Measuring |FS Al X/370 File Server Performancein LPAR Mode

Charles J. Antonelli
Seve Burling
Lee Pearson

1. Introduction

Some months ago, other groups within ITD proposed that the hardware configuration of the 3090-600E
running at the Computing Center be changed in order to improve UB-MTS performance. At the time, the
current configuration ran VM on the entire B-side of the machine, devoting 2 processors to UB-MTS and
the remaining processor to VM AlIX/370 guests, the MV S library system, and some miscellaneous guests.
The proposal involved splitting the B-side of the machine into two separate LPARS, one of which would
contain 2 processors running UB-MTS in native mode, and the other running VM and supporting the same
melange of guests.

A question arose as to whether the improvement that would accrue to UB-MTS running native instead of
under VM would be offset by penalties incurred by running our A1X/370 guests — and thus our IFS AlX
fileservers — under VM in an LPAR. In response to our initia queries, we were told (by a SHARE 75
speaker and by multiple sources elsewhere within IBM) that IBM 3090-xx0E class machines, which cannot
be retrofitted with the required microcode, cause over a 50% loss in performance when running VM guests
in a PR/SM LPAR. We felt that this would result in unacceptable performance for our initial campus
deployment effort.

Due to conflicting information as to the precise nature and scope of the performance degradation, and in
order to show the effect of this performance degradation on our specific application (A1X/370 file service),
we set aside some system time on 23 September 1990 to run several AlIX/370 benchmarks on both confi-
gurations. This report describes the nature of the benchmarks that were run and the results we obtained.

2. Test Procedure

We ran three classes of benchmarks: raw packet pumping tests, in which the basic performance of the
3090’ s ethernet interface is determined; AlX/370-centric tests, in which various measurements are run on
the file server machine to measure its ability to run workloads, and AFS-centric tests, in which the ability
of thefile server running on A1X/370 to serve files is measured.

Previous attempts at running benchmarks while the machine was processing normal workloads convinced
us of the need to run our tests in an environment free of the interference caused by the activity of other
users. Accordingly, we shut down all other activity on the B-side of the machine except for two AIX/370
guests. bart, which was the unit under test; and homer, which was used to present a standard load to the
CPU (more on that in a moment). We also left running a CMS guest that allowed us to collect RTMSF
data (essentially % CPU spent running bart) when necessary, as well as a number of other guests Chuck
Lever assured us we needed to have.

While we needed performance numbers in this stable (and repeatable) environment, we also need to obtain
results when the system was not devoting an entire CPU to our file server, since the latter environment is
the one in which we will usually serve files. Accordingly, we ran most performance tests in two environ-
ments: idle, in which homer did no additional work, and loaded, in which homer ran a continuous kernel
build, competing for CPU and disk resources with homer .

Results comparing VM Basic Mode and LPAR mode are uniformly given; for each mode, idle and loaded

20 October 1990

performance figures are given. Most tables also indicate the percentage change in performance between
theidle and loaded cases.

2.1. Packet Pumping Tests

The following tests were run: exchanging 4- and 1526-byte UDP packets and 1500-byte RX packets
between bart (an AIX/370 guest running the IFS3.0 version of the file server on the GA release of
AlX/370) and an RT/PC running IFS3.0 on AOS. The goal for this class of tests was to measure the effect
of the LPAR configuration on raw packet pumping throughput. For al tests we used a Bus-Tech Inc.
ELC2 running in native mode. We did not run atest against a loaded system since we were interested pri-
marily in maximum throughput figures.

Table 1. Raw Packet Pumping Performance
Basic Mode LPAR Mode
Benchmark i -
Elapsed Time | Channel Busy | Elapsed Time | Channel Busy
10000 4-byte UDP packets 8.8s 35% 9.1s 35%
10000 1526-byte UDP packets 45.9 20 45.9 20
1000 1500-byte RX packets 6.25 - 7.3 -

The channel busy times were estimated from the 3090 console display, which showed channel activity at
three-second intervalsin bar graph form, with each pixel of the bar representing two percent.

We conclude from this test that LPAR mode has a negligible effect on raw UDP packet pumping perfor-
mance, and a small effect on RX packet pumping performance. We suspect RX packet pumping is
affected to a greater degree due to the much larger size and complexity of the RX packet pumping test pro-
gram.

2.2. AIX/370-Centric Tests

These tests were designed to measure the effect of the LPAR configuration on bart’s CPU and disk perfor-
mance. The following tests were run: Dhrystone (CPU benchmark); Ousterhout microbenchmarks; and a
kernel library build benchmark (CPU & disk performance).

Dhrystone

The Dhrystone benchmark [1] attempts to measure pure CPU performance. It was introduced in an attempt
to permit gross CPU power comparisons between different UNIX platforms.

Table 2: Dhrystone CPU Benchmark
Benchmark Basic Mode LPAR Mode

Idle Load Change | Ide Load Change
Dhrystone 49.8K Dhry/s 50.3 1.00% | 50.0 50.9 1.80%

Thistest indicates that raw CPU performance is not affected by LPAR mode.
Ousterhout Microbenchmarks

The Ousterhout microbenchmarks [2] are a set of programs that each measure a single operating system
feature. The test results below reflect the following individual tests in the order indicated: the time to per-
form a single system call from a process to the kernel; the time to perform a single context switch between
processes; the time to open and close a file; and the time to create a file, write the indicated number of
bytes, close the file, re-open it, read al the bytes, close the file, and delete the file. The last test is per-
formed for both a small (1 KB) file and a large (10 MB) file. Table 3 shows the results of these tests; it
lists the sum of the user and system time (i.e. the total CPU time consumed) and the wall clock time for
each benchmark.

20 October 1990

Table 3: Ousterhout Microbenchmarks

Benchmark Basic Mode LPAR Mode

Idle Load Change Idle Load Change
System Call User+System 16.06us 16.21us 0.93% 17.93us 18.36us 2.40%

wall 16.75 32.93 96.60 20.56 47.16 129.38
. User+System .24ms 48ms 100.00% .29ms .63ms 117.24%

Context Switch wall 25 56 124.00 34 68 100.00
User+System .30ms .31ms 3.33% .32ms .32ms 0.00%

Open/Close wall 35 63 80.00 37 83 124.32
User+System 2.28ms 204ms -10.53% 1.87ms 2.46ms 31.55%

Create/Delete 1KB wall 7.23 444 -3859 3.74 6.28 67.91
User+System | 648.27ms 636.26ms -1.85% | 728.12ms 756.68ms 3.92%

Create/Delete 10MB Wall 690.5 1309.86 89.70 768.29 1892.76 146.36

This table shows that in all cases except one, LPAR performance is poorer than VM Basic Mode*. This
trend has been observed in all of the other tables (Table 6 does not entirely follow this pattern) and will not
be belabored further; rather, we will compare how performance degrades in both modes when going from
an idleto aloaded system.

The most disk-intensive test, Create/Delete 10MB, shows a trend that will reappear in later tables. while
Basic Mode performance degradation is about 90% when going from an idle to a loaded system, the
equivalent LPAR performance degradation is about 150%. We should expect the wall clock time to
roughly double when going from idle to loaded, since we are approximately doubling the workload by giv-
ing homer work to do, and yet LPAR performance suffers an additional 50% loss.

A1X/370 Kernel Build

The kernel build benchmark simply records the user, system, and wall clock times consumed in building an
AlIX/370 kernel from its source code, as a measure of combined CPU and disk performance on alarge job.

Table 4: Kernel Build Benchmark
Benchmark Basic Mode LPAR Mode
Idle Load Change Idle Load Change
User 533.9s 542.1s 1.54% | 533.1s 533.1s 0.00%
Kernel Build | System 41.9 534 27.45 51.9 67.7 30.44
wall 673.4 1327.3 97.10 771.8 1732 124.41

In this test, we observe that the user time remains fairly constant in both modes when going from an idle to
aloaded state, system time is up dlightly, and wall clock timeisup alot, 24% over what we would expect.

2.3. AFS-Centric Tests

These tests were designed to measure the effect of the LPAR configuration on bart’s ability to serve files.
The following tests were run: clientload and Connectathon basic tests.

Clientload Benchmark

The clientload test starts fifteen simultaneous client requests (one request per client machine) to read the
same 1 MB file; each client flushes the file from its cache before making the request. The elapsed time
required to deliver the file to each client as well as the CPU resources consumed on the server are recorded.

The final group of four entries in Table 5 record two sets of values. The first set shows the maximum and
average CPU tilization of the fileserver process, expressed as a percentage of the total CPU resources
available to bart; these utilization statistics were collected by the UNIX ps command, run on bart every

* The results of this test, Create/Delete 1KB in Basic Mode (idle), should be considered suspect, since these values are
greater than the corresponding loaded val ues.

20 October 1990

thirty seconds during the clientload test. The second set shows the maximum and average CPU utilization
of bart as recorded by VM RTMSF; these statistics were collected by defining a separate CM S guest that
collected RTMSF dtatistics on request, and running a process on bart that requested statistics every sixty
seconds.

Table 5: Simultaneous IMB AFS File Read Times
Client Basic Mode LPAR Mode

'en Idle Load Change Idle Load Change
barnone 109s 102s -6.42% 87s 155s 78.16%
boston 107 104 -2.80 100 136 36.00
doom 101 103 1.98 101 142 40.59
ebbtide 111 116 450 108 152 40.74
eh 76 98 28.95 75 125 66.67
emptys 113 104 -7.96 95 149 56.84
flam 103 103 0.00 92 133 44 57
jackpot 100 100 0.00 96 138 43.75
nunn 99 99 0.00 91 151 65.93
pinhead 93 103 10.75 100 129 29.00
rasta 105 106 0.95 89 151 69.66
rioja 108 109 0.93 106 155 46.23
virgo 109 104 -4.59 105 147 40.00
xtc 108 107 -0.93 102 147 4412
yae 101 106 4.95 103 146 41.75
averages 103s 104s 1.36% 97s 144s 48.69%
Max FS CPU Util 45% 55% 71% 95%
Avg FS CPU Util 11 16 21 40
Max BART CPU Uil 48% 45% 52% 35%
Avg BART CPU Util 16 16 15 15

This test directly measures our system when it is doing what it is supposed to be doing: serving files. We
observe a negligible performance loss when loading the system in Basic Mode, and a 50% loss when load-
ing the system in LPAR mode. We further observe that the file server process running under AIX/370 on
the average consumes more of the CPU allocated to bart by VM in both the idle and loaded LPAR cases; a
maximum value of 95% was observed for the loaded LPAR case. At the same time, the average absolute
amount of CPU allocated to bart by VM changes only dlightly. It thus seems that, in LPAR mode,
AIX/370 is getting the same amount of CPU from VM but seems to be spending more of that CPU on the
file server. Since the workload should be the same, we conjecture the file server istaking longer in LPAR
mode because the instructions are taking longer to execute; if it were just slower I/O performance we
would expect things to take longer but we would not expect to see an increase in file server CPU utiliza-
tion. This corroborates our informal observations of the 3090 console display, which indicated the CPU
was spending more of itstime in emulation mode when running under LPAR than it did in Basic Mode.

The CPU utilization measurement intervals were pretty coarse: thirty seconds for the FS values and sixty
seconds for the BART values. This implies that less trust should be placed on the maximum recorded
values than in the averages, although both could be improved by sampling more often. Sampling too often,
however, will perturb the results.

Connectathon Basic Tests

The Connectathon basic tests perform a number of repetitive file system operations and record the time
required per operation. The test results below reflect the following individual tests in the order indicated:
(1) create 155 filesin 62 directories 5 levels deep; (2) remove these files and directories; (3) do 500 getwd
and stat calls; (4) do 1000 chmods and stats on 10 files; (5a) write a1 MB file 10 times; (5b) read a1 MB
file 10 times; (6) read 20500 directory entries; (7) do 200 rename and link operations on 10 files; (8) do
400 symlink and readlink operations on 10 files; and (9) do 1500 statfs calls. We ran one copy of this
benchmark against the file server and obtained the results shown in Table 6; the final four entries of this

20 October 1990

table were obtained in the same manner asin Table 5.

Table 6: Connectathon Basic Tests
Benchmark Basic Mode LPAR Mode

enchmar Idle Load Change Idle Load Change
Test 1 75.49s 80.39s 6.49% 75.84s 81.9s 7.99%
Test 2 43.77 46.55 6.35 485 52.98 9.24
Test 3 43.1 52.6 22.04 45.72 51.69 13.06
Test 4 132.20 134.62 1.83 150.2 141.6 -5.73
Test 5a 137.58 129.31 -6.01 122.36 125.2 2.32
Test 5b 43.84 42.32 -3.47 39.32 3927 -0.13
Test 6 66.16 68.19 3.07 64.68 7771 20.15
Test 7 61.85 53.49 -13.52 63.44 69.79 10.01
Test 8 9351 78.76 -15.77 93.72 96.29 274
Test 9 1.33 1.63 22.56 1.52 1.59 4.61
Max FS CPU Util 9% 10% 13% 18%
Avg FS CPU Util 4 4 5 6
Max BART CPU Util 15% 14% 19% 20%
Avg BART CPU Util 8 8 9 10

The file server seems to be less heavily and more irregularly stressed by this test than the previous one,
although the loaded LPAR values are in most cases larger than any of the others.

3. Conclusions

None of the tests we have run has shown any advantage to running the IFS File Server in LPAR mode. On
the contrary, atest which exercises the A1X/370 guest in its intended mode of operation — serving files —
shows a 50% performance loss at client workstations and a large increase in CPU utilization by the file
server. Other tests show a performance loss when jobs involving large amounts of disk I/O are done.
Based on these results, we cannot recommend operating the IFS File Server in LPAR mode at thistime.

4. Acknowledgements

The effects of the enthusiastic participation of Chuck Lever in our benchmarking activities cannot be
overestimated.

1. Reinhold P. Weicker, ‘‘Dhrystone: A Synthetic Systems Programming Benchmark,” CACM 27(10),
pp. 1013-1030 (October 1984).

2. John K. Ousterhout, ‘‘Why Aren't Operating Systems Getting Faster as Fast as Hardware?,”’ pp.
247-256 in Proc. 1990 Summer USENI X Conference (June 1990).

20 October 1990

