
CITI Technical Report 90−4

Synopsis of Distributed File System Protocols

Peter Honeyman
honey@citi.umich.edu

ABSTRACT

This manuscript gives a terse description of the following file system protocols:

g NFS Sun Microsystem’s Network File System protocol, Version 2 (the current
released version), and Version 3 (to be released in the 47 th quarter of 1989).

g RFS AT&T’s Remote File Sharing protocol.

g AFS Andrew File System protocol.

g AFP AppleTalk Filing Protocol (AppleShare).

g DDM IBM’s Distributed Data Management protocol.

g Sprite An operating system under development at University of California, Berke-
ley.

g NFILE A file access protocol devised for Symbolics computers.

According to McLuhan, and I have him right here, data collection yields to pattern recog-
nition, so this enumeration should become a classification, turning a crib sheet into a tax-
onomy.

Please send corrections to honey@citi.umich.edu.

October 10, 1990



Synopsis of Distributed File System Protocols

Peter Honeyman
honey@citi.umich.edu

NFS

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
NULL Do nothing.
GETATTR Get file attributes. Returns the current attributes of the file with the given fhandle.
SETATTR Set file attributes. Sets the attributes of the file with the given fhandle. Returns the new

attributes.
ROOT Obsolete.
LOOKUP Lookup file name. Returns an fhandle and file attributes for file name in a directory.
READLINK Read from symbolic link. Returns the string in the symbolic link at the given fhandle.
READ Read from file. Returns some data read from the file at the given fhandle.
WRITECACHE Obsolete.
WRITE Write to file. Returns attributes of a file after writing some data to it.
CREATE Create a file or directory. Creates a file or directory with given attributes and returns those

attributes and an fhandle for the new object.
REMOVE Remove a file or directory. Remove named file from parent directory.
RENAME Rename file. Give an object a new name in the named directory.
LINK Create link to an object. Create a hard link from one named object to another in the named

directory.
SYMLINK Create symbolic link. Create a symbolic link with the given attributes to the given path

name in the named directory.
MKDIR Make a directory. Create a directory with the given name, parent directory, and attributes.

Returns a file handle and attributes for the new directory.
RMDIR Remove a directory. Remove the given directory name from the given parent directory.
READDIR Read from directory.
STATFS Get file system statistics. Obsoleted by GETFSATTR and GETFSINFO.

NFS Mount Protocol

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
NULL Do nothing.
MNT Add mount entry.
DUMP Return mount entries.
UMNT Remove mount entry.
UMNTALL Remove all mount entries.
EXPORT Return export list.

- 1 -



Honeyman

NFS Version 3 (Draft of 11 Sept 88)

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
GETRESINFO Get resource information.
NULL Do nothing.
GETATTR Get file attributes. Returns the current attributes of the file with the given fhandle.
SETATTR Set file attributes. Sets the attributes of the file with the given fhandle. Returns the new

attributes.
STOREATTR Store file attributes. Save extended attributes without side effects.
ACCESS Check access permission. Check what type of access is allowed to the named object.
INACTIVE Advise of inactive file handle. Advisory only.
LOOKUP Lookup file name. Returns an fhandle and file attributes for file name in a directory.
READ Read from file. Returns some data read from the file at the given fhandle.
WRITE Write to file. Returns attributes of a file after writing some data to it.
WRITECACHE Write to cache. (Optional.) Writes data into the server’s cache for a regular file.
ZERO Write zeroes to file.
CREATE Create a file or directory. Creates a file or directory with given attributes and returns

those attributes and an fhandle for the new object.
REMOVE Remove a file or directory. Remove named file from parent directory.
RENAME Rename file. Give an object a new name in the named directory.
LINK Create link to an object. Create a hard link from one named object to another in the

named directory.
SYMLINK Create symbolic link. Create a symbolic link with the given attributes to the given path

name in the named directory.
READLINK Read from symbolic link. Returns the string in the symbolic link at the given fhandle.
CREATEUNIQ Create a file or directory. Create a uniquely named file or directory in the named direc-

tory. This is useful, for example, in creating temporary files where the name does not
matter.

READDIR Read from directory.
LINKAGE Get file system attributes. Translate a file handle for use by some other service.
GETFSATTR Get file system attributes. Obtain volume capacity and time statistics.
GETFSINFO Get file system information. Obtain NFS-related server information.

- 2 -



File System Protocols

AFS

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
FetchData This call retrieves the contents of the file specified by Fid from the file server to

the client. The Position parameter specifies the first byte to be fetched by this
call; 0 specifies the first byte. The Length parameter specifies the number of
bytes desired; a value of 0xFFFFFFFF indicates the entire file. The OutStatus
parameter returns the status of the file, and the CallBack parameter may grant a
callback promise to the caller.

FetchACL This call fetches the access control list associated with the directory Fid. The
AccessList parameter is an INOUT parameter that specifies, on input, the largest
size string the client is willing to receive as input, and returns, as output, the
access control list. The OutStatus parameter returns the current status of the
directory. Note that a new callback is not returned by this call; any existing call-
back promise remains in effect, however.

FetchStatus This call retrieves the status information associated with the file or directory
specified by Fid. On return, the OutStatus parameter contains the file’s status
information. The CallBack parameter may contain, on return, a new callback
promise from the file server.

StoreData This call updates the data and status portions of the file named by the Fid parame-
ter. The InStatus parameter allows setting of the ClientModTime field; all other
fields must remain unchanged. The Position and Length parameters specify a
starting byte position and length for this transfer. The OutStatus parameter
returns the updated directory status information.

StoreACL This call updates the access control information associated with a file or directory.
The Fid parameter specifies the directory whose ACL will change. The InStatus
parameter may someday allow the updating of status information simultaneously;
at present it must be set to all "noop" values. The AccessList parameter contains
the new ACL, and the OutStatus parameter returns the updated directory status
information.

StoreStatus This call updates the status information associated with the file or directory Fid.
The InStatus parameter specifies the new file status. The OutStatus parameter
returns the updated directory status information, since other status fields (such as
the ServerModTime field) may change as a side-effect of making any status
changes.

RemoveFile This call removes a file or symbolic link (but not a directory) from the file system.
The DirFid parameter specifies the directory from which to remove the entry.
The Name parameter specifies the name of the file or symbolic link to be
removed. The OutStatus parameter returns the updated directory’s status informa-
tion.

The cache manager is responsible for decrementing the link count in the file’s
associated cached status by 1.

- 3 -



Honeyman

CreateFile This call is used to create a file (but not a symbolic link or a directory). The Dir-
Fid parameter specifies the directory in which to create the file. The Name
parameter specifies the name of the file to be created. The InStatus parameter
specifies the initial status fields for the new file. After the call completes, the
OutFid parameter contains the file’s file ID, and the new file’s status is returned
in OutFidStatus. In addition, the updated directory’s status is returned in OutDir-
Status and a new callback may be returned in CallBack.

If the call succeeds, it is the cache manager’s responsibliity to either create an
entry locally in the directory specified by DirFid, or to invalidate this directory’s
cache entry.

Rename This call renames the file OldName in the directory specified by OldDirFid to be
the file NewName in the directory NewDirFid. The updated directory status for
both directories is returned in OutOldDirStatus and OutNewDirStatus. If the two
directories are the same, the same status is returned twice.

The rename must not result in hard links existing to the same object from two dif-
ferent directories, or the error code EXDEV (18 decimal) will be returned.

If a directory is moved from one directory to another, the cache manager must
either update the cached copy of the moved directory in order to update its ".."
entry, or the cache manager must invalidate the cache entry for the moved direc-
tory. The directory link counts will be updated by the server in the returned direc-
tory status blocks, OutNewDirStatus and OutOldDirStatus.

Symlink This call creates a symbolic link in the directory specified by DirFid with the
name Name. The contents of the new symbolic link are specified by LinkCon-
tents; this is the target of the new symbolic link. The InStatus parameter should
specify the new link’s ClientModTime and UnixModeBits fields. Note that a sym-
bolic link with protection mode 0644 (octal) is treated by the Andrew file system
as an Andrew file system mount point. The parameter OutFid returns the file ID
of the newly-created link, and the OutFidStatus parameter gives the complete
status information for this newly-created entity. The OutDirStatus parameter pro-
vides the updated directory status information.

Usage notes: note that no callback is returned on the new symbolic link, since
symbolic links can never change, they can only be deleted. It is recommended
that the cache manager make use of this fact.

Link This call creates a hard link to file specified by ExistingFid, with the name Name
in the directory specified by DirFid. The file named by ExistingFid must not be
a directory, and must furthermore be in the directory DirFid, that is, the same
directory as the new link will be created. The parameter OutFidStatus returns the
updated file status, and the OutDirStatus returns the updated directory status.

- 4 -



File System Protocols

MakeDir This call creates a new directory named Name in the parent directory DirFid. The
InStatus parameter provides the initial UnixModeBits and ClientModTime values;
the others are ignored. The new directory’s file ID is returned in OutFid, and the
new directory’s status is returned in OutFidStatus. The parent directory’s updated
status is returned in OutDirStatus and a callback for the newly-created directory
may be returned in CallBack.

It is the cache manager’s responsibliity to either create an entry locally in the
directory specified by DirFid, or to invalidate this directory’s cache entry.

RemoveDir This call removes a directory from the file system. The parameter DirFid speci-
fies the parent directory of the directory to be removed. The parameter Name
gives the name of the directory to be removed (relative to its parent). The parent
directory’s updated status is returned in OutDirStatus.

The directory must be empty (containing only entries for "." and ".."), otherwise
this call will fail. It is the cache manager’s responsibliity to either create an entry
locally in the directory specified by DirFid, or to invalidate this directory’s cache
entry.

SetLock This call sets an advisory lock of type Type on the file specified by Fid. Advisory
locks do not interfere with any other operations, except for other SetLock calls. If
Type is equal to LockRead (0) a read (shared) lock is obtained; if Type is equal to
LockWrite (1), an exclusive lock is granted. This call never blocks, rather, if the
lock can not be obtained, the code EWOULDBLOCK (35) is returned and no lock
is granted. In this case, the client is expected to periodically retry this operation.

Advisory locks normally timeout after 180 seconds. The ExtendLock call should
be issued every 60 seconds or so in order to prevent a lock from timing out.

The caller must have "k" access to a file or directory in order to set advisory
locks.

ExtendLock This call extends an advisory lock for the file specified by Fid. Advisory locks
normally timeout after three minutes (180 seconds); this call should be issued
periodically by the cache manager if locks of longer duration are required.

The caller must have "k" access to a file or directory in order to extend advisory
locks.

ReleaseLock This call releases an advisory lock set on the file Fid.

The caller must have "k" access to a file or directory in order to remove an
advisory lock.

GetStatistics This call returns statistics concerning file server throughput, resource usage and
disk storage at the file server to which the call is directed. It is used for status
monitoring purposes only.

- 5 -



Honeyman

GiveUpCallBacks This call returns an array of callback promises to a given file server. The callback
promises must have been granted originally by the file server to which this call is
directed. The cache manager should not attempt to give up more than 50 callback
promises in any one call to a file server.

The file CallBacks_Array parameter specifies the new callback level desired for
the corresponding element in the Fids_Array. In the typical case, the caller will
be discarding the callback promises, and will specifiy a callback type of
DROPPED (3).

This call always returns success, whether or not all of the callback promises did
indeed exist at the specified file server.

GetVolumeInfo This call returns the location information associated with the volume Volumeid in
the structure VolumeInfo. The Volumeid parameter is a character string and may
be either the volume name, or an ASCII representation of a volume number,
treated as an unsigned decimal integer. For instance, if volume number
0x88000000 has name "user.bozo", then the caller could pass in as the Volumeid
either the string "user.bozo" or the string "2281701376".

GetVolumeStatus This call returns the status information associated with a volume. The volume ID
is passed in as an integer. The VolumeStatus parameter is an INOUT parameter
for historical reasons; none of the input values are examined. The resulting
volume status block is returned in VolumeStatus, while the last three parameters
are set to the volume name (the terminating null character is included), the offline
message explaining why the volume is offline, and the volume’s message of the
day, explaining any other information of interest to the volume’s user.

SetVolumeStatus This call sets the status information associated with a volume. The volume ID
identifies the volume to be processed. The VolumeStatus structure should be set
to the volume’s new status. The last three parameters should indicate the new
volume name, and the new messages associated with the volume. A 0-length for
ame.SeqLen, OfflineMsg.SeqLen or Motd.SeqLen tells the server to
not change that string. The only values that can be updated in the VolumeStatus
structure are the MinQuota and MaxQuota fields; a value of -1 (0xFFFFFFFF)
directs the server to leave the field unchanged.

This call returns the updated volume status to the caller in the specified INOUT
parameters, just as in GetVolumeStatus.

GetRootVolume This call returns the name of the root volume for the appropriate cell. The name
is returned in the space provided by the bounded byte string, along with its ter-
minating null character.

CheckToken This call takes two input parameters, a ViceID representing the user whose token
(in Kerberos terms, a ticket) is being checked for validity, and the ticket itself.
The call returns 0 if and only if the ticket is still valid for user by the specified
user within this cell.

GetTime This call returns the time of day in seconds and microseconds, in its two output
parameters. The Seconds parameter represents the number of seconds since
1/1/70, as in the Unix time standard.

- 6 -



File System Protocols

CallBack This routine is used to asynchronously alter the state of possibly existing callbacks
at the workstation. The fids array lists a set of files, and the callbacks array lists a
set of callback operations to perform on those files. As a special case,
fids[i].vnode == 0 means break all callbacks on the specified volume; otherwise
break the specified callback on the specified segment. In this case, there is also
an implied file status change. The possible operations are: break a call back (level
== DROPPED), or downgrade a callback to non-exclusive (level == SHARED).
In all cases, the callback ID specified in the callback structure should be greater or
equal to the callback id elected to be deleted.

It is important, when writing a cache manager, to realize that the file server is per-
mitted to keep locked any number of data structures while making an CallBack
call. To avoid deadlock, it is strongly advised that the cache manager process this
call without ever blocking.

InitCallbackState Initialize callback state at the workstation, with respect to the calling server. All
callbacks from the calling server should be discarded.

Probe This call is a noop used by the server to check that a cache manager is still run-
ning. By periodically polling apparently inactive cache managers, a file server
can timeout down workstations before actually trying to break a callback promise
at that workstation, allowing the operation eventually triggering a break callback
operation to complete faster.

ReceivedStore This call will be obsolete shortly. It indicates that a call storing data into a file has
broken all callbacks and set the appropriate locks, indicating that the client can
proceed knowing that all future calls to the server will see the new file data, not
the old.

- 7 -



Honeyman

AFP

Server Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
GetSrvrInfo Obtain a block of descriptive information from the server, without requiring a session to

be opened.
GetSrvrParms Retrieve server-level parameters.
Login Establish a session with a server. A protocol version is agreed upon and the user is

authenticated.
LoginCont Continue the Login and authentication process with a server.
Logout Terminate a session with a server.
MapID Map a User ID to a User Name, or a Group ID to a Group Name.
MapName Map a User Name to a User ID, or a Group Name to a Group ID.

Volume Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OpenVol "Mount" a volume. It must be called before any other call can be made to access objects

on the volume.
CloseVol "Unmount" a volume.
GetVolParms Retrieve parameters for a particular volume. The volume is specified by its Volume ID

as returned from the OpenVol call.
SetVolParms Set the parameters for a particular volume. The volume is specified by its VolumeID as

returned from the OpenVol call.
Flush Flush to disk any data relating to the specified volume that has been modified by the user.

Directory Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SetDirParms Set parameters for a particular directory
OpenDir Open a directory on a Variable-DirID volume and obtain its directory identifier.
CloseDir Close a directory.
Enumerate Enumerate the contents of a directory. The reply is composed of a number of file and/or

directory parameter structures.
CreateDir Create a new directory.

File Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SetFileParms Set parameters for a particular file.
CreateFile Create a file.
CopyFile Optional. Copy a file residing on one of the server’s volumes to another location on one

of the server’s volumes. The destination of the copy is specified by providing a VolID,
DirID, and Pathname that indicate the copy’s new Parent Directory.

- 8 -



File System Protocols

Combined Directory-File Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
GetFileDirParms Retrieve parameters for an object that may be a file or directory.
SetFileDirParms Set parameters for a particular object, either a file or directory.
Rename Rename either a directory or a file.
Delete Delete either a directory or file.
Move Move (not just copy) a directory or file to another location on a single volume

(source and destination must be on the same volume). An object cannot be
moved from one volume to another with this call, even though both volumes
may be managed by the server. The destination of the move is specified by pro-
viding a DirID and Pathname that indicate the object’s new Parent Directory.

Fork Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
GetForkParms Retrieve parameters for a file associated with a particular open fork.
SetForkParms Set parameters for a file associated with a particular open fork.
OpenFork Open the data or resource fork of an existing file for the purpose of reading

from it or writing to it. Each fork must be opened separately; a unique Open-
ForkRefnum will be returned for each.

Read Read a block of data from a open fork.
Write Write a block of data to an open fork.
FlushFork Any Writes made to a particular file fork may be buffered by the server in order

to optimize disk accesses. Within the constraints of performance, the server will
try to flush (commit to disk) each file as soon as possible, yet clients can force
the server to write to the disk any data buffered from previous Writes by issuing
this call.

ByteRangeLock Lock a range of an open fork to ensure exclusive access. Locks prevent all oth-
er users from reading or writing any bytes within the range.

CloseFork Close a fork which was opened by OpenFork.

Desktop Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OpenDT Open the Macintosh Dektop data base.
FpCloseDT Disassociate a user from the volume’s Macintosh Desktop.

Icon-Related Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AddIcon Add an icon bitmap to the Desktop Database.
GetIcon Retrieve an icon from the Desktop database from a FileCreator/FileType specification.
GetIconInfo

Application-Related Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AddAPPL Add an APPL to the Desktop Database.
RemoveAPPL Remove an APPL mapping from the Desktop Database.
GetAPPL Retrieve information about a particular application from the Desktop Database.

- 9 -



Honeyman

Comment-Related Calls

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AddComment Add a comment for a file or directory to the Desktop Database.
RemoveComment Remove a comment from the Desktop Database.
GetComment Retrieve a comment associated with a specified file or directory from the Desk-

top Database.

- 10 -



File System Protocols

RFS

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ACCESS Check access permissions
SYSACCT Do system accounting
CHDIR Change directory
CHMOD Change file mode
CHOWN Change file owner
CHROOT Change root directory
CLOSE Close a file
CREAT Create a file
EXEC Exec a file
EXECE Exec a file with an environment
FCNTL File control
FSTAT Stat a file (uses file descriptor)
FSTATFS Stat a file system (uses file descriptor)
IOCTL Ioctl
LINK First half of link() operation
LINK1 Second half of link() operation
MKNOD Make a device file
OPEN Open a file
READ Read from a file
SEEK Seek on a file
STAT Stat a file (uses pathname)
STATFS Stat a file system (uses pathname)
UNLINK Unlink a file
UTIME Change times on file
UTSSYS Return information about a mounted file system.
WRITE Write a file
GETDENTS Read directory entries in a file system independent format
MKDIR Make a directory
RMDIR Remove a directory
SRMOUNT Server side of remote mount
SRUMOUNT Server side of remote unmount
COREDUMP Dump core
WRITEI Internal form of write system call
READI Internal form of read system call
RSIGNAL Send remote signal
SYNCTIME Synchronize time between machines
IPUT Free a remote inode
IUPDATE Update a remote inode
UPDATE Write modified buffers back to disk.

- 11 -



Honeyman

DDM

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CLOSE Close file. This command terminates the logical connection, established by OPEN,

between the requester and a file.
CLRFIL Clear file. This command clears an existing file of all records and reinitializes it as if it

had just been created.
CRTAIF Create alternate index file. This command creates an alternate index file on the target

system. The alternate index file provides a key field access sequence to the records in an
existing base target system file. The base file can be a sequential or keyed file.

CRTDIRF Create direct file. This command creates a direct file on the target system.
CRTKEYF Create keyed file. This command creates a keyed file on the target system.
CRTSEQF Create sequential file. This command creates a sequential file on the target system.
CRTSIMF Create similar file. This command creates a file similar to an existing file. The new file

is created with the same file attributes (except file name) as the existing file. Record data
is not copied from the existing file to the new file.

DCLFIL Declare file. The declare file command associates a declared name with a collection of
file-oriented parameters.

DELDCL Delete declare. This command deletes collection of file-oriented parameters that were
created by a previous DCLFIL command. DELFIL This command deletes a file from
the target system, releases all locks held on the file, and releases the space it occupied.

DELREC Delete record. This command deletes the record which has an update intent placed on it.
EXCSAT Exchange server attributes. This command is used to exchange information between

servers.
GETREC Get record. This command gets and returns the record indicated by the current cursor

position.
INSRECEF Insert at EOF. This command inserts a record at the end of the file.
INSRECKY Insert by key value. This command inserts one or more records according to their key

values wherever there is available space in the file.
INSRECNB Insert by record number. This command inserts one or more records at the position

specified by the record number parameter.
LCKFIL Lock file. This command locks the file for subsequent use by the requester.
LODFIL Load file. This command loads one or more records into a file.
LSTFAT List file attributes. This command retrieves selected attributes of a file.
MODREC Modify record. This command modifies the record which has an update intent placed on

it.
OPEN Open file. This command establishes a logical connection between the using program on

the source system and the file on the target system.
RNMFIL Rename file. This command renames an existing file.
SETBOF Set cursor to beginning of file. This command sets the cursor to the position ahead of the

first record on the file.
SETEOF Set cursor to end of file. This command sets the cursor to the position following the last

record of the file.
SETFRS Set cursor to first record. This command sets the cursor to the first record of the file.
SETKEY Set cursor by key. This command positions the cursor based on the key value supplied

and the relational operator specified for the relational operator parameter.
SETKEYFR Set cursor to first record in key sequence. This command sets the cursor to the first

record in the key sequence.
SETKEYLM Set key limits. This command sets the limits of the key values for subsequent SET-

KEYNX (set cursor to next record in key sequence) commands.
SETKEYLS Set cursor to last record in key sequence. This command sets the cursor to the last record

of the file in key sequence order.

- 12 -



File System Protocols

SETKEYNX Set cursor to next record in key sequence. This command sets the cursor to the next
record of the file in the key sequence order following the record currently indicated by
the cursor.

SETKEYPR Set cursor to previous record in key sequence. This command sets the cursor to the pre-
vious record of the file in the key sequence order preceding the record currently indicated
by the cursor.

SETLST Set cursor to last record. This command sets the cursor to the last record of the file.
SETMNS Set cursor minus. This command sets the cursor to the record number of the file indi-

cated by the cursor minus the number of record positions specified by the cursor dis-
placement parameter.

SETNBR Set cursor to record number. This command sets the cursor to the record of the file indi-
cated by the record number specified by the record number parameter.

SETNXT Set cursor to next record. This command sets the cursor to the next record of the file
with a record number one greater than the current cursor position.

SETNXTKE Set cursor to next record with equal key. This command sets the cursor to the next
record in the key sequence if the key field of that record has a value equal to the value
specified in the KEYVAL parameter.

SETPLS Set cursor plus. This command sets the cursor to the record number of the file indicated
by the cursor plus the integer number of records specified by the cursor displacement
parameter (CSRDSP).

SETPRV Set cursor to previous record. This command sets the cursor to the record of the file with
a record number one less than the current cursor position.

SETUPDKY Set update intent by key. This command places an update intent on the record that has a
key value equal to the KEYNAL parameter. The cursor position is not changed.

SETUPDNB Set update intent by record number. This command places an update intent on the record
at the record position specified by the RECNBR parameter. The cursor position is not
changed

ULDFIL Unload file. This command unloads the records of a file.
UNLFIL Unlock file. This command releases explicit file locks held by the requester on the file.
UNLIMPLK Unlock implicit record lock. This command releases all implicit record locks on records.

- 13 -



Honeyman

Sprite

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ECHO_1 Echo. Performed by server’s interrupt handler (unused).
ECHO_2 Echo. Performed by Rpc_Server process.
SEND Send. Like Echo, but data only transferred to server.
RECEIVE Receive. Data only transferred back to client.
GETTIME Broadcast RPC to get the current time.
FS_PREFIX Broadcast RPC to find prefix server.
FS_OPEN Open a file system object by name.
FS_READ Read data from a file system object.
FS_WRITE Write data to a file system object.
FS_CLOSE Close an I/O stream to a file system object.
FS_UNLINK Remove the name of an object.
FS_RENAME Change the name of an object.
FS_MKDIR Create a directory.
FS_RMDIR Remove a directory.
FS_MKDEV Make a special device file.
FS_LINK Make a directory reference to an existing object.
FS_SYM_LINK Make a symbolic link to an existing object.
FS_GET_ATTR Get the attributes of the object behind an I/O stream.
FS_SET_ATTR Set the attributes of the object behind an I/O stream.
FS_GET_ATTR_PATH Get the attributes of a named object.
FS_SET_ATTR_PATH Set the attributes of a named object.
FS_GET_IO_ATTR Get the attributes kept by the I/O server.
FS_SET_IO_ATTR Set the attributes kept by the I/O server.
FS_DEV_OPEN Complete the open of a remote device or pseudo-device.
FS_SELECT Query the status of a device or pseudo-device.
FS_IO_CONTROL Perform an object-specific operation.
FS_CONSIST Request that cache consistency action be performed.
FS_CONSIST_REPLY Acknowledgement that consistency action completed.
FS_COPY_BLOCK Copy a block of a swap file.
FS_MIGRATE Tell I/O server that an I/O stream has migrated.
FS_RELEASE Tell source of migration to release I/O stream.
FS_REOPEN Recover the state about an I/O stream.
FS_RECOVERY Signal that recovery actions have completed.
FS_DOMAIN_INFO Return information about a file system domain.
PROC_MIG_COMMAND Used to transfer process state during migration.
PROC_REMOTE_CALL Used to forward system call to the home node.
PROC_REMOTE_WAIT Used to synchonize exit of migrated process.
PROC_GETPCB Return process table entry for migrated process.
REMOTE_WAKEUP Wakeup a remote process.
SIG_SEND Issue a signal to a remote process.

- 14 -



File System Protocols

NFILE

Message Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ABORT ABORT cleanly interrupts and prematurely terminates a single direct

access mode data transfer initiated with READ.
CHANGE-PROPERTIES CHANGE-PROPERTIES changes one or more properties of a file.
CLOSE CLOSE terminates a data transfer, and frees a data channel.
COMPLETE COMPLETE performs file pathname completion.
CONTINUE CONTINUE resumes a data transfer that was temporarily suspended

due to an asynchronous error.
CREATE-DIRECTORY CREATE-DIRECTORY creates a directory on the remote file system.
CREATE-LINK CREATE-LINK creates a link on the remote file system.
DATA-CONNECTION DATA-CONNECTION enables the user side to initiate the establish-

ment of a new data connection.
DELETE DELETE deletes a file on the remote file system.
DIRECT-OUTPUT DIRECT-OUTPUT starts and stops output data flow for a direct access

file opening.
DIRECTORY DIRECTORY returns a directory listing including the identities and

attributes for logically related groups of files, directories, and links.
DISABLE-CAPABILITIES DISABLE-CAPABILITIES causes an access capability to be disabled

on the server machine.
ENABLE-CAPABILITIES ENABLE-CAPABILITIES causes an access capability to be enabled

on the server machine.
EXPUNGE EXPUNGE causes the directory specified by pathname to be expunged.
FILEPOS FILEPOS sets the file access pointer to a given position, relative to the

beginning of the file.
FINISH FINISH closes a file and reopens it immediately with the file position

pointer saved, thus leaving it open for further I/O.
HOME-DIRECTORY HOME-DIRECTORY returns the full pathname of the home directory

on the server machine for the given user.
LOGIN LOGIN logs the given user in to the server machine, using the pass-

word if necessary.
MULTIPLE-FILE-PLISTS MULTIPLE-FILE-PLISTS returns file property information of one or

more files.
OPEN OPEN opens a file for reading, writing, or direct access at the server

host.
PROPERTIES PROPERTIES requests the property information about one file.
READ READ requests input data flow for direct access openings.
RENAME RENAME requests the server to give a file a new name.
RESYNCHRONIZE-DATA-CHANNEL RESYNCHRONIZE-DATA-CHANNEL begins a prescribed pro-

cedure between user and server over the unsafe data channel specified
by handle. The resynchronization procedure clears the data channel of
any unwanted data, and restores the data channel to a safe state, ready
to transfer data again.

UNDATA-CONNECTION UNDATA-CONNECTION explicitly disestablishes a data connection
from the user side.

- 15 -



Honeyman

Sources

IBM, Inc., ‘‘IBM Distributed Data Management Architecture: General Information,’’ GC21-9527 (June
1986).
Brent B. Welch, Naming, State Management, and User-Level Extensions in the Sprite Distributed File Sys-
tem, PhD Thesis, University of California, Berkeley (April 1990).
B. Greenberg and S. Keene, ‘‘NFILE — A File Access Protocol,’’ RFC 1037, USC/Information Sciences
Institute (December, 1987).

- 16 -


