CITI Technical Report 92-3

Faster AFS

Michael T. Stolarchuk
nms@iti.umch. edu

ABSTRACT

The AFS Cache Manager fetches files from the AFS file server, and caches them into a local
file system. Given this model, users expect reads of locally cached files to perform at local
file system rates. However, read performance of the AFS cached files is half the read per-
formance of the local file system. This paper discusses the reasons for the large perfor-
mance difference, and the modifications made to AFS so that reads of locally cached files
perform within 10% of the performance of the local file system.

June 22, 1992

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Faster AFS

Michael T. Stolarchuk

June 22, 1992

The AFS File System [1] is a distributed file
system based on the client/server model.
The file servers only perform file service; the
clients are workstations that run additional
code to network with AFS file servers. These
AFS clients also have additional responsibil-
ities; they provide caching, a central role of
AFS clients. Because files are mostly read,
caching the files locally enables most user
read requests to be processed without using
network resources.

The AFS Cache Manager keeps track of all
the files cached. The cache is kept on local
disk and is nonvolatile. The AFS Cache Man-
ager also keeps a nonvolatile index of the
cached files. The AFS Cache Manager uses a
local file system to store the contents of the
cached AFS files. Later read requests are sub-
contracted to the local file system.

Users then expect the read performance of
cached files to be similar to the read perfor-
mance of the local file system. When mea-
sured, however, the performance of the AFS
3.1 Cache Manager is about half that of the
local file system. Some AFS sites have actu-
ally moved binaries to the local disk drives,
away from the distributed file system, due to
these performance differences.

At the Center for Information Technology In-
tegration (CITI), we examined the read per-
formance of the AFS 3.1 Cache Manager,
attempting to improve the overall perfor-
mance of the client environment.

The body of this paper is divided into three
main sections. The first section discusses per-
formance issues of the AFS 3.1 Cache Man-
ager, the second section describes the
implementation of the AFS Cache Manager
and the third section describes the modifica-
tions we have made to the AFS Cache Man-
ager, along with their performance impact.

1. Performance Measurements

1.1 Benchmark

We used a very simple benchmark to com-
pare read times. The benchmark reads bytes
from the beginning of the file. It opens a file
once, then performs reads. The benchmark
can be directed to read any file, allowing
measurement of both AFS and the local file
system. The benchmark reads the same block
in each iteration. That block is kept in memo-
ry; no disk I/O is performed.

Measurements

We measured the times for two different ma-
chines, both running the AFS 3.1 Cache Man-
ager. Figure 1 describes an IBM RT, about 2
MIPS. Figure 2 describes an IBM RS/6000
520, about 20 Mhz.

Center for Information Technology Integration

Faster AFS

5 "l
¥
z o ult
. e e
P ilisccondy T = :
18 BT it e
I - -
gder™ -
JEE) 3104
Samber af Byee
1B ET
| Byiex | capy ale M1k
| 0 [ok 03588 LIGE |
fhe | DL 0xd LEd |
Mo 1 DT 0k 0]
[abee | oa7s [EC T
|l-'-'3:.l’li! 0345 I:tjl
Figure 1. IBM RT Benchmark Performance

Measurement

The graph in Figure 1 above shows measure-
ments of the time in milliseconds for the AFS
3.1 (afs31) read, the Berkeley Fast File (ufs)
read, and memory to memory copies (copy)
on the IBM RT. The table lists the time spent
in milliseconds to copy the data from the read
operation and describes the overhead for the
other components by listing the additional
time spent above the copy. The “ufs” column
describes the time spent performing local file
system operations, and the “afs31’” column
describes the time spent within the AFS 3.1
Cache Manager.

afs31
0.75

Milliseconds 0-5

IBM ifs
RS6000
0.25 copy
T

2000 4000 8000
Number of Bytes

IBM RS/6000 520
Bytes | copy jfs afs31
100 | 0.004 0.128 0409
1000 | 0.028 0.124 0421
2000 | 0.055 0.124 0424
4000 | 0112 0.122 0435
8000 | 0215 0.131 0456

FIGURE 2. Figure 2. IBMRS/6000 benchmark
performance measurement

The graph in Figure 2 shows measurements
of AFS 3.1 (afs31) read, the AIX 3.1 Journaling
File System (jfs) read, and memory to mem-
ory copies (copy) on the IBM RS /6000 520.

The table lists the time spent in milliseconds
to copy the data from the read operation and
describes the overhead for the other compo-
nents by listing the additional time spent
above the copy. The ‘jfs’ column describes the
time spent performing local file system oper-
ations, and the ‘afs31‘column describes the
time spent within the AFS 3.1 Cache Man-
ager.

1.2 Discussion

To gain the benefit of a distributed file sys-
tem, users of the AFS Cache Manager are
willing to sacrifice performance somewhat. If
the performance loss becomes large, the ben-
efits of a distributed file system come into
question. Our own goal is 10% overhead; we
would be willing to pay 10% above the time
spent processing the read request to the local
file system. After all, once the file is on the lo-
cal disk, the AFS Cache Manager should be
able to access the data quickly.

That 10% overhead is a relative value. When
the underlying file system uses significant
processing resources, the AFS Cache Man-
ager can also use significant resources. In
both previous figures, the underlying file
system uses little processing resources. From
the table, the overhead of both the local file
system and the AFS Cache Manager is static;
the time stays relatively constant over the
range of reads. On the RT, the static overhead
to read one block from the local file system is
equal to the time to move 2K of data. The
static overhead of the AFS Cache Manager to
process a read is three times larger.

The benchmarks measure the overhead, the
processing time to complete the read in addi-
tion to the memory to memory copy. We ig-
nored the I/O delays since the benchmark’s
times correlated with performance differ-
ences reported from some applications. Ad-
ditionally, we have AFS Cache Managers
which use main memory, not disks, as the

Center for Information Technology Integration

Faster AFS

cache. When the memory-based AFS Cache
Managers exhibited the same performance
loss (relative to the local file system), we de-
cided to investigate the AFS Cache Manager.

The overhead depends on the size of the read
requests typically issued by user processes.
According to [2] 70% of user processes typi-
cally operate requesting 4K or less. Because
we believe most of the I/O from user pro-
cesses comes from the standard I/O library,
and because standard I/O determines its
block size from the file system, we need to be
aware of the block size of the underlying file
system.

The IBM RT’s local file system has a block
size of 8K, while the IBM AIX's file system
has a block size of 4K. Typical user processes
on the RT will make 8K read requests, while
the IBM RS/6000’s AIX will make 4K re-
quests. The distribution of the sizes of read
requests determines the perceived perfor-
mance loss.

The performance loss is due to the length of
the code path. The number of instructions the
AFS Cache Manager needs to issue to meet its
requirements is large compared to the under-
lying file system. The AFS Cache Manager
has requirements that are not clearly out-
lined; it is using the code path to meet these
requirements. By describing these require-
ments, and understanding the size of the un-
derlying file system, we can make some
significant performance improvements.

2. The AFS 3.1 Cache Manager
Read Requirements

To understand why the AFS Cache Manager
was using more processing time than the un-
derlying file system, we reverse engineered
the code of the read operation to determine
its requirements. We then studied how the
AFS Cache Manager implements each of the
requirements, with the goal of reimplement-
ing significant portions of the read procedure
for higher performance.

2.1 Cache Consistency

The data in the cached file must represent
up-to-date information. The AFS Cache
Manager uses a lazy policy to determine if
the AFS file is out of date. Before any data as-
sociated with an AFS file is referenced, the
file is checked for cache consistency. For ex-
ample, early in the read operation, the AFS
Cache Manager tests to determine whether
the file is up to date. The test is straightfor-
ward and involves several different compar-
isons. If the file is from a read-only volume,
for example, it is assumed to be up to date.

If the file is within a read-write volume, then
it is consistent if a “callback promise” exists.
A callback is a promise made by the file
server to inform the client if a file’s status
changes. Callbacks in AFS 3.1 have limited
duration, depending on the number of con-
current users of the AFS file. The duration is
currently quantized, with a maximum dura-
tion of 4 hours, for 0 to 7 users, and a mini-
mum of 7 minutes, for over 64 users.

2.2 Chunk Location

The AFS Cache Manager manages every AFS
file as chunks in the local cache. Files that do
not fit into a chunk are broken into multiple
chunks. Chunks are fixed in size and imple-
mented as a file in the local file system. Only
the chunks currently referenced by the appli-
cation need to be in the cache. This means
there are many chunks for one large AFS file,
implying a mapping from an AFS file and
offset into a chunk.

In the AFS Cache Manager, that mapping is
performed through a hashed list of file iden-
tifiers. The AFS file is identified by a set of
numbers, the File Identifier (FID), which con-
sists of cell number, volume number, vnode
number, and a “uniquifier.”

2.3 Chunk Isolation

Although an AFS file is managed in chunks,
the user process is isolated from the imple-
mentation of chunks. If the user process re-
quests data from an AFS file, and the request
spans several different chunks, the read code

Center for Information Technology Integration

Faster AFS

must break up the original request into sev-
eral smaller requests, each completely satis-
fied from one chunk.

The vnode interface [3] of the local file system
reads and writes chunks, allowing the AFS
Cache Manager to be relatively portable. This
implementation strategy allows us to deter-
mine the overhead of the AFS Cache Man-
ager reads, by comparing the performance of
the local file system and the performance of
AFS reads.

2.4 Early Return

If a chunk is not within the local cache, the
read procedure must request its contents
from the AFS file server. If the user process
requests a small number of bytes at the front
of a file, read returns to the user process
when part of the chunk is filled.

The AFS Cache Manager keeps track of the
highest byte retrieved from a file server for a
chunk. A flag in the chunk indicates when
the chunk is actively being fetched. After the
read locates the related chunk, it checks to see
if the data is currently being fetched. If it is,
then the read waits until the desired data is
received.

This implementation is straightforward, ex-
cept that the user process waits for the chunk
to fill. Some other process must be filling the
chunk. AFS typically configures two back-
ground processes during early system initial-
ization to perform such activities. If a chunk
needs to be fetched, the AFS Cache Manager
has code to attempt to perform the fetch
through the background processes, with the
hope that the actual reading process can re-
turn early.

2.5 Prefetching

The AFS Cache Manager tries to hide some
network and server latency by enqueuing
fetch requests for the next chunks of a file.
When the read is nearly completed, the back-
ground daemon receives a request to fill the
next chunk.

3. A Faster Implementation

Adding code to create a frequently executed
path, improves performance dramatically
without making a significant investment in
new code. Adding significant new code to
the AFS Cache Manager is expensive because
the AFS Cache Manager is routinely ported
to many different platforms. Additionally,
significant new code would need to be tested
on many of those different platforms. Some
of the current read code exists to deal with
differences discovered the “hard way” from
such porting efforts. Our faster implementa-
tion should incorporate the benefits of those
experiences.

Our goal is to improve client performance.
Our stated goal is 10% overhead, or 10% of
the time to read an 8K block out of the disk
cache. In the RT case, the 8K canbe read in 1.7
milliseconds. We need to perform all of the
AFS code in.17 milliseconds. This is empiri-
cally the time to perform a 1K move, and
therefore represents some 500 memory cy-
cles. A benchmark aids in determining how
many cycles we can spare.

We decided to construct a test to find the
shortest path to the local file system through
the AFS read procedure. The results act as an
upper bound for performance, and give us a
mechanism for exploring our performance
goal. We place a call to the local file system as
the first executable statement within the AFS
read procedure. With a benchmark perform-
ing 200 byte reads (very short reads), the test
was already performing at 10% overhead. To
reach our goal of 10%, we had to code the so-
lution to call the local file system as the first
executable statement within the AFS read
procedure.

This test provided the implementation skele-
ton, we had to meet each of the additional
read requirements, using little or no addi-
tional code.

3.1 Meeting The Requirements

To meet our performance objective, the short
path needs to become the commonly exe-

Center for Information Technology Integration

Faster AFS

cuted path through the read procedure. In
the faster implementation, we first test some
conditions to determine whether we can exe-
cute the short path to the local file system. If
the conditions fail, we use the long path
through the read procedure.

The conditions that determine whether to use
the short path are a hint [4]. The hint must be
rich enough to allow the short path to execute
frequently. The hint must also meet the re-
quirements of the read procedure described
previously. Because the long path is still
available, we need to only implement those
requirements that will help meet our perfor-
mance goal.

The hint is populated during the long path
through the read procedure. On the next
read call, the hint tests to see if it can use the
short path.

The hint prejudices the performance of the
read code. For particular kinds of user code
behaviors, the read procedure now provides
better performance.

3.1.1 Cache Consistency

In AFS 3.1, the code must constantly check to
ensure the cached file is up-to-date. The call-
back includes a timeout value that is com-
pared with the current time. When the time
out is passed, the callback expires. Because a
callback is only tested when it is necessary to
check the validity of a file, this is a lazy pol-
icy. There is no central management of all the
callbacks of the entire pool of cached files.

In some early performance analysis of AFS
3.1, we determined the ratio of AFS system
calls to callback validity tests: 7 callback va-
lidity tests for each AFS system call. To deter-
mine how often these validity tests were
performing valuable work, we needed addi-
tional insight into the distribution of expira-
tion times.

We extracted callback timeout values from
the AFS Cache Manager. Most values expired
far in the future. Many close entries were
usually several minutes from timing out. We
performed a very limited study of the call-

back expirations. A few local workstations
used for development were studied. Due to
the bursty activity of the machines studied,
callback timeouts were clustered around
many different times. However, most of the
callbacks would not expire for at least several
minutes.

Because most timeouts would expire far into
the future, very few of the validity tests made
repeatedly by the AFS client were perform-
ing valuable work. This situation suggested
that the expiration test should be performed
using some other policy. Therefore, we reim-
plemented cache consistency to manage the
callbacks actively.

We use a doubly linked list sorted by timeout
to collect the callback promises. Once a sec-
ond, we test the top element to determine
whether its callback should expire. If so, we
modify the associated file to reflect the expi-
ration. If the server delivers its callback
promise to the client, then the callback of the
file expired, and it is removed from the list.

For any AFS file protocol request that returns
a callback, the timeout is computed, and the
vcache entry is sorted on the callback-expira-
tion list. We currently search for the correct
insertion point by starting at the end of the
linked list (furthest into the future) and then
move towards the beginning of the list (to-
wards current time), on the assumption that
returned callback timeouts tend to be distant
events rather than immediate events.

3.1.2 Chunk Location

The AFS Cache Manager searches for the
chunk associated with the file request at each
read. The file and offset request are mapped
to a chunk reference. Even though the chunk
entries are hashed, the search is expensive.
To keep from searching the list at each read,
the long path saves the last chunk referenced
as part of the hint. That chunk is typically
64K large. A relatively large number of se-
quential reads can be satisfied by that one
chunk. The chunk size is configured at AFS
Cache Manager initialization; if there isn’t
enough locality of reference in 64K chunks,
the chunk size can be increased.

Center for Information Technology Integration

Faster AFS

The short path needs to check if the hint is de-
scribing the file currently being read. We
could compare the file identifier of the file be-
ing read and the chunk. If they match, the
hint is describing the correct file. We can,
however, construct a much simpler test. The
structure describing the AFS file and the
chunk can be stamped with a 32 bit value. If
the two values match, the file ids are consid-
ered equal. The 32 bit value is a monotoni-
cally increasing number, incremented once
for every tuple we want to relate. The stamp
is computed once for the file / chunk pair, and
the file and chunk structures are stamped
with the same value. The stamp can then test
for the file match in one comparison.

The short path also needs to ensure that the
read request is requesting this particular
chunk. Chunks are commonly described by
chunk numbers, while read operations re-
quest offsets. To make the test in the short
path simple, when we save the chunk refer-
ence we will also compute the offset of the
chunk in the file and make it part of the hint.

3.1.3 Chunk Isolation

The short path is used only when the request
is totally contained within one chunk. By
testing to see if the user’s request can be sat-
isfied within one chunk, we don’t have to be
concerned about providing support for isola-
tion directly. We use the hint when the user’s
request is within one chunk, and ignore it
otherwise. As mentioned earlier, if we find
too many requests processed by the long
path, we simply increase the chunk size. The
chunk size can be modified only at system
startup during AFS Cache Manager initial-
ization.

No additional code is included in the short
path to process reads that cross chunk
boundaries. Instead, the short code depends
on the existing long code path to process long
read requests. This method allows the short
code path to focus on providing performance
for typical applications, while still correctly
processing large read requests. Additionally,
the larger read requests can tolerate longer
overhead, due to the time spent processing

the request in the local file system. We
wouldn't realize the same significant perfor-
mance gains by decreasing overhead on the
large read requests.

To perform the test quickly in the short path,
we need to test the bounds of the chunk
against the user request. When the request is
completely contained within the chunk, the
local file system can service the request di-
rectly. When we save the chunk reference in
the long path, we also compute the bounds of
the chunk as offsets from zero. The read re-
quest uses the same units, making the com-
parison to use the short path simple.

3.1.4 Early Return

The hint cannot be populated until the chunk
is completely filled. If the AFS Cache Man-
ager sends a read request contained within
one chunk to the local file system layer while
the chunk is still being filled, the read could
return the data from the partially filled
chunk. But the read would return without
satisfying the entire request. The user appli-
cation is unlikely to have the additional code
to retry for additional data intended to be
within that chunk. To preclude this event, we
can’t use the short path for chunks which are
currently requested from the file server. We
implement this by not populating the hint
until the chunk is completely filled.

3.1.5 Prefetching

We currently have no additional code to sup-
port prefetch. We depend on the existing
code in AFS 3.1 to perform some prefetch of
chunks.

3.2 Measurements

The performance of the Faster AFS modifica-
tions appears in figures 3 and 4. These figures
represent approximately 9% overhead for the
IBM RT, and 15% overhead for the IBM RS/
6000 for 4K character reads.

The IBM RS/6000 incurs a larger overhead
for the fast reads than does the IBM RT. We
are unsure why the overhead for the RS/6000
is larger. It may be due to the longer time to
perform indirect subroutine calls. The IBM

Center for Information Technology Integration

Faster AFS

RS/6000 has housekeeping to perform, which
requires about 10 instructions for indirect
function calls. This housekeeping may also
help explain some of the larger overhead val-
ues for AFS 3.1 Cache Manager.

Milliseconds
IBMRT

I I I
2000 4000 8000

Number of Bytes

IBM RT
Bytes ufs afs31 overhead fast overhead
100 0.364 | 1.056 290% 0.083 22.8%
1000 | 0.536 | 1.031 190% 0.069 12.8%
2000 | 0.696 | 0.997 140% 0.068 9.7%
4000 1.025 | 1010 98% 0.089 8.6%
8000 | 1.707 | 1.001 58% 0.083 4.8%

Figure 3. Figure 3.IBM RT Faster AFS

Performance

The graph in the figure above shows perfor-
mance measurements of the IBM RT for the
Berkeley Fast File system (ufs), the AFS 3.1
Cache Manager (afs31) and the short path
through the AFS 3.1 Cache Manager (fast).
The table compares the read performance,
measured in milliseconds, of these three im-
plementations. The table also displays over-
head for ‘afs31’ and ‘fast’. Overhead is
computed by dividing the observed AFS
Cache Manager performance by the local file
system performance.

afs31
0.75 _/

Milliseconds 0.5 fast
IBM [ifs
RS/6000 520 !

0.25

1 1 1
2000 4000 8000
Number of Bytes

IBM RS/6000 520
Bytes ifs afs31 overhead fast overhead
100 | 0.132 | 0.409 309% 0.035 26.5%
1000 | 0.152 | 0.421 276% 0.034 22.3%
2000 | 0.179 | 042 236% 0.034 18.9%
4000 | 0.234 [0435 185% 0.035 14.9%
8000 | 0.346 | 0.456 131% 0.042 12.1%

Figure 4. Figure 4.1BM RS/6000 Faster AFS

Performance

The graph in the figure above shows perfor-
mance measurements of the IBM RS/6000
520 for the AIX 3.1 Journaling File System
(jfs), the AFS 3.1 Cache Manager (afs31) and
the short path through the AFS 3.1 Cache
Manager (fast). The table compares the read
performance, measured in milliseconds, of
these three implementations. The table also
displays overhead for ‘afs31’ and ‘fast’.
Overhead is computed by dividing the ob-
served AFS Cache Manager performance by
the local file system performance.

3.3 Additional Concerns

Because the hints leave vnodes open, Faster
AFS can act as a resource hog. Because the
number of AFS stat structure entries is lim-
ited, and because each AFS stat structure can
potentially have one open vnode (as a hint),
large numbers of vnodes could be left open.
AFS bounds the number of vcache entries,
however, and this simple mechanism keeps
the number of open vnodes low. As the AFS
stat structures in the AFS stat pool are re-
used, open vnodes (hints) are freed.

A large number of in-use vnodes can be a
concern in systems with very limited stati-
cally allocated vnodes. In these situations, a
pool allocator for vnode references can be
used. The hint could save the pool reference,

Center for Information Technology Integration

Faster AFS

along with an ownership stamp. The short
path would then also need to test ownership
of the vnode reference in the pool by testing
the stamp.

Currently the code surrounding the hint pro-
motion and clearing does not lock the con-
tents of the hint structure. We avoided locks
not due to performance issues, but rather due
to possible deadlock conditions resulting
from the server delivering callback promises.
We consider this issue open, and need to
spend more time to determine a good solu-
tion.

4. Additional Work

Additional work can improve local caching,
both by using faster caches, and better cache
replacement policies. We considered making
changes to the underlying file system to bet-
ter meet the AFS Cache Manager needs. We
plan to study one client with 128 MB of real
storage, using a memory cache, and chunk
sizes of 64 K to see the upper boundaries of
performance. We have also considered using
cost-based cache replacement policies, to
hold on to data that is more costly to recreate.

Our immediate concern was the AFS read op-
eration, due to the ratio of reads to writes of
user programs. The same modifications are
equally suited for write operations. More
needs to be done to better adapt to the needs
of program loading. For load-on-demand
paged style text, the hinting mechanism al-
ready provides some benefit. For text-shared
executables it is likely the load request will
span chunks. Because the hint only works for
requests within one chunk, text-shared pro-
gram loading doesn’t benefit from this hint-
ing mechanism. This may not be an issue
since the kernel read requests for text-shared
program loads are often done for the com-
plete contents of text (and data). The static
overhead of AFS and the VES is only incurred
once.

There may be some opportunity to use the
same mechanism in other parts of AFS. The

AFS path lookup would seem to be a likely
candidate, but AFS already incorporates an
additional caching mechanism for directo-
ries.

We have code to implement multiple hints.
The second hint exists to allow background
daemons performing prefetch operations to
populate a hint. When the user process per-
forms a read, the second hint can be used to
execute the short path. Multiple hints may
not improve performance, because the addi-
tional tests are made through the longer path
through the AFS read procedure.

The AFS 3.1 Cache Manager is similar to the
Open Software Foundation’s (OSF) Distrib-
uted File System (DFS) Cache Manager. The
same changes made to improve the perfor-
mance of the AFS Cache Manager will also
improve the performance of the DFS Cache
Manager. Cache consistency is managed dif-
ferently in DFS, using a token manager to co-
ordinate read and write access. The token
manager side steps the callback issues central
to this paper, using an even more active pol-
icy than this paper does.

5. Conclusions

The benefit of the hinting mechanism comes
from the interaction of different parts of AFS.
With typical chunk sizes of 64 K, and typical
user read requests of 4 K and 8 K, it seems
natural to provide a short code path to the lo-
cal file system cache.

A layered service needs to be aware of the re-
source needs of the underlying layer. Users
will expect the layered service to perform
similarly to the underlying service when the
services are similar. We expected reads in
AFS to perform favorably when compared to
the underlying file system. We knew the AFS
Cache Manager service was layered above
the local file system, but we believed the AFS
costs were small compared to the underlying
service.

Center for Information Technology Integration

Faster AFS

The direct impact of these modifications to
application level programs is unclear. It is
easy to build micro-benchmarks to show the
direct effect of the modifications, but charac-
terization of the workloads of our user com-
munity could only be done for clusters of
users. Even so, our concern is read perfor-
mance, the most common file system opera-
tion.

6. Acknowledgements

Brian Renaud for helping me keep my nose in
the paper. Peter Honeyman for pointing me
at Tufte. Mike Kazar for being Mike Kazar.
David Richardson for reviewing over and
over again. Lyle Seaman for spending more
time then I ever expected. Mary Jane Northrop
for editing and editing and editing.

7. References

1. M. Satyararayanan, JH. Howard, D. A.
Nichols, R. N. Sidebotham, and A. Z. Spector,
“The ITC Distributed File System: Principles
and Design,” Proceedings of the 10th ACM
Symposium on Operating System Principles,
1985.

2. Songnian Zhou, Herve Da Costs, and Alan
Jay Smith, “A File System Tracing Package
for Berkeley Unix,” pp. 407—419, in Summer
1985 USENIX Conference Proceedings.

3. S. R. Kleinman, “Vnodes: an Architecture for
Multiple File System Typesin Sun Unix,” in
Summer 1986 USENIX Conference Proceed-
ings.

4. Butler W. Lampson, “Hints for Computer
System Design,” vol. 21, no. 5, pp. 33—483,
in ACM Operating Systems Review, Special
I ssue 1983.

Center for Information Technology Integration

