
pNFS and Linux:
 Working Towards a Heterogeneous Future

Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

Center for Information and Technology Integration
University of Michigan

{dhildebz, honey, andros}@umich.edu

Abstract. Heterogeneous and scalable remote data access is a critical enabling
feature of widely distributed collaborations. Parallel file systems feature
impressive throughput, but sacrifice heterogeneous access, seamless integration,
security, and cross-site performance. Remote data access tools such as NFS
and GridFTP provide secure access to parallel file systems, but either lack
scalability (NFS) or seamless integration and file system semantics (GridFTP).

Anticipating terascale and petascale HPC demands, NFSv4 architects are
designing pNFS, a standard extension that provides direct storage access to
parallel file systems while preserving operating system and hardware platform
independence. pNFS distributes I/O across the bisectional bandwidth of the
storage network between clients and storage devices, removing the single server
bottleneck so vexing to client/server-based systems.

Researchers at the University of Michigan are collaborating with industry to
develop pNFS for the Linux operating system. Linux pNFS features a
pluggable client architecture that harnesses the potential of pNFS as a universal
and scalable metadata protocol by enabling dynamic support for layout format,
storage protocol, and file system policies. This paper evaluates the scalability
and performance of the Linux pNFS architecture with the PVFS2 and GPFS
parallel file systems.

Introduction

Large research collaborations require global access to massive data stores. Parallel
file systems feature impressive throughput, but sacrifice heterogeneous access,
seamless integration, security, and cross-site performance. In addition, while parallel
file systems excel at large data transfers, many do so at the expense of small I/O
performance. While large data transfers dominate many scientific applications,
numerous workload characterization studies have highlighted the prevalence of small,
sequential data requests in modern scientific applications [1-3].

Many application domains demonstrate the need for high bandwidth, concurrent,
and secure access to large datasets across a variety of platforms and file systems.
Scientific computing that connects large computational and data facilities across the
globe can generate petabytes of data. Digital movie studios that generate terabytes of
data every day require access from compute clusters and Sun, Windows, SGI, and

2 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

Linux workstations [4]. This need for heterogeneous data access produces a tension
between parallel file systems and application platforms.

Distributed file access protocols such as NFS [5] and CIFS [6] bridge the
interoperability gap, but they are unable to deliver the superior performance of a high-
end storage system. GridFTP [7], a popular remote data access tool in the Grid, offers
high throughput and operating system independent access to parallel file systems, but
lacks seamless integration and file system semantics.

pNFS, an integral part of NFSv4.1, overcomes these enterprise- and grand
challenge-scale obstacles by enabling direct client access to storage while preserving
NFS operating system and hardware platform independence. pNFS distributes I/O
across the bisectional bandwidth of the storage network between clients and storage
devices, removing the single server bottleneck so vexing to client/server-based
systems. In combination, the elimination of the single server bottleneck and the
ability for clients to access data directly from storage results in superior file access
performance and scalability [8].

At the Center for Information Technology Integration at the University of
Michigan, we are developing pNFS for the Linux operating system. A pluggable
client architecture harnesses the potential of pNFS as a universal and scalable
metadata protocol by enabling dynamic support for layout format, storage protocol,
and file system policies. In conjunction with several industry partners, a prototype is
under development that supports the file- [9], block- [10], object- [11], and PVFS2-
based [8] storage protocols. This paper evaluates the scalability and performance of
the Linux pNFS architecture with the PVFS2 [12] and GPFS [13] parallel file
systems.

pNFS overview

pNFS is a heterogeneous metadata protocol. pNFS clients and servers are
responsible for control, file management operations, and delegate I/O functionality to
a storage-specific client driver. By separating control and data flow, pNFS distributes
I/O across the bisectional bandwidth of a storage network connecting clients and
storage devices, removing the single server bottleneck.

Figure 1a displays the pNFS architecture. The control path contains all NFSv4.1
operations and features. While the data path can support any storage protocol, the
IETF design effort focuses on file-, object-, and block-based storage protocols.
Storage devices can be NFSv4.1 servers, object storage, or even block-addressable
SANs. NFSv4.1 does not specify a management protocol, which may therefore be
proprietary to the exported file system.

pNFS protocol extensions

This section describes the NFSv4.1 protocol extensions to support pNFS.
LAYOUTGET operation. The LAYOUTGET operation obtains file access

information for a byte-range of a file, i.e., a layout, from the underlying storage

pNFS and Linux: Working Towards a Heterogeneous Future 3

system. The client issues a LAYOUTGET operation after it opens a file and before
data access. Implementations determine the frequency and byte range of the request.
The LAYOUTGET operation returns the requested layout as an opaque object, which
allows pNFS to support arbitrary file layout types. At no time does the pNFS client
attempt to interpret this object, it acts simply as a conduit between the storage system
and the layout driver.
LAYOUTCOMMIT operation. The LAYOUTCOMMIT operation commits
changes to the layout information. The client uses this operation to commit or discard
provisionally allocated space, update the end of file, and fill in existing holes in the
layout.
LAYOUTRETURN operation. The LAYOUTRETURN operation informs the
NFSv4.1 server that layout information obtained earlier is no longer required. A
client may return a layout voluntarily or upon receipt of a server recall request.
CB_LAYOUTRECALL operation. If layout information is exclusive to a specific
client and other clients require conflicting access, the server can recall a layout from

(a) pNFS architecture

C o n t r o l

S t o r a g e N o d e s

C l i e n t

p N F S C l i e n t

L a y o u t D r i v e r

T r a n s p o r t D r i v e r

I / O A P I P o l i c y A P I

S e r v e r

P a r a l l e l F i l e S y s t e m

p N F S S e r v e r

L i n u x V F S A P I

M a n a g e m e n t
P r o t o c o l

S t o r a g e P r o t o c o l

(b) Linux pNFS internal design

Fig. 1. pNFS architecture and Linux internal design. (a) pNFS splits the NFSv4.1 protocol
into a control path and a data path. The NFSv4.1 protocol exists along the control path. A
storage protocol along the data path provides direct and parallel data access. A management
protocol binds metadata servers with storage devices. (b) The pNFS client uses I/O and policy
interfaces to access storage nodes and follow underlying file system polices. The pNFS server
uses Linux export operations to exchange pNFS information with the underlying file system.

4 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

the client using the CB_LAYOUTRECALL callback operation.1 The client should
complete any in-flight I/O operations using the recalled layout and write any buffered
dirty data directly to storage before returning the layout, or write it later using normal
NFSv4 write operations.
GETDEVINFO and GETDEVLIST operations. The GETDEVINFO and
GETDEVLIST operations retrieve information about one or more storage nodes.
Typically, the client issues the GETDEVLIST operation at mount time to retrieve the
active storage nodes. The GETDEVINFO operation retrieves information about
individual storage nodes.

Linux pNFS

Although parallel file systems separate control and data flows, there is tight
integration of their control and data protocols. Users must adapt to different
consistency and security semantics for each data repository. Using pNFS as a
universal metadata protocol lets applications realize a consistent set of file system
semantics across data repositories. Linux pNFS facilitates interoperability by
providing a framework for the co-existence of the NFSv4.1 control protocol with all
storage protocols. This is a major departure from current file systems, which can
support only a single storage protocol such as OSD [14, 15].

Figure 1b depicts the architecture of pNFS on Linux, which adds a layout driver
and a transport driver to the standard NFSv4 architecture. The layout driver
interprets and utilizes the opaque layout information returned from the pNFS server.
A layout contains the information required to access any byte range of a file. In
addition, a layout may contain file system specific access information. For example,
the object-based layout driver requires the use of OSD access control capabilities
[16]. To perform direct and parallel I/O, a pNFS client first requests layout
information from the pNFS server. The layout driver uses the information to translate
read and write requests from the pNFS client into I/O requests directed to storage
devices. For example, the NFSv4.1 file-based storage protocol stripes files across
NFSv4.1 data servers (storage devices); only READ, WRITE, COMMIT, and session
operations are used on the data path. The pNFS server can generate layout
information itself or request assistance from the underlying file system. The transport
driver performs I/O, e.g., iSCSI [17] or ONC RPC [18], to the storage nodes.

pNFS client extensions: pluggable storage protocol

Layout drivers are pluggable, using a standard set of interfaces for all storage
protocols. An I/O interface facilitates the management of layout information and
performing I/O with storage. A policy interface informs the pNFS client of file
system and storage system specific policies.

1 NFSv4 already contains a callback operation infrastructure for delegation support.

pNFS and Linux: Working Towards a Heterogeneous Future 5

I/O interface
The current Linux pNFS client prototype can access data through the Linux page

cache, using O_DIRECT, or directly by bypassing the Linux page cache and all
NFSv4 I/O request processing (direct access method).

The page cache access method uses a writeback cache to gather or split write
requests into block-sized requests before being sent to storage, with requested data
cached on the client. For read requests, the Linux kernel readahead algorithm sets the
request size. The page cache access method is the default behavior of the Linux NFS
client. The O_DIRECT access method continues to use a writeback cache, but data
does not pass through the Linux page cache. O_DIRECT is useful for applications,
such as databases, that perform small I/O requests but handle data caching
themselves. The direct access method bypasses the Linux page cache and NFS
writeback cache and sends I/O requests directly to the layout driver with the request
offset and extent untouched. Many scientific applications use the direct access
method as a foundation beneath higher-level tools such as MPI-IO [19, 20].

Policy interface
The functionality of a layout driver can depend on the application, the supported

storage protocol, and the underlying parallel file system. For example, many HPC
applications do not require a data cache (or its associated overhead) and therefore
prefer to use the O_DIRECT or direct access methods. Additional policies include the
file system stripe and block size, when to retrieve layout information, and the I/O
request size threshold (which improves performance under certain workloads [21]).

In addition, the policy interface enables layout drivers to specify if it uses existing
Linux data management services or use customized implementations. The following
is a list of services available to layout drivers:
• Linux page cache
• NFSv4 writeback cache
• Linux kernel readahead

A layout driver can define custom policies or acquire specific policies from the
pNFS server.

pNFS server extensions

The Linux pNFS server implementation is designed to export a pNFS capable file
system. The pNFS server performs state management for all NFSv4.1 operations and
extends the existing Linux NFS server interface with the underlying file system. The
Linux pNFS server does not provide a management protocol between the pNFS server
and the storage devices (Figure 1a); this is left to the pNFS capable file system.

6 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

The pNFS server is storage protocol agnostic. The pNFS server obtains storage
device and layout information from the underlying file system as opaque data. The
pNFS server transfers the opaque data to the pNFS client and subsequently to a layout
driver, which can interpret and use the information for direct access to storage. A
callback exists to allow the underlying file system to initiate a layout recall. When a
pNFS client returns a layout, the pNFS server passes the opaque layout information
back to the underlying file system.

The pNFS server manages state information for all outstanding layouts. This
includes tracking granted and returned layouts as well as portions of layouts that have
been recalled.

Evaluation

This section analyzes the performance of our Linux pNFS prototype using the page
cache, O_DIRECT, and direct access methods with the PVFS2 and GPFS parallel file
systems.

Experimental setup

The first two experiments use the IOR micro-benchmark [22] to measure the
aggregate I/O throughput to a PVFS2 file system as we increase the number of clients.
The third set of experiments evaluates the data transfer performance between GPFS
and PVFS2 file systems using a single 10 Gbps client. All nodes run Linux 2.6.17.
1 Gbps Clients: Clients in Figures 3 and 4 are equipped with dual 1.3 GHz P3
processors, 2 GB memory, and an Intel Pro gigabit card.

Fig. 2. Aggregate I/O throughput experimental setup. Up to ten clients access six PVFS2
storage nodes. .With standard NFSv4, all clients perform I/O through an NFSv4 server
residing on a storage node. With pNFS, clients use a PVFS2 layout driver for direct and
parallel access to PVFS2 storage nodes.

pNFS and Linux: Working Towards a Heterogeneous Future 7

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct
O_DIRECT
PageCache
PageCache 4KB
NFSv4
NFSv4 O_DIRECT

(a) Write 200 MB

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct
O_DIRECT
PageCache
PageCache 4KB
NFSv4
NFSv4 O_DIRECT

(b) Write 4 GB

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Direct
O_DIRECT
PageCache
PageCache-4KB
NFSv4
NFSv4 O_DIRECT

(c) Read

Fig. 3. pNFS and NFSv4 aggregate I/O throughput to a PVFS2 file system. Aggregate I/O
throughput to six PVFS2 storage nodes using NFSv4 (with and without O_DIRECT) as well as
pNFS with the direct, O_DIRECT, and page cache access methods. pNFS scales with
additional clients, with the direct access method achieving the best performance. In addition,
performance remains the same across I/O request sizes. NFSv4 performance remains flat in all
experiments.

8 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

10 Gbps Client: The client in Figure 6 is equipped with dual 1.4 GHz Opteron
processors, 4 GB memory, and one Neterion 10 Gigabit card.
PVFS2 Configuration: The PVFS2 1.5.1 file system has six storage nodes, with one
storage node doubling as a metadata manager, and a 64 KB stripe size. Each node is
equipped with dual 1.7 GHz P4 processors, 2 GB memory, one Seagate 80 GB 7200
RPM hard drive with Ultra ATA/100 interface and 2 MB cache, and one 3Com
3C996B-T gigabit card.
GPFS Configuration: The GPFS file system has six I/O nodes attached to a
FibreChannel shared disk array. Each node is equipped with dual 1.3 GHz P3
processors, 2 GB memory, and an Intel Pro gigabit card.

Scalability and performance

Our initial experiments, shown in Figure 3, evaluate different ways of accessing
storage. We use the policy interface to perform a fine-grained performance analysis
of the Linux page cache and NFSv4 I/O subsystem while using the page cache,
O_DIRECT, and direct access methods. To provide a baseline, we also access storage
using NFSv4 with and without O_DIRECT. We use our pNFS prototype with a
PVFS2 file system and a PVFS2 layout driver. The PVFS2 blocksize is 4 MB and the
NFSv4 wsize and rsize are 64 KB.

In Figure 3a, clients write separate 200 MB files in 4 MB chunks. With six data
servers and a 200 MB file, the amount of data written to each disk is 200 MB / 6 = 33
MB. With a 33 MB file, the individual disk bandwidth is 22 MB/s, which gives the
PVFS2 file system a theoretical maximum write bandwidth of 132 MB/s.

NFSv4 write performance is flat, obtaining an aggregate throughput of 26 MB/s.
NFSv4 with O_DIRECT is also flat with a slight reduction in performance. The
direct access method has the greatest aggregate write throughput, obtaining over 100
MB/s with eight clients. The aggregate write throughput of pNFS clients using the
page cache is consistently 10 MB/s lower than pNFS clients using the direct method.
PageCache-4KB, which writes data in 4 KB chunks, has the same performance as
PageCache, which demonstrates the Linux pNFS client’s ability to gather small write
requests into larger and more efficient requests. O_DIRECT obtains an aggregate
write throughput between the direct and page cache access methods, but flattens out
as we increase the number of clients. The relative performance of the O_DIRECT
and the page cache access methods is consistent with the relative performance of
NFSv4 with and without O_DIRECT.

In Figure 3b, clients write separate 4 GB files in 4 MB chunks. With a 4 GB file,
the amount written to each disk is approximately 715 MB. With a 715 MB file, the
individual disk bandwidth is 32 MB/s, which gives the PVFS2 file system a
theoretical maximum write bandwidth of 192 MB/s.

 All results remain unchanged except for the direct access method, which
experiences a major performance increase. The direct access method single client
performance increases by over 20 MB/s, which rises even higher with two clients to
130 MB/s.

Why is the direct access method the only method to benefit from the increase in
individual disk bandwidth? The answer is a more effective use of disk bandwidth.

pNFS and Linux: Working Towards a Heterogeneous Future 9

NFSv4 fault tolerance semantics mandate that written data exist on stable storage
before it is evicted from the client cache. This policy results in numerous disk sync
operations while writing a large file. The direct access method sidesteps this
requirement and performs a single disk sync operation after all data has been sent to
the storage nodes. Many scientific applications can re-create lost data, allowing the
direct access method to provide a valuable performance boost.

In Figure 3c, clients read separate 200 MB files in 4 MB chunks. NFSv4 read
performance is flat, obtaining an aggregate throughput of 52 MB/s. The aggregate
read throughput of pNFS clients using the two methods that avoid the page cache is
the same as we increase the number of clients, nearly exhausting the available
network bandwidth of with ten clients. Working through the page cache reduces the
aggregate read throughput by up to 110 MB/s. Increasing the file size does not affect
performance since the disks do not need to perform sync operations after read
requests.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

4 MB
1 MB
64 KB
32 KB

(a) Write

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

4 MB
1 MB
64 KB
32 KB

(b) Read

Fig. 4. pNFS and I/O blocksize. pNFS aggregate I/O throughput to six PVFS2 storage nodes
using the pNFS page cache access method with four block sizes. The results are independent
of the application write and read request size since the requests are gathered together until they
match the block size.

10 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

Block size sensitivity

Our second set of experiments sets out to verify the performance sensitivity to
layout driver block size (I/O transfer size) when working through the Linux page
cache. We use our pNFS prototype with a PVFS2 file system and a PVFS2 layout
driver.

As shown in Figure 4, increasing the block size from 32 KB to 4 MB improves
aggregate I/O throughput, although this boost eventually hits a performance ceiling.
The request size is 4 MB, but results are independent of application request size since
the pNFS writeback cache gathers requests into the block size.

Fig. 5. Inter-file system data transfer experimental setup. A 10 Gbps client transfers data
between PVFS2 and GPFS file systems. Each file system has six storage nodes connected via
gigabit Ethernet.

0

10

20

30

40

50

60

70

80

GPFS → PVFS2
(w/ pagecache)

PVFS2 → GPFS
(w/ pagecache)

GPFS → PVFS2 PVFS2 → GPFS

Th
ro

ug
hp

ut
 (M

B
/s

)

pNFS Copy
bbcp Copy
NFSv4 Copy

Fig. 6. Inter-file system data transfer performance using pNFS, NFSv4, and bbcp. pNFS
outperforms NFSv4 and bbcp by using direct and parallel I/O with both GPFS and PVFS2.
NFSv4 performance is limited by its single server design. bbcp performance suffers because
it accesses a single GPFS I/O node.

pNFS and Linux: Working Towards a Heterogeneous Future 11

Inter-file system data transfer performance

Our last set of experiments evaluate cross-file system data transfer performance
using different types of layout drivers on a single client. As shown in Figure 5, we
use a single client with a 10 Gbps network card to transfer data between PVFS2 and
GPFS file systems, each with six storage nodes attached to a 1 Gbps network. We
compare the I/O throughput of using pNFS, NFSv4, and bbcp [23] to copy a 1 GB
file between PVFS2 and GPFS. We analyze the PVFS2 layout driver with both the
page cache and direct access methods. bbcp is a peer-to-peer data transfer program
similar to scp or rcp.

The pNFS experiment first mounts the PVFS2 file system using the PVFS2 layout
driver and mounts the GPFS file system using the NFSv4.1 file-based layout driver.
The dd command then copies data between the two mount points. Similarly, NFSv4
uses the dd command to copy data between the two NFSv4 mounted file systems.
The bbcp experiments do not use the file-based layout driver since bbcp can access
GPFS I/O nodes directly. Therefore, bbcp copies data from a single GPFS storage
node to the pNFS/PVFS2 mount point on the client. The dd command serializes the
transfer of data between file systems by buffering data on the client before writing it
to the target file system.

Figure 6 displays the file transfer experiments. The client/server design of NFSv4
limits access to a single server on each back end, achieving an inter-file system
transfer rate of 20 MB/s. bbcp reads and writes from/to a single GPFS node, but
accesses data in parallel from/to the PVFS2 file system. This partial use of parallel
I/O increases performance in all four experiments, although it is more efficient when
transferring data from GPFS to PVFS2. In addition, data transfer throughput
decreases slightly when using the page cache access method with PVFS2. pNFS uses
parallel I/O with both file systems, which doubles the I/O throughput when
transferring data from PVFS2 to GPFS and increases the I/O throughput from GPFS
to PVFS2 by 55%.

Related work

Unlike much recent work that focuses on improving the performance and
scalability of a single file system, e.g., Lustre [24], PVFS2 [12], GPFS-WAN [25, 26],
Google file system [27], Gfarm [28], and FARSITE [29], the goal of pNFS is to
enhance a single file access protocol to scale I/O throughput to a diversity of parallel
file systems.

GridFTP [7] is used extensively in the Grid to enable high throughput, operating
system independent, and secure WAN access to high-performance file systems.
Successful and popular, GridFTP nevertheless has some serious limitations: it copies
data instead of providing shared access to a single copy, complicating its consistency
model and decreasing storage capacity; lacks a global namespace; and is difficult to
integrate with the local file system.

The Storage Resource Broker (SRB) [30] aggregates storage resources, e.g., a file
system, an archival system, or a database, into a single data catalogue but does not

12 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

support parallel I/O to multiple storage endpoints and has difficulty integrating with
the local file system.

Several Linux pNFS layout drivers exist. A PVFS2 layout driver has existed since
2004 [8] and NFSv4.1 file-based layout drivers have been demonstrated with GPFS
[13], Lustre [24], and PVFS2 [12] Sun is developing file and object layout
implementations. Panasas object and EMC block drivers are also under development.

Network Appliance is using the Linux file-based layout driver to bind disparate
filers (NFS servers) into a single file system image. This continues previous work
that aggregates partitioned NFS servers into a single file system image [31-33].

Future work

Petascale computing requires inter-site data transfers involving clusters that may
have different operating systems and hardware platforms, incompatible or proprietary
file systems, or different storage and performance parameters that require differing
layouts. The Linux pNFS architecture with “pluggable” storage protocols offers a
solution.

Figure 7 shows two clusters separated by a long range, high-speed WAN. Each
cluster has the architecture described in Figure 1a and uses a storage protocol
supported by pNFS. (The management protocol is not shown.)

The application cluster is running an MPI application that wants to read a large
amount of data from the server cluster and perhaps write to its backend. The MPI
head node obtains the data location from the server cluster and distributes portions of
the data location information (via MPI) to other application cluster nodes, enabling
direct access to server cluster storage devices. The MPI application then reads data in

Fig. 7. pNFS and inter-cluster data transfers across the WAN. A pNFS cluster retrieves
data from a remote storage system, processes the data, and writes to its local storage system.
The MPI head node distributes layout information to pNFS clients.

pNFS and Linux: Working Towards a Heterogeneous Future 13

parallel from the server cluster across the WAN, processes the data, and directs output
to the application cluster backend.

A natural use case for this architecture is a visualization application processing the
results of a scientific MPI code run on the server cluster. Another use case is an MPI
application making a local copy of data from the server cluster on the application
cluster.

Conclusions

This paper describes and evaluates Linux pNFS, an integral part of NFSv4.1 that
enables direct client access to heterogeneous parallel file systems. Linux pNFS
features a pluggable client architecture that harnesses the potential of pNFS as a
universal and scalable metadata protocol by enabling dynamic support for layout
format, storage protocol, and file system policies.

Experiments with the Linux pNFS architecture demonstrate that using the page
cache inflicts an I/O performance penalty and that I/O performance is highly subject
to I/O transfer size. In addition, Linux pNFS can use bi-directional parallel I/O to
raise data transfer throughput between parallel file systems.

Acknowledgments

This material is based upon work supported by the Department of Energy under
Award Numbers DE-FG02-06ER25766 and B548853, Sandia National Labs under
contract B523296, and by grants from Network Appliance and IBM. We thank Lee
Ward, Gary Grider, James Nunez, Marc Eshel, Garth Goodson, Benny Halvey, and the
PVFS2 development team for their valuable insights and system support.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

14 Dean Hildebrand, Peter Honeyman, and Wm. A. (Andy) Adamson

References

[1] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Schlatter Ellis, and M. Best, "File-Access
Characteristics of Parallel Scientific Workloads," IEEE Transactions on Parallel and
Distributed Systems, 7(10):1075-1089, 1996.

[2] P.E. Crandall, R.A. Aydt, A.A. Chien, and D.A. Reed, "Input/Output Characteristics of
Scalable Parallel Applications," in Proceedings of Supercomputing '95, San Diego, CA,
1995.

[3] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E Long, and T.T. McLarty,
"File System Workload Analysis For Large Scale Scientific Computing Applications," in
Proceedings of the 21st IEEE/12th NASA Goddard Conference on Mass Storage Systems
and Technologies, College Park, MD, 2004.

[4] D. Strauss, "Linux Helps Bring Titanic to Life," Linux Journal, 46, 1998.
[5] B. Callaghan, B. Pawlowski, and P. Staubach, NFS Version 3 Protocol Specification.

RFC 1813, 1995.
[6] Common Internet File System File Access Protocol (CIFS),

msdn.microsoft.com/library/en-us/cifs/protocol/cifs.asp.
[7] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. Nefedova, D. Quesnal, and S. Tuecke., "Data Management and Transfer in High-
Performance Computational Grid Environments," Parallel Computing, 28(5):749-771,
2002.

[8] D. Hildebrand and P. Honeyman, "Exporting Storage Systems in a Scalable Manner with
pNFS," in Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass
Storage Systems and Technologies, Monterey, CA, 2005.

[9] S. Shepler, M. Eisler, and D. Noveck, NFSv4 Minor Version 1. Internet Draft, 2006.
[10] D.L. Black and S. Fridella, pNFS Block/Volume Layout. Internet Draft, 2006.
[11] B. Halevy, B. Welch, J. Zelenka, and T. Pisek, Object-based pNFS Operations. Internet

Draft, 2006.
[12] Parallel Virtual File System - Version 2, www.pvfs.org.
[13] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk File System for Large Computing

Clusters," in Proceedings of the USENIX Conference on File and Storage Technologies,
San Francisco, CA, 2002.

[14] Panasas Inc., "Panasas ActiveScale File System," www.panasas.com.
[15] EMC Celerra HighRoad Whitepaper, www.emc.com, 2001.
[16] R.O. Weber, SCSI Object-Based Storage Device Commands (OSD). Storage Networking

Industry Association. ANSI/INCITS 400-2004, www.t10.org, 2004.
[17] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner, Internet Small

Computer Systems Interface (iSCSI). RFC 3720, 2001.
[18] R. Srinivasan, RPC: Remote Procedure Call Protocol Specification Version 2. RFC 1831,

1995.
[19] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M.

Snir, MPI: The Complete Reference, volume 2--The MPI-2 Extensions. Cambridge, MA:
MIT Press, 1998.

[20] R. Thakur, W. Gropp, and E. Lusk, "Data Sieving and Collective I/O in ROMIO," in
Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computation,
1999.

[21] D. Hildebrand, L. Ward, and P. Honeyman, "Large Files, Small Writes, and pNFS," in
Proceedings of the 20th ACM International Conference on Supercomputing, Cairns,
Australia, 2006.

[22] IOR Benchmark, www.llnl.gov/asci/purple/benchmarks/limited/ior.
[23] bbcp. www.slac.stanford.edu/~abh/bbcp.

pNFS and Linux: Working Towards a Heterogeneous Future 15

[24] Cluster File Systems Inc., Lustre: A Scalable, High-Performance File System.
www.lustre.org, 2002.

[25] P. Andrews, C. Jordan, and W. Pfeiffer, "Marching Towards Nirvana: Configurations for
Very High Performance Parallel File Systems," in Proceedings of the HiperIO Workshop,
Barcelona, Spain, 2006.

[26] P. Andrews, C. Jordan, and H. Lederer, "Design, Implementation, and Production
Experiences of a Global Storage Grid," in Proceedings of the 23rd IEEE/14th NASA
Goddard Conference on Mass Storage Systems and Technologies, College Park, MD,
2006.

[27] S. Ghemawat, H. Gobioff, and S.T. Leung, "The Google File System," in Proceedings of
the 19th ACM Symposium on Operating Systems Principles, Bolton Landing, NY, 2003.

[28] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, "Grid Datafarm
Architecture for Petascale Data Intensive Computing," in Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid, Berlin,
Germany, 2002.

[29] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Douceur, J. Howell, J.R.
Lorch, M. Theimer, and R.P. Wattenhofer, "FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment," in Proceedings of the 5th
Symposium on Operating Systems Design and Implementation, Boston, MA, 2002.

[30] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC Storage Resource Broker," in
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research, Toronto, Canada, 1998.

[31] G.H. Kim, R.G. Minnich, and L. McVoy, "Bigfoot-NFS: A Parallel File-Striping NFS
Server (Extended Abstract)," 1994, www.bitmover.com/lm.

[32] F. Garcia-Carballeira, A. Calderon, J. Carretero, J. Fernandez, and J.M. Perez, "The
Design of the Expand File System," International Journal of High Performance
Computing Applications, 17(1):21-37, 2003.

[33] P. Lombard and Y. Denneulin, "nfsp: A Distributed NFS Server for Clusters of
Workstations," in Proceedings of the 16th International Parallel and Distributed
Processing Symposium, Fort Lauderdale, FL, 2002.

