CITI Technical Report 93-11

Managing Heterogeneous Distributed Computing
Systems: Using Information Repositories

Gerald A. Winters
ger al d@ngi n. um ch. edu

Toby J. Teorey
teorey@iti.umch. edu

ABSTRACT

An integral part of managing heterogeneous distributed computing systems is an informa-
tion repository. The ultimate goal of our research is to specify a methodology for the de-
sign, analysis, and comparison of information repositories for such systems. We first
outline the general characteristics of data repositories, including requirements and data
model features. Then we build an experimental prototype system to test two candidate re-
positories: X.500 and the AFS file system. Performance and scalability measurements are
collected, analyzed, and compared for the two platforms; and some preliminary conclu-
sions are reached.

December 20, 1993

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Managing Heterogeneous Distributed Computing
Systems: Using Information Repositories

Gerald A. Winters
Toby J. Teorey

December 20, 1993

1. Introduction

Managing heterogeneous distributed com-
puting systems is an area of intense research.
Loss of operations, or down time, in such a
system represents a loss of resources, as well
as dollars and cents. Thus, it is not surprising
to see activity in standards, products, and ar-
chitectures devoted to the management of
heterogeneous distributed computing sys-
tems. An integral part of such a management
system is the information repository. The
goal of the repository is to store the informa-
tion necessary to support successful manage-
ment. The data includes dynamic informa-
tion coming from sensor agents around the
system, as well as static information about
the system configuration. The repository
thus provides information about the general
state of the entire computing system. Figure
1 depicts a generic management architecture.

Note that the repository in Figure 1 is physi-
cally distributed. The figure represents a log-
ical view, which to the user appears as a
single entity. Managed entities can be hard-
ware network devices, such as routers or file
servers, or components of operating systems,
such as mailers and process schedulers. Typ-
ically a software module, called an agent, re-
sides in the entity being managed and stores
status information about the managed object.

A management server, through the agent,
can read and alter management information
associated with a managed entity. The com-
munication protocol between a management
server and agent is usually based on a stan-
dard such as SNMP [4] (simple network man-
agement protocol) or CMIP [1] (common
management information protocol). Figure 2
illustrates this relationship.

Users

Management
Applications

|

Application Access

8 Server
Functions

System Access \B

Information
Repository

Communication protocol

Communication protocol

... Managed entities . . .

Figure 1. Logical view of a generic
management architecture.

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

Management Managed
Server Entity

Management Communication Protocol

Functions Agent zlformmmn

ase

Figure 2. Manager/agent relationship

Many interesting research questions arise
when specifying the repository: What kinds
of data must be gathered to monitor distrib-
uted applications? Is it necessary to collect
historical data? How should data be mod-
eled? Relational? Object-oriented? Tempo-
ral? How will users access data? How should
the repository be organized? What minimum
performance requirements must the reposi-
tory meet? Obviously, these questions are not
entirely independent. The goal of this paper
is not to give a definitive answer to each of
the aforementioned issues, but rather to de-
scribe research and propose future direc-
tions.

The paper is organized as follows. Section 2
introduces CORDS, the research project we
are part of. Section 3 describes the data, data
model, and requirements of a generic infor-
mation repository. Section 4 introduces an
experimental prototype management system
and discusses measurements made on two
different data repositories. The paper con-
cludes by outlining the directions for future
research.

2. CORDS Management
Architecture

The CORDS (Consortium on Research in Dis-
tributed Systems) project [14] is an IBM
funded research project aimed at providing
an environment for the development of dis-
tributed applications. Our research is to pro-
vide technology for CORDS and this section
presents the CORDS architecture and gives a
brief explanation.

The integrated management architecture
shown in Figure 3 and proposed in [3] con-

sists of three layers, application layer, sys-
tems layer, and network layer.

The application layer consists of the CORDS
application tools, the tools available to the
user for distributed applications develop-
ment.

NetMod [2] (Network Modeler) is a net-
work performance tool designed to
model arbitrary LAN networks.

NEST [7] is a graphical-based environ-
ment for the simulation of distributed
networked systems.

NETMATE [6] is a comprehensive net-
work management package.

Hy+ [5] is a visual database system for
managing and controlling large heteroge-
neous networks.

Shoshin Event Monitor [15] supports
debugging of distributed and parallel
applications.

The systems layer consists of various services
or subsystems, including the data repository,
that carry out actions on behalf of the
CORDS application tools. A brief summary
of the main subsystems found in this layer
follows:

Management Information Repository
Subsystem. The collection of information
repositories for management informa-
tion. This subsystem will contain infor-
mation on objects as defined by SNMP or
CMIP, for example, as well as informa-
tion such as server availability and CPU
load. This information is available to the
administrator or manager and to the
CORDS tools.

Configuration Subsystem. This sub-
system is responsible for the addition,
deletion, or modification of managed
objects and their agents that will be
stored as part of the information reposi-
tory.

Monitoring Subsystem. This group of
components is responsible for the moni-
toring of managed objects. This includes

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

Application Layer

/ Monitoring
—~| Subsystem |<
Configuration Control
Subsystem < > Subsystem
A [
Management
Agents
v v
Management Information Repository <
= Subsystem
>

Static
Management
Information

Dynamic
Management
Information

Systems
ayer
Network Management
Layer Agents

Figure 3. Manager/agent relationship

Center for Information Technology Integration 3

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

coordinating and synchronizing the
activities of management agents, and exe-
cuting monitoring requests.

Control Subsystem. This subsystem is
responsible for controlling the behavior
of managed objects. For example, excep-
tions from managed objects may trigger
control activities or control commands
may be issued from the manager or
administrator. The subsystem will ulti-
mately control managed objects through
interaction with management agents.

Management Agents. The collection of
management agents in the system and
network layer that are dedicated to the
control and monitoring of managed
objects.

The network layer consists of the network
hardware, resources, and services to be man-
aged. The management agents are mostly the
agents defined by SNMP and CMIP as an in-
terface to managed objects.

3. Information Repositories:
General Characteristics

This section discusses characteristics of the
information repository.

3.1 Data

In order to address issues such as choosing a
data model, we must first identify the types
of data within the repository. Data from man-
agement agents (e.g., SNMP or CMIP) will
comprise part of the repository information.
One possible use of this data will be to track
information about a particular object over a
period of time, for trend or historical analy-
sis.

We also expect configuration data, for exam-
ple, data about the topology of the network,
operating system version, and hardware
specification. This information is used by ap-
plication-level programs for operation, anal-
ysis, and presentation to the user.

A final source of information comes from ap-
plication-level tools. For lack of a better term

we call this data analyzed data. Referring to
the CORDS architecture in Figure 3, the man-
agement tools will input information from
the repository. The data could be recalled
later and used as a starting point for addi-
tional processing or possibly for use by other
management tools.

3.2 Requirements

We consider the following a starting point in
listing the essential features of a repository.

Security. A method needs to be in place
that regulates access to information.
Some information, for example, should
only be accessed by system administra-
tors.

Replication. Replication is needed to
insure availability, reliability, and perfor-
mance.

Access interface. The interface should be
simple with rich functionality that
includes add, delete, update, analyze,
and display capabilities.

Naming scheme for objects. Because the
environment will be distributed, the
naming scheme should be general, flexi-
ble, and allow consistent reference from
anywhere in the environment, i.e., a glo-
bal naming scheme. Also, the naming
scheme should allow for autonomy of
local sites, enabling them to delete and
create new objects/names.

Adequate performance and scalability.
A repository must provide service at
acceptable performance levels and in
general must scale well. If the service is
slow or cannot tolerate a larger commu-
nity of users, as is common in many dis-
tributed environments, then it is not
acceptable as a viable management tool.

3.3 Data Model Features

This section lists data modeling features that
the repository should possess. We must keep
in mind that the repository will be distrib-
uted and very likely heterogeneous. For ex-
ample, some information can be stored in
UNIX files (flat file format), while other in-
formation can be stored in databases (rela-

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

tional, O-O format). So the following features
need not necessarily appear simultaneously
in a single platform; rather we expect these
modeling features to be present collectively
in the entire repository.

Extensibility. The model should accom-
modate unanticipated or future manage-
ment needs. Objects will vary in type and
size, and the objects themselves can
change or new ones can appear. There-
fore, an extendible data model is required
to allow for flexibility.

Rich typing system. It is desirable to
allow attributes of objects to be user-
defined or abstract, in addition to integer
and string types.

Logical data independence. The data
model must allow the conceptual struc-
ture of the information store to be modi-
fied without changing the underlying
storage structure. This allows different
users to view the data in different ways.
For example, a system administrator and
project engineer have different needs and
therefore view the data in different ways.

Composite objects. Aggregation of
objects into composite objects is a desir-
able feature. This would allow copying,
deleting, and concurrency control of
objects in an efficient manner—efficient
in minimizing network communications
and offering a simplistic view for the
user.

Procedure as attributes. This would
allow virtual attributes (i.e., attributes
that are computed by procedure rather
than stored) that can strengthen the mod-
eling capability.

Inheritance. This simplifies the schema
by reducing the number of data types
and is a natural way to model many com-
plex objects.

4. Experimental Prototype

Section 3 discussed the general characteris-
tics of an information repository. We con-
tinue our study in this section by describing

an experimental prototype. Our prototype
consists of an application-level process, an
information repository, and a network man-
agement agent. The network management
agent will collect management information
and store the information in a repository. The
application-level process will access the data
from the repository for processing and act as
an interface to management information. We
can perform experiments on the prototype to
compare different repositories. Referring to
Figure 3 in section 2, we will use XNetMod as
our application level process, the Berkeley
Packet Filter [11] as the management agent
for collecting the data, and two candidate re-
positories for storing the management infor-
mation. Our experimental prototype takes a
vertical slice from Figure 3 and serves as the
motivation for the remainder of our study.

The next section introduces XNetMod, giving
abrief overview of its use, and a review of the
data it will store to the repository. After intro-
ducing XNetMod, we conduct performance
experiments to compare two candidate re-
positories, AFS and X.500.

4.1 NetMod Data Requirements

XNetMod [16] (Network Modeler) is a net-
work performance tool developed at the Uni-
versity of Michigan’s Center for Information
Technology Integration. XNetMod is an X
Windows System application that allows the
user to compose arbitrary, interconnected,
LAN networks in order to analyze perfor-
mance. The performance parameters include
packet delay and utilization; both are based
on a set of analytic models. The analytic mod-
els use a traffic stream as input. The stream
consists of a triplet of mean packet rate (pack-
ets/second), mean packet size (bits/packet),
and second moment of packet rate distribu-
tion. This traffic stream, or triplet, along with
the topology of the network, constitutes the
data requirements for XNetMod.

When users define networks for performance
analysis, they must specify the traffic stream.
This can be done in one of two ways. First by
supplying them arbitrarily, typing them in
from the keyboard; second, by selecting

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

“canned” traffic streams representing differ-
ent user profiles, provided statistically by
XNetMod. We have added a third method of
stream specification. This third method
senses or sniffs the network directly to obtain
the traffic packets per second. We will store
the packets per second information into the
candidate repositories and evaluate the use
of this information in our experimental pro-
totype.

4.2 Storing Network Data

To actually monitor the wire, we used the
Berkeley Packet Filter (BPF) [11] in promiscu-
ous mode. An XNetMod agent processes the
output from BPF and stores the data in either
a UNIX file (AFS) or X.500. Figure 4 illus-
trates the situation.

LAN

Packet flow
‘ BPF (berkley filter) ‘
XNetMod
‘ XNetMod agent ‘
——= Traffic Info Information

Repository

Figure 4. Manager/agent relationship

An interesting issue arises regarding the
XNetMod agent: how often should the agent
write to the repository? It is desired to supply
the number of packets per second (pps) BPF
is sensing on the network. Should the XNet-
Mod agent count packets over a half hour in-
terval and divide to compute pps? Or, should
an entry be written to the repository each sec-
ond?

To assist in this decision we conducted the
following experiment. We set our XNetMod
agent to write to the repository each second,
over a 48-hour period. We call this sampling
interval the flush interval because the agent
writes or flushes the value of the packet

counter to the repository once per interval.
From this raw data, we derived the sample
mean, sample variance, maximum and mini-
mum samples, and several other statistics
over varying flush intervals. For example, to
derive the statistics for a 100-second flush in-
terval, it is a simple matter of grouping or
summing together 100 of the raw samples.
Table 1 shows the results of this experiment.

Table 1. Derived statistics from packet
counts over varying flush intervals

Flush

Interval Max. wsec Max/sec

(sec) o/u (pkts) (pps) (pps)
1 1.06 2074 104 2074
10 | 0.97 6960 104 696
100 | 0.92 51389 104 514
1000 | 0.87 442651 104 443
2000 | 0.83 790714 104 395
5000 | 0.77 1564031 104 313
10000 | 0.70 2775162 104 277

The Max/sec statistic is simply the maxi-
mum sample packet rate normalized over a
1-second flush interval. The variable u is the
sample mean. The u/sec statistic is the sam-
ple mean normalized to a 1-second time in-
terval. The variable o is the sample standard
deviation.

Let’s analyze the o/u statistic first. As the
flush interval increases, the o/u statistic de-
creases. This is to be expected because if we
take any group of numbers and take larger
and larger samples for each data point, then
o will tend to decrease, i.e. vary less and less
[12]. We also know that network traffic tends
to be bursty, so increasing the flush interval
may tend to mask this burstiness. o/u be-
haves as we would expect and we do not see
a significant dropoff until about 5000 sec-
onds. The Max/sec statistic clearly shows
that the burstiness drops off significantly at
10 seconds. So we conclude that merely
counting packets over a long flush interval
and then averaging to get pps will tend to
mask the burstiness of the traffic to a signifi-
cant extent. Coming back to our original is-
sue of determining a flush interval for the

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

XNetMod agent, we choose 1 second. In our
prototype version of XNetMod we will pro-
gram the agent to store data for a 48-hour pe-
riod and then begin overwriting samples.
This will put a cap on the amount of space to
be used. A future enhancement is to time
stamp the data to a log file for trend analysis
at a later time.

5. Experimental Repositories:
X.500 and AFS

The following sections examine two candi-
date repositories: X.500 and AFS. We analyze
each candidate in the following way. We list
the salient features and compare these fea-
tures to the minimum features a generic data
repository must have. For example, a generic
repository must have a method of naming
and locating the objects within the reposi-
tory. A platform needs to have the minimum
requirements of the generic repository or it
cannot be considered as a repository for
XNetMod. Besides an analysis of minimum
requirements, we also perform some modest
measurements on both platforms. The goal of
these measurements is to gain some insight
on the issues of performance and scalability.

In a typical management system one can
imagine sensors (e.g. SNMP agents), distrib-
uted throughout the system, gathering and
storing data to the repository. We also expect
various users and management programs to
access the data. It is important to measure
each platform to gauge the performance as
multiple users and writers access the reposi-
tory. We perform some initial experiments on
each repository in an effort to explore this is-
sue.

The client machines used in the experiments
are all IBM RS/6000s running AIX 3.1 or 3.2.
The LDAP server is an IBM RS/6000 running
AIlX 3.2. The DSA is a SUN Sparcstation and
the AFS file server is an IBM mainframe.

5.1 The AFS Distributed File System

AFS is a UNIX-based distributed file system.
Development of AFS began in 1983 at Carn-
egie Mellon University, funded by IBM, un-
der the name of the Andrew project [13]. AFS
has gained popularity in recent years and its
successor, DFS, is the distributed file system
for the Open Software Foundation’s Distrib-
uted Computing Environment (OSF/DCE).
AFS is based on the client/server model. A
high-level view of the AFS distributed direc-
tory model is shown in Figure 5.

File Server

AFS Client

User Application

Cache Mgr Volume
Location Server

Figure 5. AFS distributed directory model

The main components of AFS are the cache
manager, the volume location server, and file
server. The cache manager runs on the client
and accepts requests from the user applica-
tion. As its name implies, it is responsible for
caching on the client’s local disk, and also for
directing the processing of requests from the
user application. The cell server and volume
server maintain information about the loca-
tion of cells and volumes, and the file server
maintains its portion of the shared file sys-
tem. Having a separate volume location
server and cell server reduces the need for
calls to the file server. When a user applica-
tion performs a read, the cache manager
checks first to see if the request can be satis-
fied on the local disk cache. If the data is not
available locally, then the cache manager
must satisfy the request from the file server.

A key design choice the designers of AFS
made was to shift much of the workload to
the client side and away from the server.
Note that the cache manager on the client
side is responsible for directing the entire
process of satisfying client requests. The AFS
file server does not take part in locating files;

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

the cache manager does that part of the pro-
cessing. When the cache manager sends a re-
quest to an AFS file server, no other server
need take part in the interaction because the
server must have the data. This delegation of
responsibility minimizes the amount of inter-
action with the file server and is a primary
reason for AFS being highly scalable. Scal-
ability is an important point to consider in
choosing a platform for the information re-
pository.

5.1.1 Features of AFS as a Data Repository
To evaluate the feasibility of AFS as a data re-
pository for distributed systems manage-
ment, we compare the main features of AFS
against the requirements for an information
repository that we listed in section 3.2.

Security is our first requirement. AFS uses the
Kerberos [10] authentication scheme to vali-
date users’ rights to access files. The Kerberos
authentication scheme has proven successful
over the years. AFS also uses the standard
UNIX file permissions in conjunction with its
own set of AFS file permissions. AFS is also a
replicated file system.

The access interface is simple with the basic
functionality of add and delete. A possible
disadvantage of AFS as an information re-
pository is that it does not possess analyze
and display capabilities. If AFS is to be used
as arepository, it would be necessary to build
a graphical user interface on top of it to pro-
vide these capabilities.

AFS is a global, hierarchical file system in
which the name provides some information
about file location. Thus, AFS provides an ad-
equate naming scheme for objects.

So we see that AFS satisfies most of our list of
basic requirements for an information repos-
itory for distributed systems management. In
the next section we examine performance
and scalability.

5.1.2 Assessment of AFS Performance and

Scalability
In this section we collect some modest per-
formance measurements on AFS. The goal of
our first experiment is to determine how long
it takes to perform a read, both from the
cache and the file server. In this experiment
we are trying to duplicate the situation in
which a reader accesses or reads a single
block of data and there is no other reader or
writer contention. Table 2 shows our results.

Table 2. AFS read times

Server hit Cache hit
(sec) (sec)

0.0657 0.0005

We performed the read experiment over a 1-
hour period, averaging one read per second.
We performed the experiment twice, once
with normal AFS caching and a second time
with caching turned off. Under normal con-
ditions, with caching on, the first read would
come from the server and all subsequent
reads would come from the cache. This be-
havior is satisfactory for our cache hit exper-
iment. But for our server hit experiment, we
wish to measure the performance of the AFS
server. Therefore we needed to circumvent
normal AFS caching and force all reads to
come from the server. We achieved this by
supplying an updated AFS library to the test
machines. This updated AFS-allowed selec-
tive caching, i.e. either normal or no caching
whatsoever [8]. The “server hit” value in Ta-
ble 2 represents all reads coming from the
server. Conversely, the “cache hit” value rep-
resents all reads from the local cache. As we
would expect, the cache read time is much
faster than a read from the server. A PING to
the AFS server reveals a round trip time of
approximately 6 ms, therefore the local pro-
cessing time plus AFS server time is about
0.0507 seconds. We state the PING time to as-
sure the reader that the network time does
not dominate the stated server hit time.

Our next experiment makes a modest evalu-
ation of how well AFS scales. With caching
turned off once again, we attempt to dupli-
cate the situation of multiple readers and one

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

writer. Consider for a moment the situation
where a management agent is writing to the
data repository and multiple readers are ac-
cessing this data item nearly simultaneously.
Then, depending on how fast the writer is
writing, we would expect most of the reads to
come from the server.

By forcing all the reads to come from the
server, it is as if we have an extremely fast
writer. Each time the writer writes and closes,
the cache manager invalidates the cache and
the read comes from the server. We set up 3
different machines with our modified AFS so
that caching could be turned off. The readers
are modeled as Poisson processes with a
specified mean arrival rate.

Figure 6 shows the results of the experiment.
The x-axis in the graph gives the number of
reads per second as seen by the file server,
i.e., the total traffic generated by the readers.
The y-axis gives the average time per single
read. In this experiment we used three test
machines.

100% Server hits: caching off

0.12

AFS data <—

Read time (seconds)

0.05

0 10 20 30 40 50 60 70 80 90
Read frequency (per second)

Figure 6. Plot of # of reads per second versus
time per read

Our experiment does yield some interesting
results. We note that at 20 reads per second
the read time is about 0.100 seconds. Which is
about 10 times slower than a single read, but
still acceptable from a performance stand-
point. A point to consider is how often we
would expect, under real circumstances, to
be reading 20 times per second from the
server. This represents a significant, but not
implausible, workload. So we feel our initial

results show that AFS seems to scale well un-
der moderate work loads.

5.2 The X.500 Directory Service

We chose the LDAP (Lightweight Directory
Access Protocol) as an interface to X.500.
LDAP is on the Internet standards track. The
LDAP interface to X.500 is easier to use than
DAP and hides many details such as stack
management and authentication. The
LDAP/X.500 model is shown in Figure 7.

The X.500 Directory

(osa)=~
LDAP DAP @
Server

T (osa)

LDAP

LDAP
Client

Figure 7. LDAP/X.500 directory model

To illustrate the features of the X.500 model,
trace through the sequence of actions that oc-
cur when a generic user issues a “read” oper-
ation (Figure 8). The user issues a read
request that is forwarded to the LDAP server.
The LDAP server converts the LDAP read re-
quest into a DAP request and the server for-
wards the request to a Directory Service
Agent (DSA). It is the responsibility of the
DSA to actually locate the object within the
directory. This may involve a chaining of
DSAs until the object is actually located. A
chain of DSAs occurs when the initially con-
tacted DSA is unable to satisfy the request. In
this case, the request is forwarded until the
DSA that physically stores the X.500 object is
found. Thus the user need not be concerned
about the location of an object, nor how the
object will be retrieved. The object is then re-
turned in reverse order along the chain from
the DSAs to the LDAP server. The LDAP
server returns the object to the client to com-
plete the operation. LDAP does not do any

Center for Information Technology Integration

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

caching unless it is explicitly told to do so.
The X.500 standards do not specify caching
algorithms, but the implementors of the
DSAs normally do provide some caching.

Traffic Information

X.500
XNetMod
Lightweight DAP
Client
Lightweight DAP
Server
Figure 8. Information flow for an X.500 read

operation

5.2.1 Features of X.500 as a Data Repository
To evaluate the feasibility of X.500 as a data
repository for distributed systems manage-
ment, we once again compare the main fea-
tures of X.500 against the requirements for an
information repository that we listed in sec-
tion 3.2.

X.500 has acceptable security; it accepts Ker-
beros [10] and clear text passwords as meth-
ods of authentication.

X.500 has a friendly access interface that in-
cludes add, delete, modify, and lookup of ob-
jects. It does not possess an analyze
capability so again, as in AFS, another layer
of software would be required to do this.

A repository must have the ability to model
arbitrary objects. X.500 was designed to store
information about people, a “global white
pages”. However, X.500 also has a mecha-
nism in which other types of objects can be
defined. For the version of X.500 used in our
experiments, Quipu version 7.0 [9], the hier-

archical data model is used. Quipu version
7.0 allows object class definition, inheritance,
mandatory attributes, and optional at-
tributes. Therefore, X.500 allows various
types of information to be defined, other
than people objects.

A repository must have some scheme for
naming and locating objects. X.500 provides
a global, hierarchical, naming scheme to
identify and locate objects. The entities are
distributed and replicated, providing avail-
ability, and reliability.

Performance is also an important issue. The
amount of time it takes to retrieve and store
information is critical. Scalability is another
factor. A repository will likely support many
different management activities, and so it is
important to gauge the behavior of X.500 as
several different processes attempt to use
X.500 simultaneously. We examine perfor-
mance and scalability issues in the next sec-
tion.

5.2.2 Assessment of X.500 Performance and
Scalability

We performed the same experiments on
X.500 as we did on AFS. Recall that we per-
formed the experiment over a 1-hour period,
performing one read per second, and taking
the average. We performed the experiment
twice, once with normal caching on, and a
second time with caching turned off. Look-
ing at the results in Table 3 we might expect
the server read to be somewhat faster. The
additional time is incurred by the LDAP
server. The LDAP client must connect with
an LDAP server, then the LDAP server con-
nects with a DSA where the data is physi-
cally stored. Conversely, the AFS cache
manager connects directly with the AFS file
server. LDAP makes it easy for the client to
fetch X.500 data, but also adds another layer
of software between the client and the data.

Center for Information Technology Integration

10

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

The cache hit time is quite fast as we would
expect.

Table 3. X.500 read times

Server hit Cache hit
(sec) (sec)

0.2089 0.0009

Because the server hit time represents DSA
time and LDAP time, it is useful to give a
time breakdown to analyze how time is being
spent. Table 4 gives a breakdown of the
server hit time.

Table 4. Server hit breakdown

non-DSA time DSA time

0.0817sec | 39% 0.1272sec | 61%

The stated time for the DSA time represents
the time the read request was serviced by
X.500. The non-DSA time represents the time
spent by LDAP, network transmission time,
and local processing time. Our results indi-
cate that the time spent by the DSA is almost
2/3 of the total processing time.

Our next experiment involved multiple read-
ers directing their requests to a single LDAP
server with caching turned off. We increased
the read rate of the readers and repeated the
experiment several times. Once again, our
goal was to get an idea of how LDAP and
X.500 perform under increasingly large work
loads. Figure 9 lists the results of the experi-
ment. The key difference between this graph
and the AFS counterpart is that an X.500 read
time is higher than an AFS read at all read fre-
quency levels. At 1 read per second, an X.500
read takes 0.24 seconds, while an AFS read
takes 0.065 seconds. At a read frequency of 20
reads per second and beyond, X.500 takes 0.9
seconds while AFS takes 0.1 seconds. What is
not clear at this point is whether the read
times for X.500 are satisfactory for a real sys-
tem. This issue must be pursued at a later
time.

6. Conclusions

Because of the early nature of our experi-
ments we wish to avoid harsh comparisons
or make strong conclusions. Our mission at
this point is to open some doors and make
some general insights. Our data suggest that
AFS scales better than X.500 and performs
better through a range of work loads. X.500
offers better data modeling facilities that al-
low hierarchical data definition. So there ap-
pears to be a certain performance penalty in
exchange for built-in modeling support.

100% Server hits: caching off

Read time (seconds)

0.2

5 10 15 20 25 30 35 40 45 50
Read frequency (per second)

Figure 9. Plot of # of reads per second versus
time per read

7. Future Work

In this section, we discuss a number of re-
lated issues that outline directions for future
work.

7.1 Repository Design and Data Model

The type of data model the repository is
based on is an important issue. For example,
how do we choose between relational, object-
oriented, or hierarchical data models? Is it
possible to build an adequate system which
in based on one data model only? Or, are
there advantages to be realized, such as per-
formance, in adopting a heterogeneous ap-
proach? A heterogeneous approach is one
that utilizes storage based on more than one
data model. An example would be to store
part of the information in flat file format, and
storing more complex information in O-O

Center for Information Technology Integration

11

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

format. We mentioned that the repository
would be distributed and that we required
replication for performance and reliability
purposes. Can we use existing distributed
database or file system technology, or must
something new be devised?

We must develop a methodology for the de-
sign and specification of information reposi-
tories. A key part of this design is how the
data will be modeled. Included in this speci-
fication would be a list of applicable criteria
that could be used in different situations as a
means of selection. We must also define the
role that modern database systems can play
in the overall data management scheme.

7.2 Analysis of Existing Management
Protocols

Earlier, we discussed the management proto-
cols SNMP, CMIP, and SNMPv2. SNMP is
strictly a network management protocol.
However, CMIP and SNMPV2 allow objects
to be managed in the system and application
layer as well. The role of these protocols in
the design of an information repository is un-
clear. In reference to the data requirements
for the repository, can the objects defined by
the protocols be used directly or must some
other layer be built on top, possibly utilizing
the protocols as service primitives? We are
concerned with the modeling expressiveness,
functionality, and utility of these existing
protocols. It may be necessary to propose a
new protocol if the existing ones are defi-
cient.

7.3 Performance Measurement of
Information Repository Platforms

We presented results concerning perfor-
mance and scalability of X.500 and AFS as
candidate platforms for an information re-
pository. Our results would be more com-
plete if we were able to give a breakdown of
the service times to include local processing
time, network transmission time, propaga-
tion delay, and server time. These results
would be useful as a means to evaluate and
compare the candidates. The open research
question for this project is as follows.

Suppose we choose a platform and then pro-
ceeded to implement the system. If the end
system does not perform as expected or does
not scale well, then a poor choice has been
made. Therefore some methodology should
be developed to predict the performance and
scalability of a candidate platform. A series
of preliminary tests can be devised to weed
out the worst cases. And then a series of
more comprehensive benchmarks can be de-
vised to expose the performance of the candi-
date system. A strategy to implement the
tests would mainly involve measurements
and tests on real systems. The reason for this
is that it is not possible to develop a priori an-
alytic or simulation models for any arbitrary
platform. There are many good simulation
tools that are quite flexible, but are sensitive
to the amount of detail about the system that
is programmed into the simulation and a
knowledge of the service times and functions
that are involved. On the other hand, a series
of measurements and tests on a real system is
flexible and can be applied to arbitrary sys-
tems.

8. Acknowledgments

We wish to thank James Hong for providing
expertise in DAP and X.500. His advice was
extremely helpful in building the LDAP cli-
ent and server. We also wish to thank Tim
Howes for revealing the internal structure of
LDAP servers and for putting up with nu-
merous amounts of email. Michael Stolar-
chuk shared his AFS expertise and was
instrumental in installing the specialized
AFS kernels on the test machines.

References

[1] ISO/IEC DIS 9596. “Common Manage-
ment Information Protocol.” October
1988.

[2] D.W. Bachmann, M.E. Segal, M.M. Srini-
vason, and T.J. Teorey. “NetMod: A
Design Tool for Large-scale Heteroge-
neous Campus Networks.” IEEE JSAC,
9(1):15-24, January 1991.

Center for Information Technology Integration

12

Managing Heterogeneous Distributed Computing Systems: Using Information Repositories

[3] M. Bauer, P. Finnigan, J. Hong, J. Pachl,
and T. Teorey, “An Integrated distrib-
uted Systems Management Archtiec-
ture.” Submitted to the 1993 CAS
Conference, October 1993.

[4] J.D. Case, J.R. Davin, M.S. Fedor, and
M.L. Schoffstall. The Simple Network
Managment Protocol. Internet Request for
Comments 1067, August 1988.

[5] M. Consens, M. Hasan, and A. Mendel-
zon. “Debugging Distributed Programs
by Visualizing and Querying Event
Traces.” Proceedings of the 3rd ACM/ONR
Workshop on Parallel and Distributed
Debugging, May 1993.

[6] A.Dupy, S. Sengupta, O. Wolfson, and Y.
Yemini. “NETMATE: A Network Man-
agement Environment.” IEEE Network,
October 1991.

[71 D. Dupuy, J. Schwartz, Y. Yemini, and D.
Bacon. “NEST: a Network Simulation
and Prototyping Testbed.” Communica-
tions of the ACM, 33(10):64-74, October
1990.

[8] T.J. Hacker “The Design and Implemen-
tation of an AFP/AFS Protocol Transla-
tor.” CITI Technical Report 93-5,
University of Michigan, August 1993.

[9] S.E. Kille. Implementing X.400 and X.500:
The PP and QUIPU Systems. Artech
House, Boston MA, 1991.

[10] B. Lampson, M. Abadi, M. Burrows, and
E. Wobber. “Authentication in Distrib-
uted Systems: Theory and Practice.”
ACM Operating Systems Review,
25(5):165-182, 1991.

[11] S. McCanne and V. Jacobson. “The BSD
Packet Filter: A New Architecture for
User-level Packet Capture.” USENIX
Conference Proceedings, pages 259-269,
January 1993.

[12]P.L. Meyer. Introductory Probability and
Statistical Applications. Addison-Wesley,
1970.

[13] M. Satyanarayanan. “Scalable, Secure,
and Highly Available File System for a
Distributed Workstation Environment.”
IEEE Transaction on Computers, 39(4):45-
67, April 1990.

[14]J. Slonim, M. Bauer, P. Finnigan, P. Lar-
son, A. Mendelson, R. McBride, T. Teo-
rey, Y. Yemini, and S. Yemini. “Towards a
New Distributed Programming Environ-
ment.” Proceedings of the 1991 CAS Con-
ference, pages 155-172, October 1991.

[15] D. Taylor. “A Prototype Debugger for
Hermes.” Proceedings fo the 1992 CAS
Conference, pages 313-326, November
1992,

[16] K. Deboo. “XNetMod: A Design Tool for
Large-scale Networks.” CITI Technical
Report 93-6, University of Michigan,
August 1993.

Center for Information Technology Integration

13

