
ABSTRACT

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

CITI Technical Report 92–7

AFS Write Performance - A Campaign Paper

Sarr Blumson
sarr@citi.umich.edu

AFS writes are slow. Part of the reason they appear slow is that opportunities to overlap
writing with computation are often not used. This paper describes some of these lost op-
portunities, and advocates (with some gestures toward objectivity) changes to the AFS
cache manager to take advantage of them.

December 10, 1992

Center for Information Technology Integration 1

AFS Write Performance - A
Campaign Paper

Sarr Blumson

December 10, 1992

1. Introduction

One of the reasons that AFS writes appear to be slow is that, absent unusual occurrences such as
revoking callbacks and cache overflows, there is no data transfer between the client and server ma-
chines until the file is closed. Opportunities for overlapping the transfer with the generation of the
data by the users’ application are thus lost.

We begin by describing some characteristics of the University of Michigan Institutional File System
that increase the visibility of this problem, and then go on to characterize it in a little more detail.
We then describe a possible solution and some of the reasons why this might or might not be a good
idea.

2. IFS Overview and Intermediate Servers

The Institutional File Server (IFS) Project[1] is a joint effort of the University of Michigan and IBM
to provide a campus-wide integrated file service for the University of Michigan community. This
community is both large and diverse; there are thousands of potential client workstations of many
different types with variations in storage and processing power of several orders of magnitude. The
base vehicle for this service is AFS.

As we hope to serve a large campus from a small number of geographically centralized servers, our
architecture includes Intermediate Servers[2] that reside between clients and the central servers
and provide an intermediate level of caching. This is particularly important where the clients are
small machines (e.g., Macintosh1 or MS-DOS2 machines), which cannot support the large local
caches normally used by AFS clients. In addition, the limited capacity of these machines (as well as
the desire to overcome user resistance by limiting the amount of special software that is required
to use our services) has caused us to provide a translation service to the “native” protocols of the
more popular machines (e.g., AppleTalk Filing Protocol for the Macintosh) in these intermediates.
A sketch of this architecture is shown in Figure 1.

1. Macintosh is a trademark of Apple Computer.
2. MS-DOS is a trademark of Microsoft Corporation.

Center for Information Technology Integration 2

AFS Write Performance - A Campaign Paper

Figure 1. Architecture

A matter of concern to our potential users, and therefore to us, is that the IFS offer performance that is
competitive with the alternatives that are currently available. While the IFS offers unique opportuni-
ties, such as potentially world-wide location independence, initially users do the same things they did
before. Their first impression, then, is how well they can still do them.

3. The Problem

The initial impetus for this work came from a colleague at CITI who was using Macintosh tools to ma-
nipulate photographic images stored in IFS[3]. He reported that while retrieving his files was reason-
able, writing them back was not.

Investigation of the causes of this eventually led to an experiment writing a very large (100 megabyte)
file from a Macintosh to an IFS server. This took 3276 seconds. More interestingly from the point of
view of the Macintosh, writing the file took only 1550 seconds, but closing it took 1726 seconds.

The reason for this appears to be that the intermediate/translator holds the entire file in its cache until
close time, and then sends the entire file to the primary server. The data takes two hops over the un-
derlying network; these two hops are not overlapped at all, as illustrated in Figure 2.

Figure 2. Non-overlapped Transfer

It is at least possible to perform this operation so that each chunk is transmitted to the primary server
as soon as it is complete. This would overlap most of the transfer, as shown in Figure 3, and reduce the
total time for the 100 megabyte (1600 chunk) write and close to1726 + (1550 / 1600) = 1727 seconds, a
substantial improvement.

Simple Client
(many)

Translator
(a few)

AFS Server
(one)

network network

client to translator

translator to server

write write write

chunk 2 chunk nchunk 1

write write write

chunk 2 chunk nchunk 1

Center for Information Technology Integration 3

AFS Write Performance - A Campaign Paper

Figure 3. Overlapped Transfer

While the use of intermediate servers makes the lack of overlap more apparent, it is a general issue
for the AFS cache manager. This behavior will be typical of many distributed applications in which
a client communicates with a server, which in turn makes use of some distributed file service. In
addition, there are many more conventional situations that can lead to similar aggravation. Any
UNIX3 application that is normally “compute bound,” but which writes large amounts of output,
will develop a previously unseen I/O bound phase when the output is written to an AFS server.
This new phase will be particularly unsettling to users as it occurs at a point where most applica-
tions have announced that they are finished.

In this paper we are primarily concerned with a single user view of file system performance. From
a system wide point of view, there are other effects of a flush on close policy that are more difficult
to describe and quantify. For example, closing a large file will result in a large burst of write activity
at the server. Carson and Setia[4] have shown that this batching of write traffic will often degrade
other file system activity.

4. The Solution

Writing a chunk “when it is complete” is not very well defined. However, it is established gospel[5]
that most write activity is sequential. In this case, it is easy to determine when a chunk is complete:
it is complete when the last byte is written. We therefore propose the following algorithm:

• If two successive client write operations are sequential and cross a chunk boundary, flush the
first chunk now.

• Flush any remaining dirty chunks when the file is closed.

This algorithm involves a very simple local heuristic for sequentiality, combined with a simple
check for completeness that depends on the assumption of sequentiality.

5. Other Approaches

The most obvious alternative solutions involve some form of periodic flush of dirty cache pages.
This is often done for system integrity reasons, as in the UNIX buffer cache, and is, in fact, done in
AFS4 for exactly that reason. While these techniques reduce the dramatic effects described in sec-

3. UNIX is a trademark of Unix System Laboratories.

client to translator

translator to server

write write write

chunk 2 chunk nchunk 1

write write write

chunk 2 chunk nchunk 1

Center for Information Technology Integration 4

AFS Write Performance - A Campaign Paper

tion 3, the problem remains for any application whose running time is less than the flush period.
These periods are typically on the order of thirty seconds. Making a program that would run for
twenty seconds take forty seconds is not as dramatic as our original example, but it is still serious.
Programs of this order are much more common. In addition, these methods still tend to batch write
operations, with possible negative results for system performance as a whole[4]. In addition, this
approach is totally unsynchronized with the writing program, increasing the probability of inter-
ference. Shortening the flush period in order to reduce batching effects would only make this
worse.

Another approach would be to do the close itself in the background, rather than making the user
wait. This would eliminate the apparent delay, but at a cost we believe would be much greater. The
data transfer can fail, and this would eliminate any opportunity to inform the application of the fail-
ure. It would also break a guarantee that AFS currently makes to cooperating programs, that they
can depend on a write being complete after the close.

6. Problems With the Solution

6.1 AFS Write Semantics

This change would make some subtle changes in the write behavior of AFS. In particular, data that
currently does not appear at the server until the file is closed will begin appearing gradually over
the life of the user program. The question is whether this matters.

It has been suggested[6] that AFS guarantees, or at least attempts to guarantee, all or nothing se-
mantics on file updates. We believe that this is not truly an issue for several reasons.

• Our review of the AFS literature[7],[8] suggests that delaying stores until close was derived
from the original whole file caching scheme, and was always viewed as a performance and
scalability compromise, which did not seriously break the desired UNIX semantics, rather than
a goal.

• This guarantee is already seriously broken in AFS3. It is clearly impossible to maintain while
writing files that are larger than the local cache. In general, AFS3 will flush the dirty chunks of
a file in response to cache overflows. Even at close, the new data is written to the server as a
series of independent, chunk-sized operations that can interleave with reads by other clients.

• The guarantee is completely broken by the periodic cache flush in AFS4.

• The current behavior compromises another AFS goal: location independence. Currently a read-
ing process on the same host as the writer sees different data than a reader on another host.
This is a reasonable performance compromise for the reasons described by Kazar[8], but incon-
sistent behavior is not a plausible goal for its own sake.

None of this should be interpreted as meaning that atomic update semantics is not a reasonable
goal in itself. Quite the contrary. Implementing it, however, requires an architecture very different
from AFS, which would guarantee that updates are always atomic and appear so to all potential
readers. Such an implementation would be independent of the low level issues of when to physi-
cally transfer the data that we are addressing here.

6.2 Program Behavior

All system designers know that programs are malevolent. The heuristic proposed here is only a
heuristic, and cannot guarantee that the program will not immediately rewrite the chunk we have

Center for Information Technology Integration 5

AFS Write Performance - A Campaign Paper

just decided to transmit. At the least, this breaks one benefit of the AFS3 scheme, minimizing the
amount of data transferred to the server, because this chunk will now be transmitted twice.

A more subtle problem is the race between transmitting the chunk and modifying it that arises in
this scenario. We suggest, however, that this is a “don’t care.” The final version will eventually ar-
rive at the server (in the absence of failures). The underlying semantics are already so variable (e.g.,
a local reader could have seen the intermediate value, even if it were never written to the server)
that the temporary presence of intermediate values on the server doesn’t matter.

In any case, we claim (without any evidence) that this sort of program behavior, while clearly not
impossible, is unlikely. If desired, the probability of a false determination of sequentiality can be
made smaller by requiring a larger number of sequential writes, rather than the two we have sug-
gested.

6.3 Implementation Details

Currently the actual transfer of the chunk is done by the thread triggering the operation, typically
the user process doing the close. For the transfer to be done asynchronously, it would have to be
queued to be performed by the AFS daemon.

Currently the dcache entry and the corresponding vnode are locked while a chunk is being trans-
mitted to the server. It is not clear to us why or whether this is necessary, or what effort would be
required to change it. If it cannot be changed, there is some potential for the user process to be
blocked when it attempts the next write to the following chunk. While this does have the advantage
of removing timing dependencies on which data is written when a chunk is unexpectedly rewrit-
ten, as discussed above, it is certainly less than ideal. However:

• At worst, this is better than the present case. Part of the transmission wait has been moved
from the close operation to a write operation, but it has not been increased. Any computing that
the user process did before the write (and there must have been some!) is an improvement.

• The periodic flushes done by AFS4 face the same problem. While they probably occur less often
(although this depends on the user program), they will, in general, take longer because they
will send more chunks. In addition, the scheme proposed here will be better synchronized with
user programs because transmission will be provoked by a write, and the full interval between
writes will be overlapped.

An important concern is the vital importance of keeping the code paths added by AFS short[9]. The
additional tests we are proposing are trivial, however, and should not add significantly.

7. Conclusions

The write performance of AFS can be greatly improved by some simple changes that will change
some behavior that is largely a vestige of earlier, “whole file caching” versions.

As an incidental benefit, the problems that are caused by the many UNIX utilities, and other user
programs, that do not check the result of close operations will be reduced. Many problems that now
occur only on close will begin to occur on the preceding write instead.

Last, we do not believe that the periodic stores done by AFS4 provide an adequate remedy to the
problems we raise here. As discussed earlier, they are poorly synchronized with user program ac-

Center for Information Technology Integration 6

AFS Write Performance - A Campaign Paper

tivity, in a way that is equally likely to result in a chunk being written too often (when the file is
being written slowly) or to be of no effect at all (when the file is written and closed within one thirty
second interval).

 Acknowledgments

Many colleagues at the University of Michigan played major roles in the development of these
ideas. Marcus Watts performed the original write experiment described in section 3. The issues
around AFS write semantics were developed during some energetic conversations with Peter Hon-
eyman. Mike Stolarchuk was a great help in clarifying the actual behavior of AFS. Lyle Seaman of
Transarc also made a number of useful suggestions.

 References

1. T. Hanss, “University of Michigan Institutional File System,” /AIXTRA: The AIX Technical Review, pp.
25-32, (January 1992).

2. James Howe, “Intermediate File Servers in a Distributed File System Environment,” CITI Technical
Report 92-4, (June 30, 1992).

3. Wafik Farag and Fred Remley, “Digitized Image Data Compression and Transfer,” CITI Technical
Report 92-5, (October 30, 1992).

4. Scott D. Carson and Sanjeev Setia, “Analysis of the Periodic Update Write Policy For Disk Cache,”
IEEE Transactions on Software Engineering, vol. 18, no. 1, pp. 44-54, (January 1992.)

5. John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and James G.
Thompson, “A Trace-Driven Analysis of the UNIX 4.2 BSD File System,” Proceedings of the 10th Sym-
posium on Operating System Principles, pp. 15-24, (December 1985).

6. Peter Honeyman, Personal Communication, (November 19, 1992.)

7. J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satyanarayanan, R.N. Sidebotham, and M.
West, “Scale and Performance in Distributed File Systems,” ACM Transactions on Computer Systems,
vol. 6, no. 1, pp. 51-81, (February, 1988).

8. M.L. Kazar, “Synchronization and Caching Issues in the Andrew File System,” Technical Report CMU-
ITC-058, (June 1987).

9. Michael T. Stolarchuk, “Faster AFS,” CITI Technical Report 92-3, (June 22, 1992).

