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ABSTRACT 

Anticipating terascale and petascale HPC demands, NFSv4 architects are designing 
pNFS, a standard extension that provides direct storage access to high-performance 
file systems while preserving operating system and hardware platform independence.  
Researchers at the University of Michigan are collaborating with industry to develop 
pNFS for the Linux operating system.  This paper discusses the progress and direction 
of Linux pNFS. 
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Abstract 

Anticipating terascale and petascale HPC demands, 
NFSv4 architects are designing pNFS, a standard 
extension that provides direct storage access to high-
performance file systems while preserving operating 
system and hardware platform independence.  
Researchers at the University of Michigan are 
collaborating with industry to develop pNFS for the Linux 
operating system.  This paper discusses the progress and 
direction of Linux pNFS. 

1. Introduction 

Large research collaborations require global access to 
massive data stores.  Parallel file systems feature 
impressive throughput, but sacrifice heterogeneous 
access, seamless integration, security, and cross-site 
performance.  pNFS, an integral part of NFSv4.1, 
overcomes these enterprise and grand challenge-scale 
obstacles by enabling clients to access storage directly 
while preserving NFSv4 operating system and hardware 
platform independence.  pNFS distributes I/O across the 
bisectional bandwidth of the storage network between 
clients and storage devices, removing the single server 
bottleneck so vexing to client/server-based systems.  In 
combination, the elimination of the single server 
bottleneck and the ability for clients to access data 
directly from storage results in superior file access 
performance and scalability [1]. 

At the Center for Information Technology Integration 
at the University of Michigan, we are developing pNFS 
for the Linux operating system.  A pluggable client 
architecture harnesses the potential of pNFS as a 
universal and scalable metadata protocol by enabling 
dynamic support for file layout format, storage protocol, 
and file system policies.  In conjunction with several 
industry partners, a prototype is under development for 
support of file, block, object, and PVFS2 access methods.  
This paper discusses the progress and direction of Linux 
pNFS. 

2. pNFS overview 

pNFS is a heterogeneous metadata protocol.  The 
NFSv4.1 client and server perform control and file 
management operations and delegate the responsibility 
for I/O to a storage-specific driver.  By separating control 
and data flows, pNFS allows data to transfer in parallel 
from many clients to many storage endpoints.  
Distributing I/O across the bisectional bandwidth of the 
storage network between clients and storage devices 
removes the single server bottleneck. 

Figure 1 displays the general pNFS architecture.  The 
control path contains all NFSv4.1 operations and features.   

The data path can support any storage protocol, but the 
IETF design effort focuses on file, object, and block 
storage protocols.  Storage devices can be NFSv4.1 
servers, other distributed file systems, object storage, 
even block-addressable disks.  NFSv4.1 does not specify 
a management protocol, which may therefore be 
proprietary to the exported file system. 

Clients perform direct and parallel I/O by first 
requesting data location (layout) information from the 
pNFS server.  Clients then use the layout information in 
conjunction with the storage protocol to access data.  For 
example, the NFSv4.1 file storage protocol stripes files 
across NFSv4.1 data servers (storage devices); only 
READ, WRITE, and COMMIT operations are used on 
the data path. 

3. Pluggable storage protocol 

Although parallel file systems separate control and 
data flows, there is tight integration of their control and 
data protocols.  Users must adapt to different consistency 
and security semantics for each data repository.  Using 
pNFS as a universal metadata protocol lets applications 
realize a consistent set of file system semantics across 
data repositories.  Linux pNFS facilitates interoperability 
by providing a framework for the co-existence of the 
NFSv4.1 control protocol with all storage protocols.  This 
is a major departure from current file systems, which can  
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Figure 1.  pNFS architecture 
pNFS splits the NFSv4 protocol into a control 
path and a data path.  The NFSv4.1 protocol 
exists along the control path.  A storage 
protocol along the data path provides direct and 
parallel data access.  A management protocol 
binds metadata servers with storage devices. 
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Figure 2.  Linux pNFS architecture 

The NFSv4.1 (pNFS) client uses I/O and policy 
interfaces to access storage nodes and follow 
underlying file system polices.  The NFSv4.1 
server uses VFS export operations to exchange 
pNFS information with the underlying file 
system. 

 
only support a single storage protocol such as FCP or 
OSD [2, 3]. 

Figure 2 depicts the architecture of pNFS on Linux, 
which adds a layout and transport driver to the standard 
NFSv4 architecture.  The layout driver understands the 
file layout of the storage system.  A layout consists of all 
information required to access any byte range of a file.  
The layout driver uses the layout to translate read and 
write requests from the pNFS client into I/O requests 
understood by the storage devices.  The transport driver 
performs I/O—e.g., iSCSI [4], Portals [5], SunRPC [6]—
to the storage nodes. 

Layout drivers are pluggable, using a standard set of 
interfaces for all storage protocols.  An I/O interface 
facilitates the management of layout information and 
performing I/O with storage.  A policy interface informs 
the pNFS client of file system and storage system specific 
policies.  Example policies include the file system stripe 
and block size and when to retrieve layout information.  
An additional policy sets an I/O request size threshold 
that improves performance under certain workloads [7].   

The policy interface also enables layout drivers to 
specify if it will use NFSv4.1 data management services 
or use customized implementations.  The following is a 
list of services available to layout drivers: 
• Data cache 
• Writeback cache with write gathering 
• Readahead and read gathering algorithms 

These policies can be set for each layout driver or 
acquired via the NFS server. 

4. Evaluation 

Our initial experiments evaluate different ways of 
accessing storage.  We use our pNFS prototype with a 
PVFS2 file system and a PVFS2 layout driver.  Native 
PVFS2 clients lack a data cache, providing high 
bandwidth data transfers with minimal overhead.  With 
pNFS and the layout driver policy interface, the PVFS2 
layout driver has the option of using the Linux (NFSv4.1) 
page cache.  The flexibility of the policy interface 
facilitates fine-grained performance analysis of the data 
cache and NFSv4.1 I/O request processing.  We plan 
further experiments that evaluate cross-file system 
transfer performance using different types of layout 
drivers on a single client. 

The current Linux pNFS client prototype can access 
data through the Linux page cache, using O_DIRECT, or 
directly by bypassing the Linux page cache and all 
NFSv4 I/O request processing (direct access method).  
When using the Linux page cache, I/O requests are 
gathered or split into block sized requests before being 
sent to storage, with requested data cached on the client.  
Accessing data with O_DIRECT is similar, except data 
does not pass through the Linux page cache.  When 
accessing data directly, I/O requests bypass the Linux 
page cache and NFS subsystem and are given directly to 
the layout driver.  The first two data access methods are 
currently supported by the Linux NFS implementation.  
The direct method is the default behavior of some high-
performance file systems, e.g., PVFS2. 
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 a. Write  b. Read 

Figure 3.  Aggregate I/O throughput to six PVFS2 storage nodes using the pNFS direct, O_DIRECT, 
and page cache access methods and the standard NFSv4 and NFSv4 with O_DIRECT access methods.

 
 a. Write  b. Read 

Figure 4.  pNFS/PVFS2 aggregate I/O throughput to six PVFS2 storage nodes using the pNFS page 
cache access method with four block sizes.  

 
4.1. Main results 

Our first set of experiments, shown in Figure 3, 
demonstrates the relative performance of each of the 
above pNFS access methods and standard NFSv4 with 
and without O_DIRECT.  Clients write and read separate 
200 MB files in 4 MB chunks.  With six data servers, the 
available disk write bandwidth is 6 x 20 MB/s = 120 
MB/s.  The wsize and rsize is 4 MB for pNFS and 64 
KB for NFSv4. 

NFSv4 write performance is flat, obtaining an 
aggregate throughput of 26 MB/s.  NFSv4 with 
O_DIRECT is also fat with a slight reduction in 
performance.  The direct access method has the greatest 
aggregate write throughput, obtaining over 100 MB/s 
with eight clients.  The aggregate write throughput of 

pNFS clients using the page cache is consistently 10 
MB/s lower than pNFS clients using the direct method.  
The PageCache 4KB access method, which writes data in 
4 KB chunks, obtains the same performance as 
PageCache demonstrating the Linux pNFS client’s ability 
to gather small requests into larger and more efficient 
requests.  O_DIRECT obtains an aggregate write 
throughput between the direct and page cache access 
methods, but flattens out as the number of clients 
increases.  The relative performance of the O_DIRECT 
and the page cache access methods is consistent with the 
relative performance of NFSv4 and NFSv4 with 
O_DIRECT. 

NFSv4 read performance is flat, obtaining an 
aggregate throughput of 52 MB/s.  The aggregate read 
throughput of pNFS clients using the two methods that 
avoid the page cache is the same as we increase the 
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number of clients, nearly exhausting the available 
network bandwidth with ten clients.  Working through the 
page cache reduces the aggregate read throughput by up 
to 110 MB/s. 

Our second set of experiments sets out to verify the 
performance sensitivity to layout driver block size (I/O 
request size) when working through the Linux page 
cache.  As shown in Figure 4, increasing the block size 
from 32 KB to 4 MB improves aggregate I/O throughput, 
although this boost eventually hits a performance ceiling. 

5. Future Directions 

Petascale computing requires inter-site data transfers 
involving clusters that may have different operating 
systems and hardware platforms, incompatible or 
proprietary file systems, or different storage and 
performance parameters that require differing data 
layouts.  pNFS offers a solution. 

Figure 5 shows two clusters separated by a long range, 
high-speed WAN.  Each cluster has the architecture 
described in Figure 1 and can use a different storage 
protocol as long as the pNFS client implements the 
appropriate pluggable storage protocol.  (The 
management protocol is not shown.) 

The application cluster is running an MPI application 
that wants to read a large amount of data from the server 
cluster and perhaps write to its backend.  The MPI head 
node obtains the data location from the server cluster and 
distributes portions of the data location information (via 
MPI) to other application cluster nodes, enabling direct 
access to server cluster storage devices.  The MPI 
application then reads data in parallel from the server 
cluster across the WAN, processes the data, and directs 
output to the application cluster backend. 

A natural use case for this architecture is a 
visualization application processing the results of a 
scientific MPI code run on the server cluster.  Another use 
case is an MPI application making a local copy of data 
from the server cluster on the application cluster. 

pNFS not only bridges the gap between proprietary 
cluster file systems, it also opens cluster file systems to 
data access from enterprise desktop distributed file 
systems using common security, file naming, and file 
ACLs as the basis for data management. 
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Figure 5.  pNFS and inter-cluster data 

transfers across the WAN 
A pNFS cluster retrieves data from a remote 
storage system, processes the data, and writes 
to its local storage system.  The MPI head node 
distributes layout information to pNFS clients. 
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