
pNFS and Linux: 
 Working Towards a Heterogeneous Future 

Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson 

Center for Information and Technology Integration 
University of Michigan 

{dhildebz, honey, andros}@umich.edu 

Abstract.  Heterogeneous and scalable remote data access is a critical enabling 
feature of widely distributed collaborations.  Parallel file systems feature 
impressive throughput, but sacrifice heterogeneous access, seamless integration, 
security, and cross-site performance.  Remote data access tools such as NFS 
and GridFTP provide secure access to parallel file systems, but either lack 
scalability (NFS) or seamless integration and file system semantics (GridFTP).  

Anticipating terascale and petascale HPC demands, NFSv4 architects are 
designing pNFS, a standard extension that provides direct storage access to 
parallel file systems while preserving operating system and hardware platform 
independence.  pNFS distributes I/O across the bisectional bandwidth of the 
storage network between clients and storage devices, removing the single server 
bottleneck so vexing to client/server-based systems. 

Researchers at the University of Michigan are collaborating with industry to 
develop pNFS for the Linux operating system.  Linux pNFS features a 
pluggable client architecture that harnesses the potential of pNFS as a universal 
and scalable metadata protocol by enabling dynamic support for layout format, 
storage protocol, and file system policies.  This paper evaluates the scalability 
and performance of the Linux pNFS architecture with the PVFS2 and GPFS 
parallel file systems. 

Introduction 

Large research collaborations require global access to massive data stores.  Parallel 
file systems feature impressive throughput, but sacrifice heterogeneous access, 
seamless integration, security, and cross-site performance.  In addition, while parallel 
file systems excel at large data transfers, many do so at the expense of small I/O 
performance.  While large data transfers dominate many scientific applications, 
numerous workload characterization studies have highlighted the prevalence of small, 
sequential data requests in modern scientific applications [1-3]. 

Many application domains demonstrate the need for high bandwidth, concurrent, 
and secure access to large datasets across a variety of platforms and file systems.  
Scientific computing that connects large computational and data facilities across the 
globe can generate petabytes of data.  Digital movie studios that generate terabytes of 
data every day require access from compute clusters and Sun, Windows, SGI, and 
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Linux workstations [4].  This need for heterogeneous data access produces a tension 
between parallel file systems and application platforms. 

Distributed file access protocols such as NFS [5] and CIFS [6] bridge the 
interoperability gap, but they are unable to deliver the superior performance of a high-
end storage system.  GridFTP [7], a popular remote data access tool in the Grid, offers 
high throughput and operating system independent access to parallel file systems, but 
lacks seamless integration and file system semantics. 

pNFS, an integral part of NFSv4.1, overcomes these enterprise- and grand 
challenge-scale obstacles by enabling direct client access to storage while preserving 
NFS operating system and hardware platform independence.  pNFS distributes I/O 
across the bisectional bandwidth of the storage network between clients and storage 
devices, removing the single server bottleneck so vexing to client/server-based 
systems.  In combination, the elimination of the single server bottleneck and the 
ability for clients to access data directly from storage results in superior file access 
performance and scalability [8]. 

At the Center for Information Technology Integration at the University of 
Michigan, we are developing pNFS for the Linux operating system.  A pluggable 
client architecture harnesses the potential of pNFS as a universal and scalable 
metadata protocol by enabling dynamic support for layout format, storage protocol, 
and file system policies.  In conjunction with several industry partners, a prototype is 
under development that supports the file- [9], block- [10], object- [11], and PVFS2-
based [8] storage protocols.  This paper evaluates the scalability and performance of 
the Linux pNFS architecture with the PVFS2 [12] and GPFS [13] parallel file 
systems. 

pNFS overview 

pNFS is a heterogeneous metadata protocol.  pNFS clients and servers are 
responsible for control, file management operations, and delegate I/O functionality to 
a storage-specific client driver.  By separating control and data flow, pNFS distributes 
I/O across the bisectional bandwidth of a storage network connecting clients and 
storage devices, removing the single server bottleneck. 

Figure 1a displays the pNFS architecture.  The control path contains all NFSv4.1 
operations and features.  While the data path can support any storage protocol, the 
IETF design effort focuses on file-, object-, and block-based storage protocols.  
Storage devices can be NFSv4.1 servers, object storage, or even block-addressable 
SANs.  NFSv4.1 does not specify a management protocol, which may therefore be 
proprietary to the exported file system. 

pNFS protocol extensions 

This section describes the NFSv4.1 protocol extensions to support pNFS. 
LAYOUTGET operation.  The LAYOUTGET operation obtains file access 

information for a byte-range of a file, i.e., a layout, from the underlying storage 
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system.  The client issues a LAYOUTGET operation after it opens a file and before 
data access.  Implementations determine the frequency and byte range of the request.  
The LAYOUTGET operation returns the requested layout as an opaque object, which 
allows pNFS to support arbitrary file layout types.  At no time does the pNFS client 
attempt to interpret this object, it acts simply as a conduit between the storage system 
and the layout driver. 
LAYOUTCOMMIT operation.  The LAYOUTCOMMIT operation commits 
changes to the layout information.  The client uses this operation to commit or discard 
provisionally allocated space, update the end of file, and fill in existing holes in the 
layout. 
LAYOUTRETURN operation.  The LAYOUTRETURN operation informs the 
NFSv4.1 server that layout information obtained earlier is no longer required.  A 
client may return a layout voluntarily or upon receipt of a server recall request. 
CB_LAYOUTRECALL operation.  If layout information is exclusive to a specific 
client and other clients require conflicting access, the server can recall a layout from 

 
(a) pNFS architecture 

C o n t r o l

S t o r a g e  N o d e s

C l i e n t

p N F S  C l i e n t

L a y o u t  D r i v e r

T r a n s p o r t  D r i v e r

I / O  A P I P o l i c y  A P I

S e r v e r

P a r a l l e l  F i l e  S y s t e m

p N F S  S e r v e r

L i n u x  V F S  A P I

M a n a g e m e n t
P r o t o c o l

S t o r a g e  P r o t o c o l

 
(b) Linux pNFS internal design 

Fig. 1. pNFS architecture and Linux internal design.  (a) pNFS splits the NFSv4.1 protocol 
into a control path and a data path.  The NFSv4.1 protocol exists along the control path.  A 
storage protocol along the data path provides direct and parallel data access.  A management 
protocol binds metadata servers with storage devices.  (b) The pNFS client uses I/O and policy 
interfaces to access storage nodes and follow underlying file system polices.  The pNFS server 
uses Linux export operations to exchange pNFS information with the underlying file system. 
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the client using the CB_LAYOUTRECALL callback operation.1  The client should 
complete any in-flight I/O operations using the recalled layout and write any buffered 
dirty data directly to storage before returning the layout, or write it later using normal 
NFSv4 write operations. 
GETDEVINFO and GETDEVLIST operations.  The GETDEVINFO and 
GETDEVLIST operations retrieve information about one or more storage nodes.  
Typically, the client issues the GETDEVLIST operation at mount time to retrieve the 
active storage nodes.  The GETDEVINFO operation retrieves information about 
individual storage nodes. 

Linux pNFS 

Although parallel file systems separate control and data flows, there is tight 
integration of their control and data protocols.  Users must adapt to different 
consistency and security semantics for each data repository.  Using pNFS as a 
universal metadata protocol lets applications realize a consistent set of file system 
semantics across data repositories.  Linux pNFS facilitates interoperability by 
providing a framework for the co-existence of the NFSv4.1 control protocol with all 
storage protocols.  This is a major departure from current file systems, which can 
support only a single storage protocol such as OSD [14, 15]. 

Figure 1b depicts the architecture of pNFS on Linux, which adds a layout driver 
and a transport driver to the standard NFSv4 architecture.  The layout driver 
interprets and utilizes the opaque layout information returned from the pNFS server.  
A layout contains the information required to access any byte range of a file.  In 
addition, a layout may contain file system specific access information.  For example, 
the object-based layout driver requires the use of OSD access control capabilities 
[16].  To perform direct and parallel I/O, a pNFS client first requests layout 
information from the pNFS server.  The layout driver uses the information to translate 
read and write requests from the pNFS client into I/O requests directed to storage 
devices.  For example, the NFSv4.1 file-based storage protocol stripes files across 
NFSv4.1 data servers (storage devices); only READ, WRITE, COMMIT, and session 
operations are used on the data path.  The pNFS server can generate layout 
information itself or request assistance from the underlying file system.  The transport 
driver performs I/O, e.g., iSCSI [17] or ONC RPC [18], to the storage nodes. 

pNFS client extensions: pluggable storage protocol 

Layout drivers are pluggable, using a standard set of interfaces for all storage 
protocols.  An I/O interface facilitates the management of layout information and 
performing I/O with storage.  A policy interface informs the pNFS client of file 
system and storage system specific policies.   

                                                           
1 NFSv4 already contains a callback operation infrastructure for delegation support. 
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I/O interface 
The current Linux pNFS client prototype can access data through the Linux page 

cache, using O_DIRECT, or directly by bypassing the Linux page cache and all 
NFSv4 I/O request processing (direct access method). 

The page cache access method uses a writeback cache to gather or split write 
requests into block-sized requests before being sent to storage, with requested data 
cached on the client.  For read requests, the Linux kernel readahead algorithm sets the 
request size.  The page cache access method is the default behavior of the Linux NFS 
client.  The O_DIRECT access method continues to use a writeback cache, but data 
does not pass through the Linux page cache.  O_DIRECT is useful for applications, 
such as databases, that perform small I/O requests but handle data caching 
themselves.  The direct access method bypasses the Linux page cache and NFS 
writeback cache and sends I/O requests directly to the layout driver with the request 
offset and extent untouched.  Many scientific applications use the direct access 
method as a foundation beneath higher-level tools such as MPI-IO [19, 20]. 

Policy interface 
The functionality of a layout driver can depend on the application, the supported 

storage protocol, and the underlying parallel file system.  For example, many HPC 
applications do not require a data cache (or its associated overhead) and therefore 
prefer to use the O_DIRECT or direct access methods.  Additional policies include the 
file system stripe and block size, when to retrieve layout information, and the I/O 
request size threshold (which improves performance under certain workloads [21]).   

In addition, the policy interface enables layout drivers to specify if it uses existing 
Linux data management services or use customized implementations.  The following 
is a list of services available to layout drivers: 
• Linux page cache 
• NFSv4 writeback cache 
• Linux kernel readahead 

A layout driver can define custom policies or acquire specific policies from the 
pNFS server. 

pNFS server extensions 

The Linux pNFS server implementation is designed to export a pNFS capable file 
system.  The pNFS server performs state management for all NFSv4.1 operations and 
extends the existing Linux NFS server interface with the underlying file system.  The 
Linux pNFS server does not provide a management protocol between the pNFS server 
and the storage devices (Figure 1a); this is left to the pNFS capable file system.  
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The pNFS server is storage protocol agnostic.  The pNFS server obtains storage 
device and layout information from the underlying file system as opaque data.  The 
pNFS server transfers the opaque data to the pNFS client and subsequently to a layout 
driver, which can interpret and use the information for direct access to storage.  A 
callback exists to allow the underlying file system to initiate a layout recall.  When a 
pNFS client returns a layout, the pNFS server passes the opaque layout information 
back to the underlying file system.   

The pNFS server manages state information for all outstanding layouts.  This 
includes tracking granted and returned layouts as well as portions of layouts that have 
been recalled. 

Evaluation 

This section analyzes the performance of our Linux pNFS prototype using the page 
cache, O_DIRECT, and direct access methods with the PVFS2 and GPFS parallel file 
systems. 

Experimental setup 

The first two experiments use the IOR micro-benchmark [22] to measure the 
aggregate I/O throughput to a PVFS2 file system as we increase the number of clients.  
The third set of experiments evaluates the data transfer performance between GPFS 
and PVFS2 file systems using a single 10 Gbps client.  All nodes run Linux 2.6.17. 
1 Gbps Clients:  Clients in Figures 3 and 4 are equipped with dual 1.3 GHz P3 
processors, 2 GB memory, and an Intel Pro gigabit card. 

 
Fig. 2. Aggregate I/O throughput experimental setup.  Up to ten clients access six PVFS2 
storage nodes.  .With standard NFSv4, all clients perform I/O through an NFSv4 server 
residing on a storage node.  With pNFS, clients use a PVFS2 layout driver for direct and 
parallel access to PVFS2 storage nodes.  
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(a) Write 200 MB 
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(b) Write 4 GB 
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(c) Read 

Fig. 3. pNFS and NFSv4 aggregate I/O throughput to a PVFS2 file system.  Aggregate I/O 
throughput to six PVFS2 storage nodes using NFSv4 (with and without O_DIRECT) as well as 
pNFS with the direct, O_DIRECT, and page cache access methods.  pNFS scales with 
additional clients, with the direct access method achieving the best performance.  In addition, 
performance remains the same across I/O request sizes.  NFSv4 performance remains flat in all 
experiments.   
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10 Gbps Client:  The client in Figure 6 is equipped with dual 1.4 GHz Opteron 
processors, 4 GB memory, and one Neterion 10 Gigabit card.   
PVFS2 Configuration:  The PVFS2 1.5.1 file system has six storage nodes, with one 
storage node doubling as a metadata manager, and a 64 KB stripe size.  Each node is 
equipped with dual 1.7 GHz P4 processors, 2 GB memory, one Seagate 80 GB 7200 
RPM hard drive with Ultra ATA/100 interface and 2 MB cache, and one 3Com 
3C996B-T gigabit card. 
GPFS Configuration:  The GPFS file system has six I/O nodes attached to a 
FibreChannel shared disk array.  Each node is equipped with dual 1.3 GHz P3 
processors, 2 GB memory, and an Intel Pro gigabit card. 

Scalability and performance 

Our initial experiments, shown in Figure 3, evaluate different ways of accessing 
storage.  We use the policy interface to perform a fine-grained performance analysis 
of the Linux page cache and NFSv4 I/O subsystem while using the page cache, 
O_DIRECT, and direct access methods.  To provide a baseline, we also access storage 
using NFSv4 with and without O_DIRECT.  We use our pNFS prototype with a 
PVFS2 file system and a PVFS2 layout driver.  The PVFS2 blocksize is 4 MB and the 
NFSv4 wsize and rsize are 64 KB. 

In Figure 3a, clients write separate 200 MB files in 4 MB chunks.  With six data 
servers and a 200 MB file, the amount of data written to each disk is 200 MB / 6 = 33 
MB.  With a 33 MB file, the individual disk bandwidth is 22 MB/s, which gives the 
PVFS2 file system a theoretical maximum write bandwidth of 132 MB/s. 

NFSv4 write performance is flat, obtaining an aggregate throughput of 26 MB/s.  
NFSv4 with O_DIRECT is also flat with a slight reduction in performance.  The 
direct access method has the greatest aggregate write throughput, obtaining over 100 
MB/s with eight clients.  The aggregate write throughput of pNFS clients using the 
page cache is consistently 10 MB/s lower than pNFS clients using the direct method.  
PageCache-4KB, which writes data in 4 KB chunks, has the same performance as 
PageCache, which demonstrates the Linux pNFS client’s ability to gather small write 
requests into larger and more efficient requests.  O_DIRECT obtains an aggregate 
write throughput between the direct and page cache access methods, but flattens out 
as we increase the number of clients.  The relative performance of the O_DIRECT 
and the page cache access methods is consistent with the relative performance of 
NFSv4 with and without O_DIRECT. 

In Figure 3b, clients write separate 4 GB files in 4 MB chunks.  With a 4 GB file, 
the amount written to each disk is approximately 715 MB.  With a 715 MB file, the 
individual disk bandwidth is 32 MB/s, which gives the PVFS2 file system a 
theoretical maximum write bandwidth of 192 MB/s. 

  All results remain unchanged except for the direct access method, which 
experiences a major performance increase.  The direct access method single client 
performance increases by over 20 MB/s, which rises even higher with two clients to 
130 MB/s.   

Why is the direct access method the only method to benefit from the increase in 
individual disk bandwidth?  The answer is a more effective use of disk bandwidth.  



pNFS and Linux: Working Towards a Heterogeneous Future      9 

NFSv4 fault tolerance semantics mandate that written data exist on stable storage 
before it is evicted from the client cache.  This policy results in numerous disk sync 
operations while writing a large file.  The direct access method sidesteps this 
requirement and performs a single disk sync operation after all data has been sent to 
the storage nodes.  Many scientific applications can re-create lost data, allowing the 
direct access method to provide a valuable performance boost. 

In Figure 3c, clients read separate 200 MB files in 4 MB chunks.  NFSv4 read 
performance is flat, obtaining an aggregate throughput of 52 MB/s.  The aggregate 
read throughput of pNFS clients using the two methods that avoid the page cache is 
the same as we increase the number of clients, nearly exhausting the available 
network bandwidth of with ten clients.  Working through the page cache reduces the 
aggregate read throughput by up to 110 MB/s.  Increasing the file size does not affect 
performance since the disks do not need to perform sync operations after read 
requests. 
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(b) Read 

Fig. 4. pNFS and I/O blocksize.  pNFS aggregate I/O throughput to six PVFS2 storage nodes 
using the pNFS page cache access method with four block sizes.  The results are independent 
of the application write and read request size since the requests are gathered together until they 
match the block size.  
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Block size sensitivity 

Our second set of experiments sets out to verify the performance sensitivity to 
layout driver block size (I/O transfer size) when working through the Linux page 
cache.  We use our pNFS prototype with a PVFS2 file system and a PVFS2 layout 
driver.   

As shown in Figure 4, increasing the block size from 32 KB to 4 MB improves 
aggregate I/O throughput, although this boost eventually hits a performance ceiling.  
The request size is 4 MB, but results are independent of application request size since 
the pNFS writeback cache gathers requests into the block size.  

 
Fig. 5. Inter-file system data transfer experimental setup.  A 10 Gbps client transfers data 
between PVFS2 and GPFS file systems.  Each file system has six storage nodes connected via 
gigabit Ethernet. 
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Fig. 6. Inter-file system data transfer performance using pNFS, NFSv4, and bbcp.  pNFS 
outperforms NFSv4 and bbcp by using direct and parallel I/O with both GPFS and PVFS2.  
NFSv4 performance is limited by its single server design.  bbcp performance suffers because 
it accesses a single GPFS I/O node. 
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Inter-file system data transfer performance 

Our last set of experiments evaluate cross-file system data transfer performance 
using different types of layout drivers on a single client.  As shown in Figure 5, we 
use a single client with a 10 Gbps network card to transfer data between PVFS2 and 
GPFS file systems, each with six storage nodes attached to a 1 Gbps network.  We 
compare the I/O throughput of using pNFS, NFSv4, and bbcp [23] to copy a 1 GB 
file between PVFS2 and GPFS.  We analyze the PVFS2 layout driver with both the 
page cache and direct access methods.  bbcp is a peer-to-peer data transfer program 
similar to scp or rcp. 

The pNFS experiment first mounts the PVFS2 file system using the PVFS2 layout 
driver and mounts the GPFS file system using the NFSv4.1 file-based layout driver.  
The dd command then copies data between the two mount points.  Similarly, NFSv4 
uses the dd command to copy data between the two NFSv4 mounted file systems.  
The bbcp experiments do not use the file-based layout driver since bbcp can access 
GPFS I/O nodes directly.  Therefore, bbcp copies data from a single GPFS storage 
node to the pNFS/PVFS2 mount point on the client.  The dd command serializes the 
transfer of data between file systems by buffering data on the client before writing it 
to the target file system. 

Figure 6 displays the file transfer experiments.  The client/server design of NFSv4 
limits access to a single server on each back end, achieving an inter-file system 
transfer rate of 20 MB/s.  bbcp reads and writes from/to a single GPFS node, but 
accesses data in parallel from/to the PVFS2 file system.  This partial use of parallel 
I/O increases performance in all four experiments, although it is more efficient when 
transferring data from GPFS to PVFS2.  In addition, data transfer throughput 
decreases slightly when using the page cache access method with PVFS2.  pNFS uses 
parallel I/O with both file systems, which doubles the I/O throughput when 
transferring data from PVFS2 to GPFS and increases the I/O throughput from GPFS 
to PVFS2 by 55%. 

Related work 

Unlike much recent work that focuses on improving the performance and 
scalability of a single file system, e.g., Lustre [24], PVFS2 [12], GPFS-WAN [25, 26], 
Google file system [27], Gfarm [28], and FARSITE [29], the goal of pNFS is to 
enhance a single file access protocol to scale I/O throughput to a diversity of parallel 
file systems. 

GridFTP [7] is used extensively in the Grid to enable high throughput, operating 
system independent, and secure WAN access to high-performance file systems.  
Successful and popular, GridFTP nevertheless has some serious limitations: it copies 
data instead of providing shared access to a single copy, complicating its consistency 
model and decreasing storage capacity; lacks a global namespace; and is difficult to 
integrate with the local file system. 

The Storage Resource Broker (SRB) [30] aggregates storage resources, e.g., a file 
system, an archival system, or a database, into a single data catalogue but does not 
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support parallel I/O to multiple storage endpoints and has difficulty integrating with 
the local file system. 

Several Linux pNFS layout drivers exist.  A PVFS2 layout driver has existed since 
2004 [8] and NFSv4.1 file-based layout drivers have been demonstrated with GPFS 
[13], Lustre [24], and PVFS2 [12]  Sun is developing file and object layout 
implementations.  Panasas object and EMC block drivers are also under development. 

Network Appliance is using the Linux file-based layout driver to bind disparate 
filers (NFS servers) into a single file system image.  This continues previous work 
that aggregates partitioned NFS servers into a single file system image [31-33]. 

Future work 

Petascale computing requires inter-site data transfers involving clusters that may 
have different operating systems and hardware platforms, incompatible or proprietary 
file systems, or different storage and performance parameters that require differing 
layouts.  The Linux pNFS architecture with “pluggable” storage protocols offers a 
solution. 

Figure 7 shows two clusters separated by a long range, high-speed WAN.  Each 
cluster has the architecture described in Figure 1a and uses a storage protocol 
supported by pNFS.  (The management protocol is not shown.) 

The application cluster is running an MPI application that wants to read a large 
amount of data from the server cluster and perhaps write to its backend.  The MPI 
head node obtains the data location from the server cluster and distributes portions of 
the data location information (via MPI) to other application cluster nodes, enabling 
direct access to server cluster storage devices.  The MPI application then reads data in 

 
Fig. 7. pNFS and inter-cluster data transfers across the WAN.  A pNFS cluster retrieves 
data from a remote storage system, processes the data, and writes to its local storage system.  
The MPI head node distributes layout information to pNFS clients. 
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parallel from the server cluster across the WAN, processes the data, and directs output 
to the application cluster backend. 

A natural use case for this architecture is a visualization application processing the 
results of a scientific MPI code run on the server cluster.  Another use case is an MPI 
application making a local copy of data from the server cluster on the application 
cluster. 

Conclusions 

This paper describes and evaluates Linux pNFS, an integral part of NFSv4.1 that 
enables direct client access to heterogeneous parallel file systems.  Linux pNFS 
features a pluggable client architecture that harnesses the potential of pNFS as a 
universal and scalable metadata protocol by enabling dynamic support for layout 
format, storage protocol, and file system policies. 

Experiments with the Linux pNFS architecture demonstrate that using the page 
cache inflicts an I/O performance penalty and that I/O performance is highly subject 
to I/O transfer size.  In addition, Linux pNFS can use bi-directional parallel I/O to 
raise data transfer throughput between parallel file systems. 
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