
-- --

CITI Technical Report 93−1

Long Running Jobs in an Authenticated Environment

A. D. Rubin
rubin@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

ABSTRACT

Current authentication systems require that a user have a valid token or ticket for a job to
run. These tickets are issued with limited lifetimes, and their renewal requires a user to
enter her password. We have developed a system called lat with which a user may
schedule a batch job to be run at a later date in the current environment. The batch job is
stored on a secure machine, and sent and received only in encrypted form. When it is
time for the job to run, the server generates a ticket for the original user and sends it
(encrypted) to the machine on which the job will run. The user is given an option to
specify that tickets should be continually generated for the job until its execution has
completed.

March 29, 1993

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943



-- --

Long Running Jobs in an Authenticated Environment

A. D. Rubin
rubin@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

1. Introduction

Adaptations of Needham and Schroeder’s authen-
tication system [1] are a boon for establishing
secure services in distributed systems. One such
adaptation is the Kerberos Authentication system
[2] of MIT’s Project Athena. An unfortunate
byproduct of building Kerberos-based systems is
a loss of functionality, such as long running jobs.
In this paper, we address this weakness and offer
a solution.

Before Kerberos, UNIX authentication was coter-
minus with a login session. In the Kerberos sys-
tem, tickets1 expire, so that a compromised2 ticket
does not allow an imposter to masquerade as an
authenticated user forever. Consequently, users
are forced to reauthenticate on a regular basis,
usually about once a day, to acquire fresh tickets.

For a Kerberos user to submit and successfully
execute a long-running batch job that employs
secure system resources, she must either physi-
cally reauthenticate whenever tickets are about to
expire, or enter a password into a shell script.
Similarly, it is impossible to schedule a batch job
to run at a distant future date and be authenticated
as the user.

This problem has been recognized as a difficult
one. Lampson et al.[3] state that ‘‘It is a tricky
exercise in balancing the demands of conveni-
ence, availability, and security.’’ They further
state that ‘‘the basic idea is to have a single
highly available agent for the user that replaces
the login workstation and refreshes credentials for
long-running jobs.’’ This approach is similar to
the one we take in solving the problem for
Kerberos-based systems.

hhhhhhhhhhhhhhhhhh
1 Kerberos credentials.
2 E.g., stolen.

2. LAT: A New Kerberos Service

This section describes a new service: lat, based
on the UNIX at command. In a later section, we
critique the design and offer suggestions for
improvement.

Like at, which is used to schedule batch jobs at a
specific time and date, lat offers a batch service.
The principal difference between the two is that
lat provides continuous Kerberos authentication
to the batch job while it runs.

2.1. Overview of LAT

When a user wishes to schedule a batch job, she
invokes the lat command with a syntax very
similar to the UNIX at command. A spool file
for the batch job is created, containing, among
other things, the user’s name, her current working
directory, and her shell environment. So far, this
is identical to at.

Next, lat requests a ticket for the lat service
from the Kerberos ticket granting server on behalf
of the user. This step is shown in Figure 1.

Ticket

Request

TGT LAT

ClientTGT Server

Figure 1. The client sends the ticket granting
server a a request for a lat ticket. The request in-
cludes a ticket granting ticket (TGT) which proves
the identity of the client, and enables the server to
send the lat ticket to the client.

The lat ticket is then sent to a latd server.
The server must run on a secure machine. The
client and server then mutally authenticate [2], as
shown in Figure 2.

After mutual authentication, the client and server

- 1 -



-- --

Rubin/Honeyman

Ticket

Mutual
Authentication

KRB

LATD

LAT

ClientLAT Server

SF

Figure 2. The client has generated a spoolfile (SF)
for the lat job, which it stores on the local disk. It
sends a lat ticket to the server (LATD), and the
client and server mutually authenticate. Note that
the Kerberos server (KRB) is running on the same
machine as latd.

have available a shared DES [4] key, which we
denote K, as shown in Figure 3.

K K

KRB

LATD

LAT

SF

ClientLAT Server

Figure 3. Initially, the spool file resides on the
client machine. The client and server share a secret
key, K.

The lat client uses K to seal the spool file. This
hides the details of the batch request from prying
eyes, as well as assuring its integrity. The
encrypted spool file is then sent to the latd
server, as shown in Figure 4.

{SF}K

K K

KRB

LATD

LAT

ClientLAT Server

Figure 4. The client sends the spool file to the
server, sealed under the session key, K.

Along with the spool file, the client sends infor-
mation such as the time and date for the job to
run, the user’s environment, etc . The latd
server receives the spool file from the client,
unseals it, and stores the file away until it is time
for the job to run. At this point, the client dis-
cards its copy of the spool file and listens to a
well known port for activation. For reasons dis-
cussed later, the latd server runs on a Kerberos
master or slave machine. This blocked
configuration is depicted in Figure 5.

Periodically,3 the server wakes up and checks to
hhhhhhhhhhhhhhhh
3 Once a minute, in our implementation.

K K

SF

KRB

LATD

LAT

ClientLAT Server

Figure 5. Figure The spool file is stored on the
secure server machine, and is purged from the
client machine.

see if any job is scheduled to be run. When the
time for the job to run arrives, the server uses the
Kerberos database to construct a ticket for the
user. It then seals this ticket along with the spool
file, and sends them back to the client machine, as
shown in Figure 6.

{TGT}K

{SF}K

K K

SF

KRB

LATD

LAT

ClientLAT Server

Figure 6. When it is time for the job to run, the
encrypted spool file and a ticket granting ticket
(TGT) are sent to the client under the session key.

Now the client can use the TGT to obtain tickets
for other services. If the job will run for longer
than the life of the ticket, or if the user suspects
this may be the case, lat offers an option to
renew tickets, in which case the server sends new
tickets to the client as long as the job is running.
Of course, care is taken to ensure that the job is
still running. (This proves to be a difficult prob-
lem.)

After the job terminates, the spool file is removed
from the client machine, and the lat process
exits. A message is then sent to the server
machine so that the latd process can exit too.
Details follow in Section 3.6.

2.2. Implementation of the latd server

The server program, latd, runs as root. More-
over, the server machine contains a master or
slave copy of the Kerberos database; any program
running on such a machine must be trustworthy.
The lat program runs on the client’s host
machine. It also runs as root, but care is taken to
make sure that the user’s job is not able to obtain
a higher privilege than it should. The program

- 2 -



-- --

Long Running Batch Jobs

uses the UNIX setuid facility to ensure that the
user’s batch job runs as that user. However, the
actual lat program runs as root because it must
perform operations that require special privileges,
such as setting group IDs, deleting files, and
copying files to and from the local disk.

When the latd server needs to issue tickets for a
user, it sends a request to the Kerberos server.
The Kerberos server returns a user ticket
encrypted under that user’s secret key. Unfor-
tunately, the client machine does not necessarily
have a user authenticated to it when this happens,
so the user’s secret key may not be available.
Thus, the user’s ticket issued by the Kerberos
server is not readable.

To decipher the user ticket, the latd server uses
the Kerberos database to access the user’s secret
key. Since user keys are stored encrypted under a
master key in the Kerberos database, latd must
first use the Kerberos master key. Then, the user’s
key is decrypted. Once latd has decrypted the
user’s secret key, it decrypts the user ticket
received from the Kerberos server. Finally, latd
changes the client address in the ticket to that of
the target host that will run the job. The ticket is
then ready to be sent to the user’s host machine.
The encryption of the ticket before it is sent over
the network is the topic of Section 3.5.6.

It should be noted that for the ticket received
from the Kerberos server to be readable, latd
has to access the Kerberos database and the Ker-
beros master key. Thus, it is a requirement that
latd run on a Kerberos master or slave machine.

When a user invokes the lat server, the ticket
granting ticket is sent to the ticket granting server
with a request for a lat ticket. After mutual
authentication, the client receives a ticket and can
then communicate with the server. Thus, lat
behaves as any other Kerberos service.

3. The Theory Behind LAT

It seems rather contradictory to provide authenti-
cation for an absent principal. Authentication, by
definition, means that a principal proves her iden-
tity, a very difficult task if she is no longer
present. Thus, to schedule a long-running job, or
one to be run at a later date, a principal must
leave something around so that possession of this
thing is equivalent to an authentication for that
principal. A similar idea, called delegation is dis-
cussed by Lampson et al. in [3]. The authors
define the ‘‘speaks for’’ relationship and provide
rigorous definitions and proofs based on a set of

axioms they define in the paper.

Ideally, we would like the user’s batch job to
delegate authority to the workstation, saying that
the workstation speaks for the user. In general,
though, we are dealing with the domain of
untrusted workstations. Many workstations
reside in public sites where many different users
have access to them at all times. It is a funda-
mental assumption that nothing on such a works-
tation can be trusted. However, some comprom-
ises must be made to provide for authenticated
long-running jobs; we elaborate on this theme in
the next section.

3.1. The authentication problem for a vacant
workstation

We call a workstation vacant whenever a given
user’s task must be run there while that user is not
logged in. In the previous section, we assumed
that nothing on the workstation could be trusted.
The reason for this is straightforward: we must
allow for the possibility that a user might obtain
root privileges, e.g. , by booting the machine into
single-user mode, whereupon the privileged user
might replace any or all utilities on the worksta-
tion, including the operating system image itself.
The only objects on a public workstation safe
from such attack are those that are encrypted.
Yet, we take it as given that the encryption key
may not reside on the workstation, even if well
hidden. It has long been agreed by experts that
‘‘security through obscurity’’ should never be
relied on for system secuity, e.g. , Kahn [5] cites
Kerckhoffs’ classic treatise on military security
[6]; a more modern view is espoused by Saltzer
and Schroeder [7] in describing ‘‘open design’’ as
one of the basic principles of information protec-
tion:

The design should not be secret. The mechanisms
should not depend on the ignorance of potential
attackers, but rather on the possession of specific,
more easily protected, keys or passwords. This
decoupling of protection mechanisms from protec-
tion keys permits the mechanisms to be examined
by many reviewers without concern that the review
may itself compromise the safeguards. In addition,
any skeptical user may be allowed to convince
himself that the system he is about to use is ade-
quate for his purpose. Finally, it is simply not real-
istic to attempt to maintain secrecy for any system
which receives wide distribution.

Voydock and Kent amplify this perspective:
‘‘data encryption is the fundamental technique on
which all communications security measures are

- 3 -



-- --

Rubin/Honeyman

based’’ [8]. Any techniques or protocols may as
well be open and known if there is nothing gained
from hiding them.

Therefore, in a secure, distributed authentication
system, data must travel across the network
encrypted; for two peers to communicate this
way, they must share a secret. Thus, the user
must place something on the workstation which
the server can later use for mutual authenticata-
tion.

Lampson et al. describe a mechanism whereby a
vacant workstation could share a secret [3]. Their
method requires that a machine possess a private
key stored in nonvolatile memory. In addition to
the private key, certificates and other rules must
be stored on the boot ROM.

Aside from the fact that our workstations do not
contain this information in ROM, Lampson’s
method requires a public key system, which is not
compatible with Kerberos. At some future date, it
may be possible to authenticate a workstation,
whereupon it will not be necessary for the client
to leave anything on the machine.

3.2. How LAT authenticates to a vacant
workstation

For the server to send an encrypted spool file and
tickets back to the client’s host machine, some
shared secret must be left on the workstation.
The creation and responsibilty of this secret is
illustrated in Figure 7. To leave this secret on the
workstation, a new random key is generated,
which we denote N. K, the lat session key, is
encrypted with N and stored on the client
machine. N is then sent encrypted under K to the
server. Note the symmetry here: the client holds
{K}N but sends the server {N}K.

After sending the spool file and other information
to the server, the client erases all of this informa-
tion from disk and from memory. All that the
workstation keeps is {K}N, the session key from
the original lat ticket encrypted under N, main-
tained in the address space of the lat process on
the client machine.

When it is time for the server to send the spool
file and tickets to the workstation, it encrypts
using K, so that the workstation can decrypt them.
The server first sends N to the workstation in the
clear. The workstation then unseals the original
session key, and thus decrypts the spool file and
tickets when they arrive.

It should be noted that by itself, eavesdropping on

K K N

KRB

LATD

LAT

SF

ClientLAT Server

{N}K

K {K}N

KRB

LATD

LAT

SF

ClientLAT Server

KN {K}N

KRB

LATD

LAT

SF

ClientLAT Server

Figure 7: How K is secured on the client. The
first step is illustrated in the top diagram. The
client generates a random key, N. Then, as shown
in the next diagram, N is used to encrypt the ses-
sion key, K, which remains on the client machine.
Then, N is sent to the server under the sesssion key.
Finally, as shown in the bottom diagram, K and N
are stored on the server. When it is time for the job
to run, N is sent to the client to unseal {K}N .

the network does no harm: the only junction
served by N is to unseal the key in the process
memory on the workstation. Once the session
key is unsealed, the spool file and tickets sent
across the network can be decrypted by the lat
agent sitting on the workstation.

3.3. Risks of running LAT with a vacant
workstation

In this section, we analyze the risks involved in
running lat on a vacant workstation. If the
workstation is rebooted, then the process memory
is lost. Although a denial of service results, this
can be reported back to the user and no real harm
is done. If an imposter manages to gain control
of the machine without erasing the memory, and
examines memory to find the secret key, this will
give no advantage, since the secret key is
encrypted with N. In fact, a few other safeguards
are in place. The imposter has no idea when a job
is scheduled to run, since all such information has

- 4 -



-- --

Long Running Batch Jobs

been kept secret and no longer resides on the
workstation.

To compromise a job, an imposter must be on the
workstation when N arrives, and have already
acquired the session key, encrypted under N, from
the process memory. The imposter must then
happen to be eavesdropping when N is sent, and
then be able to decrypt the spool file and insert
bogus commands. However, if the imposter has
this capability, then the imposter has completely
compromised the workstation and would be able
to interfere with the job, which must run in
memory.

To deny service, an imposter can simply reboot a
workstation, but lat can notify the user of
unsuccessful batch jobs (soon to be imple-
mented). As long as users understand this risk,
they can choose whether to use the lat service.
Lat does not compromise the security of people
who do not use it.

3.4. The single user approach

The vacant workstation problem was addressed
by Treese at MIT, where access to an Athena
workstation is limited to one user at a time [9].
Treese reports that ‘‘experience has shown that
this is an acceptable limitation.’’ Placed in our
context, workstations could prohibit any login
while any lat job is scheduled. This would
make lat client machines much more secure.
However, this could result in a serious denial of
service. A malicious user could schedule a lat
job which would monopolize a workstation for
any amount of time. Also, a user could log in and
prevent a scheduled lat job from running. Both
these forms of denial of service can be detected.
In fact, latd could maintain a database of pend-
ing lat jobs, and any abuse of the system could
be easily traced to the offending user.

3.5. Generating tickets for a user

When it is time for a batch job to run, the lat
server must obtain a ticket for the user. It cannot
simply issue a request for a ticket the way a user
does because this request looks up the address
from which it comes, and puts the client IP
address into the ticket. Thus, the ticket must be
constructed manually by the server. The steps
taken by the server are as follows:

g Get the master key for Kerberos

g Get the TGT secret key from the Kerberos
database

g Decrypt the TGT key with the master key

g Create a TGT ticket for the user

g Zero out the master key and other keys from
memory

A brief discussion of each of these steps follows.
This discussion makes it clear that the lat server
must have the Kerberos database available to it,
and must either run on the same machine as Ker-
beros, or on a Kerberos slave machine.

3.5.1. Get the master key for Kerberos

The following steps are taken to get the master
Kerberos key. We call gettimeofday to set
the Kerberos time. Then we call routines to get
and verify the master key. After that, the version
number is checked. If the wrong version number
appears, or if kdb_verify_master_key
returns an error, we log the error and exit. In this
case, no tickets can be generated, and mail is sent
to the user (mail not implemented yet).

3.5.2. Get the TGT secret key from the Ker-
beros database

To get the TGT secret key from the Kerberos
database, we call check_princ, which checks
for expiration times on the master key and the
service. It also fills the Principal data struc-
ture with information containing the key
(encrypted under the master key), realm, etc .

3.5.3. Decrypt the TGT key with the master
key

This step is straightforward. We use the master
key to decrypt the TGT key.

3.5.4. Create a TGT ticket for the user

We have the TGT ticket that will be used to
encrypt the ticket once it is constructed. Inside
the ticket, we place user information such as
name, instance, and realm, obtained from the call
to check_princ. Then, we add the client host
address that we obtained with a call to getpeer-
name to see who the client was. In addition, we
generate a random session key and include that in
the ticket. Other usual information such as the
time and ticket lifetime are also included. A life-
time of about 25.5 hours was chosen here, but
that was arbitrary and based on the choice
observed in existing Kerberos services. The abil-
ity to specify the lifetime could be added later as
a user-specified option to lat.

- 5 -



-- --

Rubin/Honeyman

3.5.5. Zero out the master key and other keys
from memory

Finally, we zero out all of the memory we used
for highly sensitive information such as the mas-
ter key. Even though this is a trusted machine, it
never hurts to take added precautions.

3.5.6. Send the ticket to the client

Once the ticket has been constructed properly, it
is encrypted under the session key available to the
client and sent across the network. The client
decrypts the ticket, and stores it with the batch job
user as the owner, with no permissions for anyone
else.

3.6. Renewing the tickets

If a batch job is to run for more than the lifetime
of a TGT ticket, then the workstation must receive
a new ticket for the user. The ability to renew
tickets is added as a command line option. If a
user prefers for jobs which outlive the tickets to
die rather than have tickets generated until the job
exits, she can chose to omit this option.

The lat program forks a master process to run
the batch job. Before the job is actually run, this
process forks a sub-process. This sub-process is
in charge of maintaining the user’s authentication
on the workstation. When the master processing
the job completes, it terminates the sub-process,
and sends a message to the server that it is
finished. This message is not necessary, but it is
sent so that the latd process on the server will
exit normally. The details of this scheme follow.

The process that maintains the authentication
works as follows. It goes to sleep until the
authentication ticket is about to expire. Then, it
calls gettimeofday to get the current time.
The time is sent, encrypted, to the server, ensur-
ing against replay, and proving possession of the
secret key. The server checks the time, and if it
matches to within a minute, is convinced that a
new ticket must be sent. The server then con-
structs a new ticket for the user and sends it
across the network. The workstation replaces its
current ticket file with the new one, and then goes
back to sleep.

The server on the other end waits for a request for
tickets or a message from the client that the job
has terminated. When a request comes in, the
server checks that the time is within a minute of
the current time. If not, the request is ignored,
and no tickets are generated. If the time is
correct, then the user creates a new TGT ticket for

the user, encrypts it, sends it to the client, and
continues waiting for requests.

4. Conclusions

Using lat, it is now possible to run a batch job
with authentication without manually renewing
user tickets. The risks of having valid tickets on a
vacant workstation are inherent to lat. To
minimize the risk, the secret key used to authenti-
cate to the server when the user is gone is main-
tained, encrypted in the process memory of the
lat process on the client machine.

The lat server runs on a secure machine with
access to the Kerberos database. It uses this data-
base to generate tickets for users and the TGT ser-
vice. Everything sent across the network is
encrypted first with the secret key available on
the workstation.

When scheduling jobs to run on a vacant worksta-
tion, there must be some security compromise for
authentication to take place. This problem will
remain until there is some way to actually authen-
ticate a workstation.

5. Future Work

We are considering some enhancements for
future implementation.

Some utilities could be added to lat. In particu-
lar, we are working on three: latq, latrm,
and latconts. Latq will display the queue of
impending jobs for a user. Latrm will allow a
user to cancel a job by removing it from the
queue. And latconts will display the contents
of a scheduled job. These utilities are being Ker-
berised with authentication and encryption proto-
cols.

Another possibility for future work is to add flexi-
bility to the lat service. For example, a user
may wish to specify that a workstation should
only maintain valid tickets between certain hours,
when presumably, she believes it is safer. An
option can be added in which the user specifies
the lifetime of tickets, and perhaps provides some
conditions under which they should or should not
be renewed.

Another feature which could be added to lat is
the ability for a process to save its state before a
ticket expires, send it (encrypted) to the server,
and then wait until the user reauthenticates to
continue running. This feature would be useful in
a case where the workstation somehow realizes it
has been compromised, or is about to be.

- 6 -



-- --

Long Running Batch Jobs

Acknowledgements

The first author thanks David Snearline and Scott
Dawson for their continuing help with Kerberos
and programming details, Dan Muntz for his pati-
ence and help with the working environment at
CITI, Michael Stolarchuk for his support early on
in the project, and Bernie Galler for his constant
motivation and support.

References

1. R.M. Needham and M.D. Schroeder, ‘‘Using
Encryption for Authentication in Large Net-
works of Computers,’’ Communications of the
ACM 21(12), pp. 993−999 (December, 1978).

2. J.G. Steiner, B.C. Neuman, and J.I. Schiller,
‘‘Kerberos: An Authentication Service for
Open Network Systems,’’ pp. 191−202 in
Usenix Conference Proceedings, Dallas,
Texas (February, 1988).

3. B. Lampson, M. Abadi, M. Burrows, and E.
Wobber, ‘‘Authentication in Distributed Sys-
tems: Theory and Practice,’’ ACM Transac-
tions on Computer Systems 10(4) (November,
1992).

4. National Bureau of Standards, ‘‘Data Encryp-
tion Standard.,’’ Federal Information Pro-
cessing Standards Publication(46) (1977).

5. D. Kahn, The Codebreakers, Macmillan Pub-
lishing Co., New York (1967).

6. A. Kerckhoffs, La Cryptographie Militaire,
Libraire Militaire de L. Baudoin & Cie., Paris
(1883).

7. J.H. Saltzer and M.D. Schroeder, ‘‘The Pro-
tection of Information in Computer Systems,’’
Proc. of the IEEE 63(9), pp. 1278−1307 (Sep-
tember, 1975).

8. V.L. Voydock and S.T. Kent, ‘‘Security
Mechanisms in High-Level Network Proto-
cols,’’ Computing Surveys 15(2) (June, 1983).

9. G.W. Treese, ‘‘Berkeley UNIX on 1000
Workstations: Athena Changes to 4.3BSD,’’
USENIX Winter Conference, Dallas Texas,
pp. 175−182 (February, 1988).

- 7 -


