mass storage
with distributed file systems, specifically with the Andrew File System (AFS).

After surveying existing mass storage and associated file systems, this paper presents one
approach to integrating AFS with mass storage. We consider the mass store itself to be the
file system, not a bag on the side of a disk-based file system. This unifying perspective dis-
tinguishes our approach from other large-scale file systems.

Instead of developing a back-end server to manage the movement of data files between tra-
ditional disk-based storage systems (employed, in our case, by AFS) and magnetic-tape or
optical-based mass storage systems (of which AFS has little or no knowledge), we envision
the mass store as a first-class data repository. A traditional disk-based file system serves as
a (very large) cache of the mass store system. On top of that is another, large, high-speed
memory cache. All storage other than the mass store is used exclusively for caching. In this
approach, cache management policies are of fundamental importance.

Two main requirements for this work are that the AFS name space remain unchanged, and
performance seen by users must not suffer. For example, users must not have to pre-stage
files explicitly in order to achieve acceptable performance.

April 15, 1993

Center for Information Technology Integration 1

Integrating Mass Storage and

File Systems

C. J. Antonelli

P. Honeyman

April 15, 1993

The University of Michigan has deployed a
campus-wide file system based on the An-
drew File System, first developed by Carn-
egie-Mellon University [1]. AFS employs a
client-based disk cache to reduce file traffic
to remote file servers. In brief, when a pro-
cess uses an AFS file, all file operations are
satisfied from a local cache if possible. When
an AFS file is closed, any modified blocks are
written to the server. AFS employs a server-
mediated cache consistency protocol that
flushes a stale cached file from a client cache
when the file is modified by others.

At CITI, we have developed the Institutional
File System (IFS), a modified version of AFS
that facilitates its deployment to campus [2].
Our goal was to scale up AFS to meet the
needs of a large institution by increasing
both the number and the diversity of the sup-
ported client platforms, thereby allowing us-
ers to easily move from one client to another
while all of their files remain accessible
through AFS.

To help meet this goal, we did three things.
First, because the most abundant platform on
campus is an Apple Macintosh, we devel-
oped an intermediate file server that pro-
vides cache management functions for the
Macintosh machines without requiring
changes to the machines themselves. Second,
we ported the AFS file servers to the several
operating systems running on our IBM main-
frames in order to take advantage of the in-
creased throughput and permanent storage

offered by these machines. Finally, we devel-
oped an intermediate caching server located
between an AFS file server and an AFS client;
the goal here was to off-load the main server
by satisfying client requests from a caching-
only server [3].

Of course, we also support several different
kinds of workstations fitted with their own
AFS cache managers, and we run several
workstation-class AFS file servers. This cam-
pus topology is shown in Figure 1.

All told, we plan to support 30,000 end-sys-
tems via IFS when campus deployment is
complete in the mid-Õ90s.

The Problem

The campus is rapidly heading toward a
server disk space crisis. As IFS gains popular-
ity on campus, concern grows over the cost of
maintaining all permanent storage on mag-
netic disk. This problem is particularly severe
with our campus mainframes, on which we
would like to store the majority of our AFS
files, but where disk storage is relatively ex-
pensive.

Currently, the IFS Deployment Group makes
approximately 100 GB of disk storage avail-
able on campus. This gives the average stu-
dent user 3 MB of IFS disk space, which is
regarded as insufficient. While students ob-
tain a larger allocation for class projects, it is

Center for Information Technology Integration

2

Integrating Mass Storage and File Systems

usually of limited duration. Students there-
fore cannot store very much permanent data
in IFS and thus cannot take advantage of one
of its strong points, namely the ability for us-
ers to move from machine to machine while
retaining access to their files. In fact, at to-
dayÕs densities, a few floppies can hold more
data than we give student users in IFS. We
are unlikely to be able to double or quadruple
this disk storage space while relying exclu-
sively on traditional magnetic disk storage
systems.

File sizes are going up. While the average size
of a vanilla U

NIX

 file used to be 11 KB [4], we
observe a steady increase in file sizes re-
quired by windowing, graphics, audio, and
video applications. In a preliminary study of
one IFS server, we found file sizes that are
substantially larger than those observed in
earlier studiesÑover 40 KB for files opened
for reading and over 64 KB for files opened
for writing, on averageÑand we expect this
trend to continue. In addition, the LADDIS
synthetic NFS server benchmark assumes a
small file is 136 KB [5,6].

Many applications exist today that could im-
mediately take advantage of vastly increased
IFS storage. For example, census data manip-
ulated by the Population Studies Center cur-

rently use 4 GB of IFS space; this usage could
increase immediately by at least two orders
of magnitude if enough IFS space were avail-
able.

Requirements

Faced with the need for ever more on-line
storage, it is appealing to consider a mass-
storage system as the central data repository.
In this section, we consider various require-
ments that must be met by a mass-store-
based IFS file server if it is to be a viable alter-
native to todayÕs disk-based architectures.

1

It is well known that conventional mass stor-
age systems trade storage capacity for access
latency. For example, it may take a minute or
more to locate a tape in a repository, move it
to an available drive, mount it, and obtain ac-
cess to a given data block on the tape. The im-
pact of such increased delays is twofold: first,
users may be forced to wait for long periods
before being able to access the first byte of
their data; second, the extreme delays in re-

1. We use the term Òmass storeÓ to refer to the au-
tomated component of a mass storage system, and
the term Òmass storageÓ to refer to the whole sys-
tem.

Figure 1.

Campus IFS Topology

System

Platform

Adapter

Operating

System

Hardware

AAAA
IFS

Central

Process

AA
AAA
AAAFS

AA
AAAAAAA

AA
NFS

IBM RT

SunOS
DEC Ultrix

NeXT

AFS/AFS AA
AA
AAAAFS

AAAA
AA
AAA

AFP

Apple Macintosh
PC-DOS

Apple Macintosh
Apollo

SunOS

IBM RS/6000
PC-DOS

etc.

IBM RS/6000

IBM ES/9000

IBM RS/6000

IBM RS/6000

T
C

P
/IP

 N
et

w
o

rk

IBM RS/6000

Apollo (UM)

Center for Information Technology Integration 3

Integrating Mass Storage and File Systems

sponse to client remote procedure call re-
quests may result in total collapse of the RPC
mechanism that underlies most distributed
file systems, AFS in particular. The require-
ment here is to offer IFS services from mass
storage systems with essentially no addi-
tional observable delay; in exceptional cases,
no communications or user protocols should
break due to the additional delay.

We must serve the needs of both student and
institutional users. This translates into the re-
quirement that the file system support both
smaller student files as well as much larger
files, such as those needed by Population
Studies, with an acceptable degree of effi-
ciency.

Larger files will occupy more space in an IFS
client or intermediate cache. It will be neces-
sary to investigate new cache management
policies, ones that better conserve cached
files. For example, we may wish to prevent a
single large file from occupying a significant
fraction of any cache, thereby invalidating
most other files from the cache and decreas-
ing performance when accessing these files.
At the same time, it may not be a good idea to
flush the first piece of any file from the cache,
since applications are often satisfied with ex-
amining the first few bytes of a file. In a sim-
ilar vein, on multi-user systems, the cache
manager might attempt to allocate fairly the
limited cache resource among the users.

Users should not be required to learn a new
set of administrative commands to use a file
server based on a mass store. For example, in
our ideal, it must not be necessary for users to
pre-stage a file to a disk before running a pro-
gram that accesses the file.

Finally, while we are deploying IFS to cam-
pus, we are currently examining DFS

2

, in
part to determine its suitability as a replace-
ment for AFS. Whatever caching policies we
implement now must not preclude us from

2. DFS is the file system component of the Open
Software FoundationÕs Distributed Computing
Environment (OSF/DCE). DFS is the latest ver-
sion of TransarcÕs AFS.

making the transition from the current AFS-
based campus file system to a DFS-based one.

Related Work

In this section, we summarize some existing
file systems that utilize mass store.

NAStore

NASA AmesÕ NAStore extends a typical
U

NIX

 file system with a mass store back end
[7, 8]. It does this by keeping the file system
metadata on magnetic disk and storing addi-
tional information in a fileÕs inode that per-
mits the data blocks of the file to reside on the
mass store. When a file is accessed, its blocks
are retrieved from the mass store and written
to disk. A utility program periodically scans
the disk and migrates old files back to the
mass store, and provision is made for a
Òpanic dumpÓ of preselected files back to the
mass store if the file system finds itself short
of space.

NAStore attempts to mitigate first-byte la-
tency by blocking a read only until the data it
needs has been read from the mass store;
reads for data that have already transferred
to disk are satisfied immediately. However,
programs that do sequential reads from the
beginning of a file will block until the mass
store delivers the data. Users can avoid this
behavior by caching files manually onto a
disk.

InfiniteStorage

Epoch SystemsÕ InfiniteStorage Architecture
(ISA) also extends a typical U

NIX

 file system
with a mass store [9]. It does so by introduc-
ing a wrapper layer between the VFS layer
and the native file system implementation.
The wrapper handles access to file data on
the mass store; directory information and
metadata remain on magnetic disk. Free
space on magnetic disk is managed by stag-
ing out unused files when disk usage ap-
proaches a threshold; this staging occurs both
when needed and at fixed intervals. Cache
misses are not severe because ISA uses eras-

Center for Information Technology Integration

4

Integrating Mass Storage and File Systems

able optical disks, whose first-byte latency is
around ten seconds, at the second level of its
storage hierarchy. However, files that have
been transferred to magnetic tape at the third
level will cause extended first-byte latencies.

UniTree

General AtomicsÕ UniTree Central File Man-
ager does not augment a U

NIX

 file system
with a mass store [10, 11]. Rather, UniTree
has implemented major portions of the Ver-
sion 4 IEEE Reference Model [12]. Files reside
on magnetic disk until they are migrated to a
lower level in the storage hierarchy, typically
to magnetic tape. Migration is under control
of administrative processes. Migrated files
retain copies on magnetic disk for faster ac-
cess unless free disk space falls below a
threshold at which time the redundant disk
copy is purged. UniTree manages its own
namespace via a set of distributed servers
and thus avoids limitations associated with
storing file system metadata on disk. Files
must be staged manually to avoid extended
first-byte latencies, which are considerable
due to UniTreeÕs policy of caching an entire
file when it is first accessed.

Multiple-Residency AFS

The Pittsburgh Supercomputing Center
(PSC) has undertaken several projects to ex-
tend AFS [13]. One of these provides mass
store support and multiple copies of data.
The standard AFS vnode is augmented with
auxiliary vnodes that point to other copies, or
residencies, of a given file. Typically, the
other copies reside on a mass store. Random
access to data without a disk residency is
handled by first creating a disk residency.
The PSC migration strategy strives to keep
space available for disk residencies by mi-
grating unused files to the mass store. As
long as enough disk storage is available, the
first-byte latency problem is solved directly
via the multiple residency mechanism, which
also provides redundancy.

Plan 9

In the Plan 9 [14] file system, 128 MB of high-

speed RAM acts as a cache for 100 GB of
magnetic disk that acts as a cache for 600 GB
of WORM optical disk. Once per day, file
system activity is interrupted briefly to allow
a checkpoint of changed file system data to
be made. The checkpointed data is then writ-
ten to optical disk while normal file system
activity resumes. In this fashion, the rela-
tively slow WORM write time is masked by
the disk cache, and all previous versions of
the file system are available on the WORM.
Plan 9 uses a comprehensive set of adminis-
trative procedures to make current and
checkpointed files available, but to users it
looks like an ordinary file system, much like
a U

NIX

 file system.

Proposed Approach

In constructing a mass store-based file sys-
tem, we propose using an approach different
from those used in traditional mass-storage
systems, and embrace the Plan 9 approach.
Instead of augmenting an existing file system
with a mass storeÑin effect, the mass store
becomes a bag hanging from the side of the
file systemÑor developing special strategies
for handling a file system that uses a mass
store, we propose that the mass store

be

 the
file system.

In other words, our approach treats a mass
store as another instance of a storage device,
and we choose to manage it as one. This ap-
proach is aligned with the recommendations
of Christman, et al. [15], in that we are pro-
posing a transparent byte-level interface to
files located on mass store, leading to an op-
erating-system-controlled distributed file
system.

Although the Plan 9 file system was de-
signed to be used in a networked environ-
ment in which clients obtain file services
from any nearby servers, it is optimized to
support a few DMA-attached CPU servers.
The challenge for us is to scale up the Plan 9
approach to a campus of tens of thousands of
end-systems using a few large file servers.

Center for Information Technology Integration 5

Integrating Mass Storage and File Systems

Caching Strategy

Our view of the mass store as a file system al-
lows us to recast the problem of providing
reasonable performance from a potentially
slow storage system to that of designing a
high-performance caching strategy. This
problem is not fundamentally different from
designing a caching strategy for any file sys-
tem. Instead of designing special-purpose file
migration policies aimed specifically at miti-
gating mass store deficiencies, a good cach-
ing strategy implements these policies as part
of its function.

Thus, in our approach, a correct caching
strategy is of crucial importance; a failure
here is disastrous. Drawing on traditional op-
erating system caching practices, as well as
more recent work in mass store-based file
systems, we present a partial list of relation-
ships we believe a successful caching strat-
egy must exploit:

¥ Temporal Locality

ÑWhen accessing a
block of a Þle, the chances of requiring
access to the block again in short order
are fairly high. Caching the block exploits
temporal locality.

¥ Spatial Locality

ÑWhen accessing a
block of a Þle, the likelihood of requiring
access to the next block is high [4].
Prefetching the next block in sequence
into the cache exploits temporal locality.
Large block sizes also take advantage of
spatial locality.

¥ File Locality

ÑThe NAStore architects
noticed that when a user accesses one
archived Þle, in a signiÞcant fraction of
instances that user will, in short order,
access several more Þles that were
archived to the same tape [16]. Restoring
all Þles on a given tape exploits Þle local-
ity by obviating repeated access to the
mass store.

¥ Metadata Cost

ÑSome blocks in the cache
are more important than others. In partic-
ular, cache misses on metadata blocks

such as directories and other information
necessary for traversing the Þle system
name space are more costly than misses
on ordinary data blocks, as are losses of
metadata due to a failure to migrate to the
mass store. On the other hand, uncondi-
tionally reserving space in the cache for
metadata is wasteful, particularly in view
of the fact that parts of any large Þle sys-
tem tree are usually devoid of visitors at
any given time. We think a strategy that
weights blocks according to their relative
importanceÑand that permits this
weighting to change dynamicallyÑwill
be helpful here.

¥ Acquisition Cost

ÑMany caching strate-
gies assign the same weight to all cache
blocks of a given type, such as data
blocks. This strategy gives the same pri-
ority to blocks that were easy to obtain, in
terms of expended resources, as it gives
to blocks that were not. A strategy that
takes into account the cost of reacquiring
a block when determining which cache
block to discard to make room for an
incoming block will help here. We plan to
use the cost of acquisition as a Þrst
approximation to a blockÕs reaquisition
cost.

¥ Disposal Cost

ÑSimilarly, it is more
expensive to discard some cache blocks
than others, since some cache blocks have
to be written to the mass store and others
do not. Among those that have to be writ-
ten, some writes will be more resource
intensive than others. Choosing appropri-
ately which blocks are cheapest to discard
exploits disposal cost.

¥ Navigation Cost

ÑOperators of mass
storage have observed that when a user
lists the contents of a directory, an access
to one or more Þles of that directory will
follow shortly thereafter. In systems that
support current user directories, chang-
ing to a new current directory may offer
the same hints, indicating a higher proba-
bility of access to Þles in the current direc-
tory. If also true of IFS users, this

Center for Information Technology Integration

6

Integrating Mass Storage and File Systems

observation translates into a strategy that
starts prefetching Þles when a user
changes to a new current directory and
aborts this prefetching when the user
leaves.

¥ Block Cost

ÑThrowing away some
blocks of a Þle is more costly than dis-
carding others. For example, the Þrst
block of a Þle is much more popular than
all the other blocks, because Þle inspec-
tion tools typically need access to the Þrst
block only. The last block of a Þle is also
popular, since log Þles are usually
accessed there. This observation trans-
lates into an increased weighting for such
popular blocks.

Overall, the weight assigned to a block is de-
termined by (a) the cost to the system if the
block is not retained in the cache and (b) the
cost to the system in obtaining the block from
the mass store. Here the cost to the system for
(a) can be measured in many ways, e.g., un-
necessary delay in accessing the first few
bytes of a file in order to determine its type,
or the timing out of an NFS client because of
delays in traversing a directory tree. For (b)
the cost is most likely a fairly static function
of the type of mass store; i.e., an optical-disk
jukebox should have a much lower cost for
obtaining a block than, say, a magnetic-tape
repository with a robotic retrieval system.

Multilevel caching problems can be attacked
with this approach by increasing the weights
of blocks in upstream caches based on recent
accesses by downstream caches.

Our goal is to determine the efficacy of ex-
ploiting these relationships and to incorpo-
rate the effective relationships, and possibly
others, into a single, cohesive caching
strategy.

Status

Currently, we are simulating the above cach-
ing strategy using our corpus of file system
trace data [17]. We are experimenting with
various cache sizes, initial weights, aging
and reverse aging functions, multilevel
caches, and so forth.

We have obtained a version of Plan 9 and are
in the process of installing it, after which we
will start gaining experience with its file sys-
tem.

If our simulations show that our approach is
effective, we will build and evaluate a proto-
type file system based on mass store.

Conclusion

We have described current and proposed
work in developing and integrating mass
storage with file systems. Our approach con-
siders the mass store to be the file system, not
an appendage of a disk-based file system. In
this scheme, caching is critically important.
We have identified a set of strategies that we
believe are important to effective cache man-
agement for mass stores; we are in the pro-
cess of simulating these strategies using
existing file system trace data. Once we have
determined an effective overall strategy, we
plan to build and evaluate a prototype.

Acknowledgements

Mike Stolarchuk has been talking about cost-
of-acquisition-based caching for years. This
work is partially supported by IBM.

Center for Information Technology Integration 7

Integrating Mass Storage and File Systems

References

1.

Morris, James H., Mahadev Satyanarayanan,
Michael H. Conner, John H. Howard, David
S. H. Rosenthal, and F. Donelson Smith,
“Andrew: A Distributed Personal Computing
Environment,”

Communications of the ACM

,
Vol. 29, No. 3, pp. 184–201 (March 1986).

2.

Hanss, Ted, “University of Michigan Institu-
tional File System,”

/AIXTRA: The AIX Tech-
nical Review

, pp. 25–32 (January 1992).

3.

Howe, James, “Intermediate File Servers in a
Distributed File Server Environment,” CITI
Technical Report 92–4 (June 1992).

4.

Ousterhout, J., H. L. DaCosta, D. Harrison, J.
Kunze, M. Kupfer, J. Thompson, “A Trace-
Driven Analysis of the U

NIX

 4.2 BSD File
System,”

Proceedings of the 10th ACM Sym-
posium on Operating Systems Principles

,
Orcas Island (December 1985).

5.

Keith, Bruce and Mark Wittle, “LADDIS:
The Next Generation in NFS File Server
Benchmarking,”

Summer 1993 USENIX Con-
ference Proceedings

, Cincinati, OH (to appear
June 1993).

6.

Pawlowski, Brian, personal communication,
December 1992.

7.

Tweten, David, “Hiding Mass Storage Under
U

NIX

: NASA’s MSS-II Architecture,”

Tenth
IEEE Symposium on Mass Storage Systems

,
pp. 140-145, Monterey (May 1990).

8.

Hahn, Jonathan, Bob Henderson, Ruth Iver-
son, George Navas, Alan Poston, Tom Proett,
Bill Ross, Mark Tangney, and Dave Tweten,
“NAStore External Reference Specification,”
NAS Systems Division, NASA Ames
Research Center, Moffett Field (January
1992).

9.

Foster, Antony, and David Habermehl,
“Renaissance: Managing the Network Com-
puter and its Storage Requirements,”

 Eleventh
IEEE Symposium on Mass Storage Systems

,
pp. 3-10, Monterey (October 1991).

10.

Hogan, Carole, Loellyn Cassell, Joy Fogle-
song, John Kordas, Michael Nemanic, and
George Richmond, “The Livermore Distrib-
uted Storage System: Requirements and
Overview,”

Tenth IEEE Symposium on Mass

Storage System

s, pp. 6-17, Monterey (May
1990).

11.

McClain, Fred, “DataTree and UniTree: Soft-
ware for File and Storage Management,”

Tenth IEEE Symposium on Mass Storage Sys-
tems

, pp. 126-128, Monterey (May 1990).

12.

“Mass Storage System Reference Model: Ver-
sion 4”, edited by Sam Coleman and Steve
Miller,

IEEE Technical Committee on Mass
Storage Systems and Technology

 (May 1990).

13.

Nydick, Daniel, Kathy Benninger, Brett Bos-
ley, James Ellis, Jonathan Goldick, Christo-
pher Kirby, Michael Levine, Christopher
Maher, and Matt Mathis, “An AFS-based
Mass Storage System at the Pittsburgh Super-
computer Center,”

Eleventh IEEE Sympo-
sium on Mass Storage Systems

, pp. 117-122,
Monterey (October 1991).

14.

Quinlan, Sean, “A Cached WORM File Sys-
tem,”

Software Practice and Experience

, Vol.
21, No. 12, pp. 1289-1299 (December 1991).

15.

Christman, Ronald D., Danny P. Cook, and
Christina W. Mercier, “Re-Engineering the
Los Alamos Common File System,”

Tenth
IEEE Symposium on Mass Storage Systems

,
pp. 122-125, Monterey (May 1990).

16.

Tweten, David, personal communication,
December 1992.

17.

Blumson, S., P. Honeyman, T. E. Ragland and
M. T. Stolarchuk, “AFS Server Logging,”
CITI Technical Report, in preparation.

