
-- --

CITI Technical Report 93−10

AFS Server Logging

S. Blumson
P. Honeyman
T. E. Ragland

M. T. Stolarchuk

info@citi.umich.edu

ABSTRACT

The AFS servers at the Center for Information Technology Integration have been
modified to trace and log file server activity. This report discusses the AFS modifications
and the structure of the trace files and data. We also describe three large datasets col-
lected from the logging servers, available to other researchers.

November 30, 1993

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



-- --

AFS Server Logging

S. Blumson
P. Honeyman
T. E. Ragland

M. T. Stolarchuk

info@citi.umich.edu

1. Introduction

This report describes our modifications to AFS for generating trace records describing file server activity.
The goal of tracing is to record much salient information about each client request presented to AFS
servers over an extended period of time. We use these logs for a number of purposes:

g Evaluating pricing models and strategies for deploying AFS to the campus.

g Planning and evaluating needs for AFS server and TCP/IP capacity.

g Developing analytic models of network activity in a distributed filing environment.

g Simulating disconnected operation in mobile AFS clients.

g Developing a set of profiles describing the access patterns of various categories of users.

g Simulating the performance of intermediate servers.

g Diagnosing problems.

The trace records are generated on AFS servers; AFS client activity that is served from the local cache
manager does not show up in the logs. Each RPC presented to the server produces a single trace record.

The data are collected from the University of Michigan Institutional File System (IFS). The IFS, which
consists of AFS servers and clients running on various platforms scattered across the U-M campus, has
been evolving over the past several years with the goal of providing an integrated, location-independent file
system for the entire University community.

2. Building a logging server

A logging AFS server is built from rxgen, the Rx stub compiler, specially modified at CITI. (Rx is the
remote procedure call service layer on which AFS is built.) Our modification causes the server stubs for
AFS to bracket each service call with calls to a prologue function and an epilogue function. For example,
the modified stub for the fetchdata call contains:

LOG_SRXAFS_FetchData(SRXAFS_FetchData, &Fid, Pos, Length,
&OutStatus, &CallBack, &Sync);

z_result = SRXAFS_FetchData(z_call, &Fid, Pos, Length,
&OutStatus, &CallBack, &Sync);

LOG_EPILOG(SRXAFS_FetchData, "SRXAFS_FetchData");

(The first and third lines are the ones we added; the second line is the normal output of rxgen.)

The prologue and epilogue functions take a ‘‘snapshot’’ of the state of the system at the time they are
called. The epilogue function then tallies the resources used to process the request and dumps a trace
record to the log file. Additional code saves the resource counters around server thread context switches so
that, to the extent possible, resources are in fact charged to the correct RPC.

The log file is usually placed in the working directory of the file server, generally
/usr/afs/logs/AFSlog.XXXXXX. (The mktemp(3) library function is used to create the name of
the log file.)

- 1 -



-- --

Blumson et al.

The file /afs/citi.umich.edu/usr/afs/src/rx/RXAFSLOG_README describes how to build
a logging AFS server. We also describe the steps in the Appendix.

3. Data fields

Here is a sample trace record in text form:

fetchdata (0) @ 688145060.320041 client 141.211.128.207
user 0.020000 sys 0.040000 elapsed 0.150000 in 2 out 1
yield 0 syscall 54 retrans 0 user honey fid 200000B3:3EB0:112E0
pos 0 len 5711

The fields in this record are interpreted as follows:

fetchdata (0) ASCII and numeric representation of request type
@ 688145060.320041 Start time (seconds since January 1, 1970)
client 141.211.128.207 IP address of client making the request
user 0.020000 CPU time spent while in user mode
sys 0.040000 CPU time spent while in kernel mode
elapsed 0.150000 Wall clock time spent processing the request
in 2 Number of disk reads
out 1 Number of disk writes
yield 0 Number of thread yields
syscall 54 Number of system calls
retrans 0 Number of Rx retransmissions
user honey Kerberos identity of client
. . .

The remaining fields depend on the particular AFS request; this is explained further in the section on
optional fields.

Log data are recorded in variable length records with fields shown in the following table.
iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

Field Length Flag Field Length Flag Field Length Flagiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MASK short M ETIME long C FID1 long×3 Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

CMD short C IOIN short C FID2 long×3 Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii
START long C IOOUT short C NUM1 long Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

µSTART long M YIELD short C NUM2 long Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii
ADDR long C SYSCALL short M NUM3 long Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii

UTIME long C RESEND short C STR1 string Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiii
STIME long C USER string M STR2 string Oiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Using principles similar to TCP header compression, some fields are elided from the output if their values
can be discerned from earlier records. Fields marked ‘‘M’’ are mandatory; i.e. , they appear in every output
record. Fields marked ‘‘C’’ are also mandatory, but may be compressed out of output stream by means
described in the next section. Fields marked ‘‘O’’ are optional, depending on the particular AFS command
being processed.

4. Mandatory and compressible fields

In this section, we describe the mandatory and compressible fields. Compressible fields are those that can
be elided from the raw output in certain circumstances, described next. We typically post-process this raw
output into the form shown in the sample trace record above, with compressible fields restored to their
values, and then re-compress the resulting text stream with the UNIX compress command. The post-
processor fills in any elided fields.

- 2 -



-- --

AFS Server Logging

4.1. MASK

The MASK field is a 16-bit word that shows which of the compressible and optional fields are present. The
START, UTIME, STIME, IOIN, IOOUT, YIELD, and RESEND fields are elided from the raw output if
they are equal to zero. The CMD and ADDR fields are elided if the value of the field is identical to that in
the previous record.

4.2. CMD

This field gives the numeric AFS command as shown in the following table:
iiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii

Id Name Id Name Id Nameiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
0 fetchdata 11 makedir 22 oldsetlockiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
1 fetchacl 12 removedir 23 oldextendlockiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
2 fetchstatus 13 setlock 24 oldreleaselockiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
3 storedata 14 extendlock 25 getstatisticsiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
4 storeacl 15 releaselock 26 giveupcallbacksiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
5 storestatus 16 getvolumestatus 27 getvolumeinfoiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
6 removefile 17 setvolumestatus 28 bulkstatusiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
7 createfile 18 getrootvolume 29 xstatsversioniiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
8 rename 19 checktoken 30 getxstatsiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

9 symlink 20 gettimeiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiii
10 link 21 ngetvolumeinfoiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

4.3. START and µSTART

The START field is a long integer giving the elapsed time in seconds since the previous AFS request. For
all reasonable values, the elapsed time seconds are multiplied by one million and added to the µSTART
field, in which case START is elided.

The µSTART field is a long integer giving the elapsed time in microseconds and is always present.
µSTART may be larger than one million. If the START field is present, START and µSTART are com-
bined to give the total elapsed time. The resulting value is then added to the starting time of the previous
AFS request to give the actual starting time.

4.4. ADDR

The ADDR field gives the IP address of the client that made the AFS request. If present, the ADDR field is
in network order. If omitted, the client address is the same as that of the previous AFS request.

4.5. UTIME and STIME

For file servers running on the UNIX operating system, the UTIME field shows the amount of CPU time
spent servicing the request while in user mode; the STIME field gives the kernel mode CPU time. On
MVS systems the UTIME and STIME fields show CPU times in the IFS/Rx and TCP/IP address spaces,
respectively.† Both fields are four-byte integers in units of microseconds. The UTIME and STIME fields
are elided if equal to zero.

4.6. ETIME

The ETIME field shows the total elapsed time from the start of the request to its completion. It is a four-
byte integer, in microsecond units, and is always present.

hhhhhhhhhhhhhhhhhh
† The MVS service times are accurate only if the address spaces are single threaded, and if there is no other usage of
TCP/IP on the machines. Both conditions were true at this writing.

- 3 -



-- --

Blumson et al.

4.7. IOIN and IOOUT

On the UNIX operating system, the IOIN and IOOUT fields show the number of disk read and write opera-
tions performed on behalf of the request. On MVS systems, they show the number of Start IOs in the
IFS/Rx address space and the TCP/IP address space, respectively, subject to the same accuracy conditions
as the UTIME and STIME fields. IOIN and IOOUT are 16-bit integers, elided if zero.

4.8. YIELD

The file server is multi-threaded. The YIELD field is a 16-bit integer that shows the number of times a
thread servicing this request yielded control to the lightweight process scheduler. If zero, this field is
elided.

4.9. SYSCALL

The SYSCALL field is not meaningful on UNIX and MVS systems.

4.10. RESEND

The RESEND field is intended to show how many packets were retransmitted by the RPC communications
layer while the request was being serviced. We are highly skeptical of its accuracy. It is a 16-bit field,
elided if zero.

4.11. USER

The USER field shows the Kerberos identity of the user that led to the service request. Many requests are
unauthenticated, e.g. , requests issued by a background daemon. In these cases the USER field shows a
question mark.

5. Optional fields

The remaining optional fields are controlled by the MASK field. These fields are FID1, FID2, NUM1,
NUM2, NUM3, STR1, and STR2. The interpretation of these fields varies from command to command.

A FID is a File IDentifier, a fundamental AFS data structure. It consists of three long integers: volume
number, vnode number, and vnode version number. If the vnode number is even, a FID corresponds to a
regular file; otherwise it represents a directory. The NUM fields are long integers, used for integer valued
output. The STR fields are used for character string output. The STR fields are null-terminated in the raw
output file.

The FID, NUM, and STR fields are present only if they are meaningful for a particular command. The
interpretation of these fields varies depending on the AFS command.

- 4 -



-- --

AFS Server Logging

The following table shows the optional fields used by AFS commands; commands not shown use no op-
tional fields.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Command FID1 FID2 NUM1 NUM2 NUM3 STR1 STR2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

fetchdata × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchacl ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchstatus ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
storedata × × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
storeacl ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
storestatus ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
removefile × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
createfile × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
rename × × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
symlink × × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
link × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
makedir × × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
removedir × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
setlock × ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
extendlock ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
releaselock ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
getvolumestatus ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
setvolumestatus ×iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The remainder of this section describes the interpretation of these fields for the AFS commands that use
them.

5.1. fetchdata

FID1 is the FID of the file or directory being read. NUM1 is the offset in the file. NUM2 is the size of the
request.

5.2. fetchacl

FID1 is the FID of the file.

5.3. fetchstatus

FID1 is the FID of the file.

5.4. storedata

FID1 is the FID of the file being stored. NUM1 is the offset in the file. NUM2 is the size of the request.
NUM3 is the new file size.

5.5. storeacl

FID1 is the FID of the file.

5.6. storestatus

FID1 is the FID of the file.

5.7. removefile

FID1 is the FID of the parent directory. STR1 is the name of the file being removed.

- 5 -



-- --

Blumson et al.

5.8. createfile

FID1 is the FID of the directory in which the file is being created. STR1 is the name of the new file.
FID2, the FID for the new file, is a result parameter returned to the client.

5.9. rename

FID1 and STR1 are the old directory and name. FID2 and STR2 are the new directory and name.

5.10. symlink

FID1 and STR1 identify the directory and name of the new link. STR2 is the contents of the symbolic
link. FID2, the FID for the new symbolic link, is a result parameter returned to the client.

5.11. link

FID1 and STR1 identify the directory and name of the new link. FID2 is the FID of the object being
linked.

5.12. makedir

FID1 and STR1 are the parent directory and name of the new directory. FID2, the FID for the new direc-
tory, is a result parameter returned to the client.

5.13. removedir

FID1 is the FID for the parent directory. STR1 is the name of the directory being removed.

5.14. setlock

FID1 is the FID of the object being locked. NUM1 is the type of lock.

5.15. extendlock

FID1 is the FID of the object being relocked.

5.16. releaselock

FID1 is the FID of the object being unlocked.

5.17. getvolumestatus

NUM1 is the volume ID.

5.18. setvolumestatus

NUM1 is the volume ID.

6. CITI AFS datasets

In October, 1990 and again in April, 1992, we enabled AFS server logging in all of the servers under our
control; in April 1993 this was repeated on a subset of the servers constituting the fast majority of the
workload. This provides us with three extensive datasets, which we are using for our own purposes, and
which we are making available to other researchers. To obtain a copy of the CITI AFS datasets, contact:
info@citi.umich.edu.

In an attempt to simplify life for everyone, for the first two datasets we converted the compact output files
generated by the servers into a printable text format, filling in elided fields and accumulating start times
into actual values. These files were then compressed using the UNIX compress command, substantially
shrinking their size. The larger volume of data made this unworkable for the 1993 datasets; instead a sub-
routine library is provided for expanding the data on the fly.

- 6 -



-- --

AFS Server Logging

6.1. October, 1990 dataset

These logs, generated in the early days of CITI’s Institutional File System project, have a slightly different
format: the yield, syscall, retrans, and Kerberos user fields are missing in these logs. In all
other respects, the format is identical to the earlier description.

Here is a sample trace record from the October, 1990 dataset:

fetchdata (0) @ 656956630.043153 client 141.211.168.42
user 0.040000 sys 0.320000 elapsed 0.573903 in: 10 out: 1
fid 20000399:1A:E pos 0 len 65536

Logs were collected on all of the servers in the ifs.umich.edu cell in late October and early
November, 1990. All servers were IBM RT computers with IBM 9331 SCSI disks. The following chart
shows the periods during which server logs were collected.

babel

bastion

beachhead

toehold

Oct 26 27 28 29 30 31 Nov 1 2 3 4 5 6

The logs overlap for 4.8 days, from 8:13:16 P.M. on Wednesday, October 31, 1990 to 5:00:00 A.M. on
Monday, November 5, 1990.

hhhhhhhhhhhhhhhh
‡ We show a fetchdir command, which is actually a fetchdata for a FID that happens to be a directory.

- 7 -



-- --

Blumson et al.

The following table shows some of the gross characteristics of the logs.‡

bastion beachhead toehold babel TOTALiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchstatus 27,222 120,126 189,369 120,831 457,548
gettime 15,216 9,947 23,645 10,717 59,525
storedata 6,746 34,474 6,765 7,219 55,204
fetchdata 3,764 10,171 10,973 20,869 45,777
getvolumeinfo 11,110 2,611 14,054 9,626 37,401
storestatus 3,470 15,747 4,612 3,769 27,598
getvolumestatus 32 15,521 6,148 11 21,712
createfile 2,566 6,685 3,470 3,940 16,661
giveupcallbacks 1,178 5,584 1,896 6,708 15,366
fetchdir 2,528 5,059 5,052 2,587 15,226
removefile 1,735 7,543 3,401 2,508 15,187
rename 1,423 2,426 625 1,372 5,846
link 40 1,171 1,135 28 2,374
makedir 86 998 413 124 1,621
setlock 40 587 935 0 1,562
symlink 9 475 177 28 689
releaselock 40 407 203 0 650
fetchacl 5 154 105 26 290
storeacl 0 113 29 21 163
oldsetlock 0 2 115 0 117
extendlock 4 45 12 0 61
removedir 10 15 22 2 49
oldreleaselock 0 2 45 0 47
getstatistics 0 0 0 29 29
bulkstatus 0 9 0 0 9
oldextendlock 0 0 7 0 7

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

setvolumestatus c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

0 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

2 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

4 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TOTAL 77,225 239,872 273,210 190,416 780,723

6.2. April, 1992 dataset

Our intent was to collect data for an uninterrupted period from April 23, 1992 to May 8, 1992 on all AFS
servers in the umich.edu and citi.umich.edu cells. However, system problems terminated data
collection prematurely on loki. The following chart shows the periods from mid-April to mid-May 1992
during which server logs were collected in the cells.

babble

bastion

beachhead

homer

loki

marge

toehold

Apr 14 Apr 21 Apr 28 May 5 May 12

The gaps in the babble, marge, and homer traces reflect server down time. The longest interval during
which logs were collected on all the servers lasts for 6.1 days, from 10:23:54 A.M. on Thursday, April 23,

- 8 -



-- --

AFS Server Logging

1992 to 12:57:48 P.M. on Wednesday April 29, 1992. The file server characteristics are outlined in the fol-
lowing table.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
name CPU OS disksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

margeiiiiiiiiiiiiii
homer

IBM ES/9000 Model 720 AIX/370 V1.1 IBM 3380
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
loki IBM ES/9000 Model 580 MVS/ESA V4.2 IBM 3380, 3390iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
babble IBM RT Model 125 AOS V4.3 BSD IBM 9332 SCSIiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
bastioniiiiiiiiiiiiii
beachheadiiiiiiiiiiiiii
toehold

IBM RS/6000 Model 320H AIX V3.1 IBM 400MB SCSI

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

marge and homer share a single processor with several other VM guests. The file servers have never
been observed to consume more than a fraction of a processor, due to network and other I/O constraints.
loki operates in a similar environment, on different hardware.
The following tables shows the number of AFS requests, broken down by server.

marge homer loki babbleiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchstatus 7,979,974 3,262,562 2,967,709 1,511,093
gettime 349,387 428,775 161,202 45,675
getvolumestatus 1,098,282 197,699 58,853 326
fetchdata 523,069 232,587 329,917 54,709
fetchdir 421,645 230,659 151,461 26,316
giveupcallbacks 420,834 156,203 162,280 38,263
storedata 174,270 346,596 90,353 39,359
storestatus 269,813 253,364 23,015 34,540
extendlock 69,193 3,031 98,150 242,585
createfile 112,169 165,445 46,712 24,182
getvolumeinfo 2 2 0 82,455
getstatistics 66,018 69,818 49,217 111
removefile 52,900 118,106 35,590 14,555
rename 27,177 64,285 6,860 10,362
setlock 65,752 2,051 470 418
releaselock 34,889 1,648 427 283
makedir 7,509 10,097 2,771 948
link 3,764 9,566 407 923
symlink 6,584 5,765 1,128 196
removedir 1,223 4,982 1,596 254
fetchacl 1,338 1,106 360 128
storeacl 751 504 56 28
setvolumestatus 226 218 14 3

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

getxstats c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

27 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

67 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

0 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

0 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TOTAL 11,686,796 5,565,136 4,188,548 2,127,712

- 9 -



-- --

Blumson et al.

bastion beachhead toehold TOTALiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchstatus 162,132 489,775 1,498,517 17,871,762
gettime 154,077 130,943 150,879 1,420,938
getvolumestatus 236 107 321 1,355,824
fetchdata 5,718 3,641 7,657 1,157,298
fetchdir 6,492 4,865 6,117 847,555
giveupcallbacks 4 1 0 777,585
storedata 2 0 0 650,580
storestatus 0 0 0 580,732
extendlock 0 0 0 412,959
createfile 3 148 36 348,695
getvolumeinfo 74,734 101,181 77,456 335,830
getstatistics 37,650 37,656 37,651 298,121
removefile 2 1 0 221,154
rename 0 0 0 108,684
setlock 0 0 0 68,691
releaselock 0 0 0 37,247
makedir 198 79 193 21,795
link 0 0 0 14,660
symlink 1 0 0 13,674
removedir 0 0 0 8,055
fetchacl 9 10 4 2,955
storeacl 3 1 1 1,344
setvolumestatus 2 2 2 467

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

getxstats c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

0 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

0 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

0 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

94 c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TOTAL 441,263 768,410 1,778,834 26,556,699

6.3. April, 1993 dataset

Our intent was to collect data for the entire month of April 1993 on the mainframe-based servers in the
umich.edu cell. Various technical hassles were making it difficult for us to build up-to-date instru-
mented servers for all of our platforms, and the 1992 data convinced us that moving ahead on this subset of
servers would capture the vast majority of campus usage.

Data was actually collected from April 8 to April 28. However administrative problems caused data prior
to April 21 to be lost on loki.

The file server characteristics are outlined in the following table.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

name CPU OS disksiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
blazeiiiiiiiii
fangiiiiiiiii
larchiiiiiiiii
spam

IBM ES/9000 Model 720 AIX/ESA V1.2 IBM 3380

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
loki IBM ES/9000 Model 580 MVS/ESA V4.2 IBM 3380, 3390iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

blaze, fang, larch and spam share a single processor with several other VM guests. The file servers
have never been observed to consume more than a fraction of a processor, due to network and other I/O
constraints. loki operates in a similar environment, on different hardware.

- 10 -



-- --

AFS Server Logging

The following tables show the number of AFS requests, broken down by server.

blaze fang larchiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchdata 2,555,478 65,832 2,355,940
fetchacl 874 80 12,294
fetchstatus 8,351,486 131,295 6,751,110
storedata 310,614 40,389 291,017
storeacl 1,353 66 2,731
storestatus 613,291 21,752 223,916
removefile 118,372 10,039 49,758
createfile 291,584 7,155 59,669
rename 68,386 2,335 26,744
symlink 15,380 241 1,487
link 13,863 111 7,823
makedir 6,963 401 3,559
removedir 2,874 734 1,257
setlock 38,263 114 35,502
extendlock 1,538 3 4,226
releaselock 37,540 114 35,364
getvolumestatus 1,020,953 9,947 65,361
setvolumestatus 139 35 138
getrootvolume 0 0 0
checktoken 0 0 0
gettime 1,771,387 1,610,498 2,672,206
ngetvolumeinfo 0 0 0
oldsetlock 0 0 0
oldextendlock 0 0 0
oldreleaselock 0 0 0
getstatistics 25,707 30,955 27,354
giveupcallbacks 261,840 8,145 173,455
getvolumeinfo 0 0 0
bulkstatus 2,852 1,127 2,736
xstatsversion 0 0 0
getxstats 0 0 0

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

fetch directory cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1,301,320 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

33,885 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1,796,039 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TOTAL 16,812,057 1,975,253 14,599,686

- 11 -



-- --

Blumson et al.

loki spam TOTALiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
fetchdata 289,511 1,587,597 6,854,358
fetchacl 145 4,374 17,767
fetchstatus 1,495,581 5,088,771 21,818,243
storedata 57,165 228,683 927,868
storeacl 57 2,628 6,835
storestatus 17,146 220,723 1,096,828
removefile 11,767 42,639 232,575
createfile 50,525 55,240 464,173
rename 4,286 33,632 135,383
symlink 412 2,176 19,696
link 2,020 6,809 30,626
makedir 942 3,289 15,154
removedir 559 1,425 6,849
setlock 1,689 13,312 88,880
extendlock 1,852 1,600 9,219
releaselock 1,689 13,298 88,005
getvolumestatus 20,901 93,614 1,210,776
setvolumestatus 23 144 479
getrootvolume 0 0 0
checktoken 0 0 0
gettime 1,188,209 1,873,234 9,115,534
ngetvolumeinfo 0 0 0
oldsetlock 0 0 0
oldextendlock 0 0 0
oldreleaselock 0 0 0
getstatistics 36,349 27,126 147,491
giveupcallbacks 89,975 172,189 705,604
getvolumeinfo 0 0 0
bulkstatus 353 394 7,462
xstatsversion 0 0 0
getxstats 0 0 0

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

fetch directory cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

93,868 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

889,898 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

4,115,010 cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TOTAL 3,365,024 10,362,795 47,114,815

7. Caveats

Potential users of this data should be conscious of some quirks. The most important is that the collection
was done on our servers and so reflects actual user activity only as filtered by the (large) caches on our
AFS clients. While this is quite useful for studies of AFS performance, it introduces some significant (and
not well understood) biases that might seriously hamper investigators interested in actual user behavior.

Each of the datasets has particular problems relating to the circumstances of its collection. The first (1990)
dataset is both old and from a comparatively small and homogeneous user population. The 1992 data is
both larger and more diverse, but difficulties in collection on loki limit the period for which complete
data is available. In addition, the code that assigns resource utilization data to the correct call was broken
during this session, limiting the usefulness of those figures.

The 1993 data had similar problems on loki. In addition, loss of the beginning of the loki data caused
us to lose the exact starting time. Because of this, and because the compression algorithm provides only
differential time of day for subsequent records, the exact time of each call is uncertain, although we believe
we have recovered the starting time within two hours. A similar problem occurred on blaze, although
there the uncertainty is only a few minutes.

- 12 -



-- --

AFS Server Logging

Acknowledgements

Kevin Coffman and Ron Zeilinger of the IFS/MVS staff and Mark Giuffrida and Bob King of the IFS
deployment group ported the logging code to the MVS, AIX/370, and RISC System/6000 servers. Charles
Antonelli helped debug the AIX/370 server. Bill Doster, manager of the umich.edu cell, facilitated
access to its servers. Dan Muntz helped with data organization and analysis.

This work was partially supported by IBM.

Appendix

This section describes how to build a logging file server. We assume objects are built in /usr/afs/obj
and the sources are ‘‘current.’’

These files are new:

rx/rx_afslog.h
rx/rx_afslog.c

These files have been changed:

rxgen/rpc_parse.c
fsint/afsint.xg
rx/rx.c
rx/rx.h

Rebuild rxgen to understand the -L flag:

cd /usr/afs/obj/rxgen
make install

Create a server stub with logging code:

rm afsint.ss.c
make afsint.ss.c RXFLAG=-L
make ’CC=cc -DLOGRXAFS’ install

Build the Rx library:

cd /usr/afs/obj/rx
rm rx.o rx_afslog.o
make ’CC=cc -DLOGRXAFS’ \

’XLIBS=../../dest/lib/librxkad.a ../../dest/lib/libdes.a librx.a’ \
install

Build a logging fileserver:

cd /usr/afs/obj/viced
make install

Logging can be disabled with adb:

echo LogRxEnable?W0 | adb -w fileserver

- 13 -


