
-- --

CITI Technical Report 91−3

Multi-level Caching in
Distributed File Systems

D. Muntz
dmuntz@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

ABSTRACT

We are investigating the potential for intermediate file servers to address scaling prob-
lems in increasingly large distributed file systems. To this end, we have run trace-driven
simulations based on data from DEC-SRC and our own data collection to determine the
potential of caching-only intermediate servers.

The degree of sharing among clients is central to the effectiveness of an intermediate
server. This turns out to be quite low in the traces available to us. All told, fewer than
10% of block accesses are to files shared by more than one file system client.

Trace-driven simulation shows that even with an infinite cache at the intermediate, cache
hit rates are disappointingly low. For client caches as small as 20 MB, we observe hit
rates less than 19%. As client cache sizes increase, the hit rate at the intermediate
approaches the degree of sharing among all clients. On the other hand, the intermediate
does appear to be effective in reducing the peak load presented to upstream file servers.

August 16, 1991

-- --

Multi-level Caching in
Distributed File Systems

D. Muntz
dmuntz@citi.umich.edu

P. Honeyman
honey@citi.umich.edu

Introduction
As distributed file systems grow, so does the need
to increase scalability. At the Institutional File
System Project, we are investigating tools and
techniques for offering file service to a huge
client base, perhaps as many as 30,000 end sys-
tems.

One problem encountered along the way is the
need to service clients supporting a variety of file
system protocols, e.g. , AFS [1], NFS [2], and
AFP [3]. Our principal file servers all run AFS,
so the first of these is not a problem. For other
file system protocols, we have built intermediate
servers that act as AFS clients of the principal file
servers and as NFS or AFP servers for clients
using these other protocols.

We also considered the case where the intermedi-
ate server uses AFS for both the client and server
protocols. This architecture extends to one in
which there are multiple levels of intermediate
AFS (or iAFS) servers, each caching files it
fetches from the upstream servers, and serving
files out of its cache to downstream clients.

One reason for considering multi-level cache
hierarchies is that they have shown great success
in improving CPU performance when used in
processor memories [4]. In the context of file
systems, intermediate caches have the potential to
increase the capacity of upstream file servers by
reducing the number of requests that they must
process and the amount of state information that
they must maintain. The goal of this study is to
assess that potential. Our principal tool is a
trace-driven simulator that analyzes file system
trace data taken from ‘‘real-world’’ networks.

Trace-driven simulation
To explore the potential of multi-level caching in
distributed file systems, we ran trace-driven simu-
lations to predict the hit rates that we might see at
an iAFS server. The traces fed to the simulator
were derived both from data collected in a net-
work of Firefly workstations [5] at the Digital
Equipment Corporation’s Systems Research
Center, and from file server trace data collected
here.

Firefly trace data

The Firefly data was collected over a four day
period in February, 1990 from 115 Firefly work-
stations supporting the Topaz environment, which
includes a (proprietary) distributed file system
protocol. During the trace period, each client
produced a log record for every system call
related to file system operations. Each record
contained the following information:

g the name of the system call

g the process id of the invoking process

g the arguments to the call

g the time at which the call was entered

g the time at which the call was exited

g the success or failure status of the call

We preprocessed the data to convert file descrip-
tors into path names, to eliminate irrelevant log
records, and to normalize the name space.

The cache simulator expects pathnames in the
trace stream to account for hits and misses. How-
ever, some system calls, e.g. , read, use a file
descriptor instead of a pathname. To convert fd’s
to pathnames, we implemented a process simula-
tor that builds a table for each process which
associates the pathname used in, say, open calls
with the file descriptor returned. The table is

- 1 -

-- --

Muntz/Honeyman

copied across fork and exec calls. Relative
pathnames, such as those starting with ‘‘.’’ and
‘‘..’’, as well as those containing ‘‘.’’ and
‘‘..’’, were also converted to the appropriate
pathnames at this stage.

In this study, accesses to the local file system
were not of interest and were eliminated in
preprocessing. In addition, system calls that
failed were elided. Failures can arise, e.g. , when
attempting to create a file in a write-protected
directory.

The name space was normalized by converting
names of the form host:path to a flat name
space of unique integers. In all, 68,413 different
pathnames are referenced in 2,807,003 trace
records.

IFS trace data

The IFS trace data was collected from four AFS
servers running on IBM RT computers during a
4.8 day period in early November, 1990. The
data records all file server requests from 49
clients. 31,538 different files are referenced in
92,571 trace records.

Data collected at the IFS Project was tailored
more directly to our needs and required less
preprocessing. AFS clients exchange file data
with the server via FETCHDATA and STOREDATA

requests, whose functions follow directly from
their names. Each FETCHDATA and STOREDATA

request contains a timestamp, the client’s network
address, the file’s FID (the unique identifier for a
file) and the offset and length of the data being
requested.

In the IFS traces the return status of the requests
is not recorded; we have observed that almost all
fetch and store requests succeed, so we don’t
believe that this limitation invalidates the results
reported by the simulator.

The simulator
We performed experiments simulating distributed
environments with a two-level cache design,
using file system activity traces provided by
DEC-SRC as well as traces collected locally. In
the simulated environments of the experiments,
the client machines are connected to an inter-
mediate server which is in turn connected to a
‘‘main’’ server.

Clients

g g g

iAFS
Server

Topology of the simulated environment

For the experiments discussed in this paper, the
intermediate server has a potentially infinite
cache. This is obviously impractical. Because an
iAFS server with a finite cache would be forced
to flush its contents on occasion, the hit rates
reported here are larger than can be achieved in
reality.

The operation of the simulator is straightforward.
When a system call requesting a file from the
server machine appears in the trace data, the
simulator checks the local cache on the requesting
machine to see if the request can be satisfied
there. If the requested block is found in the local
cache, a ‘‘hit’’ is logged for that client and the
next trace record is processed. Otherwise, a
‘‘miss’’ is recorded for the client, and the cache
on the iAFS server is checked for the requested
block.

If the block is found in the iAFS server’s cache, a
hit is recorded for the iAFS server, and the block
is placed in the client’s cache. Otherwise, a miss
is recorded for the iAFS server, the block is
installed in both the iAFS server’s cache and the
client’s cache, and the next trace record is pro-
cessed.

In this way, the input of trace records is processed
until exhausted. All read and write requests are
guaranteed to succeed at the server, and the cache
replacement policy is LRU. When a block is
written, the simulator invalidates that block in the
requesting client’s cache.

Hit rate simulations
In the first set of experiments, we examine the hit
rates that can be expected for the iAFS server
cache. We first simulate an iAFS server with an
unbounded cache using the trace data from the
Firefly clients. We then restrict our attention to
20 Firefly clients that appear to exhibit a high
degree of data sharing — these 20 clients are

- 2 -

-- --

Multi-level Caching in Distributed File Systems

responsible for over half of the iAFS server cache
hits. We then use the trace data collected from
the 49 IFS clients. Again we simulate an iAFS
server with an unbounded cache.

We used 64K as our cache block size, because
this is the size used by AFS. Simulations were
also run using block sizes of 4K, 8K, 16K, and
32K; those results are not substantially different
from the ones presented here.

Firefly clients

The first experiment with the Firefly data simu-
lates an environment in which all 115 machines
are clients to an iAFS server. The iAFS server is
given an ‘‘infinite’’ cache size, so that if a given
block is ever sought twice, each request after the
first causes a hit at the iAFS server. In practice,
the iAFS server cache would have to be 7,880M
to achieve this hit rate. The size of the client
caches is varied in each simulation to generate a
graph of client cache size vs. iAFS server cache
hit rate.

0%

20%

40%

60%

80%

0 20M 40M 60M 80M

×

×

××
××××

×
× × ×

Client cache size vs. intermediate hit rate

Client caching is desirable: when client caching is
disabled, the iAFS has a 70% hit rate, which falls
off rapidly as clients are able to resolve requests
from a local cache. With just 1M of client cache,
the iAFS hit rate falls below 30%. In our (typical
AFS) environment, clients have 20M caches; the
simulator predicts that an iAFS server would
show an 11% hit rate. Client cache sizes can be
expected to grow as disk density continues to
increase. The simulation predicts a correspond-
ing decrease in iAFS server hit rates: an 80M
client cache produces a 7% iAFS hit rate.

As the client cache size approaches infinity, the
hit rate at the intermediate asymptotically
approaches the degree of sharing. This asymp-
tote, the degree of sharing among all clients, is
represented in the graphs by a dashed line. The
degree of sharing among the Firefly clients is

6.1%.

Partial Firefly clients

Among the Firefly clients, there is a subset whose
file reference patterns are more tightly woven: 20
clients are responsible for over half of the overlap
in file references among all 115 Fireflies. We
simulated an iAFS server for these 20 clients, as
in the previous section. The degree of sharing
among the 20 is 5.8%.

0%

20%

40%

60%

80%

0 20M 40M 60M 80M

×

×

×
×
××××

×
×

×
×

Client cache size vs. intermediate hit rate

Again, we see that even meager client cache sizes
result in low intermediate hit rates. In this experi-
ment when the client caches are 20M, the inter-
mediate hit rate is about 18%. When client
caches are 80M, the intermediate hit rate drops to
about 7.6%

IFS clients

In the third experiment, data collected on IFS pro-
ject file servers was used to drive the simulations.
The four servers on which data was collected
contain all home directories, system binaries, and
project-related data and programs for the several
dozen IFS project staff.

This data contains FETCHDATA and STOREDATA

requests from 49 AFS clients. Again, the simula-
tion involves all 49 clients connected to one inter-
mediate with infinite cache. Clients in the IFS
project have 20M caches on their local disks, and
FETCHDATA requests satisfied by the local cache
do not appear in traces recorded at the server.
Because the trace data was collected on the
server, simulation is possible only for client
caches of at least 20M. The degree of sharing
among the 49 IFS project clients is 8.5%.

- 3 -

-- --

Muntz/Honeyman

0%

5%

10%

15%

0 20M40M 80M 120M 160M

× × × × × × ×
×

×

×

Client cache size vs. intermediate hit rate

For typical AFS client cache sizes, 20−80M, the
simulator predicts the iAFS hit rate to be between
15% and 18%.

Hot and cold cache experiments
In this section, we focus on the IFS trace data
with 20M client caches. In the simulations
described so far, the iAFS server cache is initially
empty, or ‘‘cold.’’ Consequently, in the early
hours of the simulation there are very few cache
hits. Examining the iAFS server hit rate over
time, the aggregate hit rate increases through the
simulated 116 hour duration, and is apparently
still rising at the end of the simulated period.

0%

5%

10%

15%

0 24 hr 48 hr 72 hr 96 hr

Time vs. iAFS server cache hit rate

As the iAFS server cache ‘‘warms up,’’ the hit
rate becomes more respectable. Clearly there
must be times when the hit rate is higher than the
final 18%. In the next experiment, we collect
hourly hit rate statistics and plot them as the
‘‘instantaneous’’ hit rate at the iAFS server
cache. We show this in the next graph, along
with the hourly request rate presented to the iAFS
server.

0
0.2
0.4
0.6
0.8

Th Fr Sa Su Mo

0

1000

2000

Upper graph: instantaneous hit rate
Lower graph: request rate

The upper graph shows a highly variable instan-
taneous hit rate with several distinct peaks. The
lower graph shows a similar pattern in request
rates. Note that after a ‘‘warm-up’’ interval, the
peaks in the request rate coincide with peaks in
the hit rate.

To gauge the effect of a ‘‘hot’’ cache in the iAFS
server, we re-ran the simulation of the previous
section on a hot-cache iAFS server. We treat the
first half of the simulation period, 58 hours, as the
warm-up interval and gather statistics for various
client cache sizes in the last half of the period.
The following graph shows the results of this
experiment, superimposed with the graph from
the preceding section, where warm-up is not
taken into consideration.

0%

5%

10%

15%

20%

25%

0 20M40M 80M 120M 160M

× × × × × × × × ×

×

× × × × × × ×
× ×

×

Client cache size vs. intermediate hit rate

The upper graph shows an improvement in the
iAFS server cache hit rate when it is pre-heated in
the first 58 hours of the trace interval. Even here,
though, the iAFS hit rate is below 30% for stan-
dard 20M client caches.

Another set of experiments involves clearing the
client caches periodically while maintaining
accounting throughout the simulation. This
models an environment in which a machine is
used sequentially by different people. The results

- 4 -

-- --

Multi-level Caching in Distributed File Systems

are more pessimistic, however, as there would
likely be some overlap among the users’ data
requests e.g. , /bin/csh. Results from these
tests are similar to the other warm cache experi-
ments: the simulation predicts an improved hit
rate at the iAFS server, but the improvement is
not dramatic.

Effect on upstream server load
In the previous section, we saw that high request
rates appear to correlate with high instantaneous
hit rates on the iAFS server. This suggests that
the iAFS server may be effective in moderating
the peak traffic presented to the upstream
server(s). To test this hypothesis, we ran a set of
simulation experiments with the IFS data to meas-
ure the request rate seen by upstream servers
when an iAFS server is present and when it is
absent.

0

500

1000

1500

2000

2500

Th Fr Sa Su Mo

....
. .

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...
..
.
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
....
............

....
....
.
.
.
..
.
.
.
. ..

..

.

.

.

.

.

.

.

..
..
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
....

.
...
..
.
.
..
.
.
.
.
..
.
.
.
.
....
.

.....
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
. ...

.
..
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

..

.

.

.

.

.

.

.

..
.
.
.
..
.
...........

Request rate seen by iAFS server (dotted)
and by upstream server (solid)

The graph shows the request rate, in requests per
hour, presented to upstream server(s) when the
iAFS server is present (solid line) and when it is
absent (dotted line). After an interval during
which the iAFS server cache warms up, the effect
is striking: the peak load is reduced from over
2,500 requests per hour to fewer than 1,400
requests per hour.

The Firefly data also shows a correlation between
request rates and iAFS server cache hit rates. Our
simulations predict that with those file system
traces as well, the iAFS is effective in clipping
the peak load presented to the upstream server(s).

0

2000

4000

6000

8000

10000

12000

Tu We Th Fr Sa

...
..
......

.
.
.
....
.
..
.
.
..
.
..
.
.
.
.
...
..
.
.
.
.
.
.
..
..
.
.
....
.
.
.
...
..
.
............... ...

.
....
...
........

.
.
...
..
..
.
.
..... .. .

...
...
.
.
.
..
.
.
.
.....

..
.
..
.
.......

.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
....... ...

.
..
.....
........

....
..
.
.

Request rate seen by iAFS server (dotted)
and by upstream server (solid)

The spike occurring late Thursday night is caused
by a system task running on a single machine.
This task maintains a database of cross-references
between pieces of software at DEC-SRC, e.g. ,
which components use which other components.
This task accesses a significant portion of the file
system. Eliminating this process’ activity from
the traces, which accounts for about 3% of the
Firefly trace data, makes it easier to see the effect
of the iAFS on off-loading the upstream server.

0

1000

2000

3000

4000

5000

Tu We Th Fr Sa

.
........

.
.
..
....

.

.

.

.

.

.

.

.

.

..
...
.
.
.
.
..
.
.
.
.
.
.
..
..
.
....
.
.
.
.
.
.
.
.
.
.
...
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.....
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
...
......

..
.
....
..
. .

..

.

.

.
.
..
..
.
.
.
..
.
.
.
...
.
.
....
.
.
.
.
.
.
..
.
.
.
..
.
.
.....
.
.
.
.
.
.
............. ...

........
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
..
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
...
..
.
.
.
.
.
.
.
.... .

........... .
..
.
.
.
.
.
..
.
.
.....
.
.
.
..
.
.
.
.
.
...
....
....

.
....
...

Request rate seen by iAFS server (dotted)
and by upstream server (solid)

Discussion
The simulated hit rates on the iAFS server do not
lend much encouragement for its role in enhanc-
ing client performance. Our simulations indicate
that most of the requests presented to an iAFS
server must be forwarded to an upstream server to
be satisfied; from a client’s perspective, the iAFS
can be viewed as a ‘‘delay server.’’

Simulations using the Firefly data show that an
iAFS server cache suffers hit rates below 19%
when client caches are 20M or more. Simulations
using the IFS trace data also predict iAFS server
cache hit rates below 18%. This is largely due to
a low degree of sharing among clients, less than

- 5 -

-- --

Muntz/Honeyman

9% in both sets of trace data.

We also simulated several ‘‘warm cache’’
scenarios, in which hit and miss accounting is
delayed during a warm-up period. These warm
cache simulations predict some, but not much,
improvement for the iAFS hit rate.

Our simulations indicate that an iAFS server does
help server performance, by clipping the peak
request load presented by file system clients. We
plan further experiments to investigate this and
other ways to exploit multi-level caching in distri-
buted file systems.

Acknowledgements
The Firefly traces were gathered by Andy Hisgen,
who kindly made them available to us. Susan
Owicki, B. Kumar, Jim Gettys, and Deborah
Hwang contributed to the file system tracing
facility.

We thank Bill Tetzlaff of IBM Research for sug-
gesting some interesting experiments.

This work was partially supported by IBM.

References

1. J.H. Howard, ‘‘An Overview of the Andrew
File System,’’ pp. 23−26 in Winter 1988
USENIX Conference Proceedings, Dallas
(February, 1988).

2. R. Sandberg, D. Goldberg, S. Kleiman, D.
Walsh, and B. Lyon, ‘‘Design and Implemen-
tation of the Sun Network Filesystem,’’ pp.
119−130 in Summer 1985 USENIX Conference
Proceedings, Portland (June, 1985).

3. G.S. Sidhu, R.F. Andrews, and A.B.
Oppenheimer, Inside AppleTalk, Addison-
Wesley, Reading (1989).

4. J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Mor-
gan Kaufmann Publishers, Inc., Palo Alto
(1990).

5. Charles P. Thacker, Lawrence C. Stewart, and
Edwin H. Satterthwaite, Jr., ‘‘Firefly: A Mul-
tiprocessor Workstation,’’ IEEE Transactions
on Computers 37(8), pp. 909−920 (August,
1988).

- 6 -

