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ABSTRACT 

Workload characterization studies highlight the prevalence of small and sequential data requests in 
scientific applications.  Parallel file systems excel at large data transfers but sometimes at the 
expense of small I/O performance.  pNFS is an NFSv4.1 high-performance enhancement that 
provides direct storage access to parallel file systems while preserving NFSv4 operating system and 
hardware platform independence.  This paper demonstrates that distributed file systems can 
increase write throughput to parallel data stores—regardless of file size—by overcoming parallel 
file system inefficiencies.  We also show how pNFS can improve the overall write performance of 
parallel file systems by using direct, parallel I/O for large write requests and a distributed file 
system for small write requests.  We describe our pNFS prototype and present experiments 
demonstrating the performance improvements. 
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ABSTRACT 
Workload characterization studies highlight the prevalence of 
small and sequential data requests in scientific applications.  
Parallel file systems excel at large data transfers but sometimes at 
the expense of small I/O performance.  pNFS is an NFSv4.1 high-
performance enhancement that provides direct storage access to 
parallel file systems while preserving NFSv4 operating system 
and hardware platform independence.  This paper demonstrates 
that distributed file systems can increase write throughput to 
parallel data stores—regardless of file size—by overcoming 
parallel file system inefficiencies.  We also show how pNFS can 
improve the overall write performance of parallel file systems by 
using direct, parallel I/O for large write requests and a distributed 
file system for small write requests.  We describe our pNFS 
prototype and present experiments demonstrating the performance 
improvements. 

Categories and Subject Descriptors 
D.4.8 [Operating Systems]: Performance – measurements. 

General Terms 
Algorithms, Performance, Design, Experimentation, 
Standardization 

Keywords 
Parallel I/O, Parallel File System, NFSv4, pNFS, Distributed File 
System, Small Write Performance Improvement 

1. INTRODUCTION 
In recent years, parallel file systems have emerged to meet 
enterprise and grand challenge-scale data and performance 
requirements [1-4].  These systems are shattering bandwidth 
records through large bulk data transfers between thousands of 
nodes and disks, but overlook the performance of small I/O 
requests, both to small and large files. 

Parallel file systems improve the aggregate throughput of bulk 
data transfers by scaling disks, disk controllers, network, and 
servers—every aspect of the system architecture.  As system size 
increases, the cost of locating, managing, and protecting data 
increases the per-request overhead.  This overhead is small 
relative to the overall cost of large data transfers, but considerable 

for smaller data requests.  Many parallel file systems ignore this 
high penalty for small I/O, focusing entirely on large data 
transfers. 

Unfortunately, not all data comes in big packages.  Numerous 
workload characterization studies have highlighted the prevalence 
of small and sequential data requests in modern scientific 
applications [5-11].  This trend will likely continue since many 
HPC applications take years to develop, have a productive 
lifespan of ten years or more, and are not easily re-architected for 
the latest file access paradigm [12].  Furthermore, many current 
data access libraries such as HDF5 and netCDF rely heavily on 
small data accesses to store individual data elements in a common 
(large) file [13, 14]. 

Distributed file systems are optimized for small data accesses [15, 
16]; not surprisingly, studies demonstrate that small I/O is their 
middleware niche [17].  However, their “single server” design, 
which binds one network endpoint to a given collection of files, 
limits opportunities to scale with network, CPU, memory, and 
disk I/O resources.  NFSv4 [18] improves functionality by 
providing integrated security and locking frameworks, and 
migration and replication features, but retains the single server 
bottleneck.  

pNFS [19, 20] is an extension of NFSv4 that provides file access 
scalability plus operating system, hardware platform, and storage 
system independence.  pNFS overcomes the performance 
bottlenecks of NFS with parallel file systems by enabling the 
NFSv4 client to access storage directly.  Our earlier work [21] 
demonstrates that pNFS matches the performance of the native 
parallel file system client for large data transfers. 

This paper investigates the performance of parallel file systems 
with small writes.  We demonstrate that distributed file systems 
can increase write throughput to parallel data stores—regardless 
of file size—by overcoming parallel file system small write 
inefficiencies.  We then use pNFS to improve the overall write 
performance of parallel file systems by using direct, parallel I/O 
for large write requests and a distributed file system for small 
write requests.  The pNFS heterogeneous metadata protocol 
allows any parallel file system to realize these write performance 
improvements. 

The remainder of this paper is organized as follows.  Section 2 
discusses related work.  Section 3 gives an overview pNFS and 
discusses the prototype used in this paper.  Section 4 details the 
issues with writing small amounts of data in scientific 
applications.  Section 5 describes how pNFS can improve these 
applications.  Section 6 reports the results of our experiments with 
benchmarks and a real scientific application.  Section 7 discusses 
future work.  Section 8 summarizes and concludes the paper. 
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Figure 1.  pNFS  architecture 

pNFS extends NFSv4 by adding a layout driver, an I/O 
driver, and a file layout retrieval interface.  The pNFS server 
obtains an opaque file layout map from the storage system 
and transfers it to the pNFS client and subsequently to its 
layout driver for direct and parallel data access.   
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Figure 2.  pNFS prototype architecture  

The pNFS client uses the PVFS2 layout driver for all I/O.  
The pNFS server obtains the file layout from the PVFS2 
metadata server via the PVFS2 client, transfers it back to the 
pNFS client, then to the PVFS2 layout driver for direct and 
parallel data access. 

2. RELATED WORK 
Log-structured file systems [22] increase the size of writes by 
appending small I/O requests to a log and then flushing the log to 
disk.  Zebra [23] extends this to distributed environments.  Side 
effects include large file layouts and erratic block sizes. 

The Vesta parallel file system [24] improves I/O performance by  
optimizing data layout on storage through application provided 
workload characteristic information.  Providing this information 
can be difficult for applications that lack regular I/O patterns or 
whose I/O access patterns change over time. 

Both EMC’s Celerra HighRoad file system [25] and the RAID-II 
network file server [26] transfer small files over the LAN to 
preserve SAN bandwidth for large file requests, but differentiating 
small and large files does not help with small requests to large 
files.  This re-direction benefits only large requests, and may 
reduce the performance of small requests. 

GPFS [3] forwards data between I/O nodes for requests smaller 
than the block size.  This reduces the number of messages with 
the lock manager and possibly reduces the number of read-
modify-write sequences. 

Both the Lustre [1] and the Panasas ActiveScale [4] file systems 
use a write-behind cache to perform buffered writes.  In addition, 
Lustre allows clients to place small files on a single storage node 
to reduce access overhead.   

All of these parallel file systems focus primarily on large data 
transfers, with any small data transfer enhancements an 
afterthought.  pNFS provides an operating system and platform 
independent architecture with a rich set of existing features that 
allows parallel file systems to focus on their core strengths. 

The MPI-2 standard [27] introduces MPI-IO, a parallel I/O 
interface that allows applications and their file format libraries, 
e.g., HDF5, parallel NetCDF, to provide the storage layer with a 
more precise and global view of application I/O.  Implementations 
of MPI-IO such as ROMIO [28] use application hints and file 
access patterns to improve single and parallel I/O request 
performance. 

We see our work as beneficial and complementary to MPI-IO and 
its implementations.  MPI-IO benefits applications that use its API 
and have regular I/O access patterns, e.g., strided I/O.  In addition, 
MPI-IO small write performance continues to be limited by the 
deficiencies of the underlying parallel file system.  Our pNFS 
enhancements are beneficial for existing and unmodified 
applications.  They are also beneficial at the file system layer of 
MPI-IO implementations, to improve the performance of the 
underlying parallel file system. 

3. SCALABLE I/O WITH PNFS 
This section summarizes the pNFS architecture, described in more 
detail in an earlier paper [21].   

3.1. pNFS Overview 
pNFS is a heterogeneous metadata protocol.  The NFS client and 
server perform control and file management operations and 
delegate the responsibility for I/O to a storage-specific driver.  By 
separating control and data flows, pNFS allows data to transfer in 
parallel from many clients to many storage endpoints.  
Distributing I/O across the bisectional bandwidth of the storage 
network between clients and storage devices removes the single 
server bottleneck.  

Figure 1 depicts the architecture of pNFS, which adds a layout 
driver, an I/O driver, and a file layout retrieval interface to the 
standard NFSv4 architecture. 

The layout driver understands the file layout of the storage 
system.  A layout consists of all information required to access 
any byte range of a file.  The layout driver uses the layout to 
translate read and write requests from the pNFS client into I/O 
requests understood by the storage devices.  The I/O driver 
performs I/O—e.g., iSCSI [29], Portals [30], SunRPC [31]—to 
the storage nodes.   

A benefit of pNFS is its ability to match the performance of the 
underlying storage system’s native client while continuing to 
support all standard NFSv4 features.  This support is ensured by 
introducing pNFS extensions into a “minor version,” an extension 
mechanism that is part of the NFSv4 standard.  In addition, pNFS  



 
Figure 3.  pNFS data paths 

pNFS utilizes NFSv4 I/O along the small write path when 
the write request size is less than the write threshold. 
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Figure 4.  Updated pNFS prototype architecture with 
write threshold 
pNFS retrieves the write threshold from PVFS2 layout 
driver to determine the correct data path for a write request. 

does not impose restrictions that might limit the underlying file 
system’s ability to provide quality-enhancing features such as 
usage statistics or storage management interfaces. 

3.2. pNFS Prototype 
In an earlier paper [21], we describe a pNFS prototype for Linux, 
depicted in Figure 2, that implements the major features of the 
pNFS protocol and introduces a general framework for pluggable 
layout drivers.  The I/O throughput of that prototype equals that of 
its exported file system (PVFS2) and is dramatically better than 
standard NFSv4. 

PVFS2 is a user-level, open-source, scalable, asymmetric parallel 
file system designed as a research tool and for production 
environments.  Although PVFS2 runs in user-space, an operating 
system specific kernel module allows integration into a user’s 
environment and access by other file systems such as NFS.  This 
lets users mount and access PVFS2 through a POSIX interface.  
The PVFS2 client uses memory mapping to avoid copying pages 
into the kernel.   

PVFS2 is designed for the large data needs of scientific 
applications.  These applications access very large files and are 
generally “write once, read never”—re-reading output is rare.  As 
such, PVFS2 uses large transfer buffers, supports limited request 
parallelization, incurs a per-request overhead, and does not use a 
client data or write back cache. 

4. SMALL I/O REQUESTS 
Several scientific workload characterization studies demonstrate 
the need to improve performance of small I/O requests to small 
and large files.   

The CHARISMA study [5-7] finds that file sizes in scientific 
workloads are much larger than those typically found in UNIX 
workstation environments and that most applications access only a 
few files.  Approximately 90% of file accesses are small—less 
than 4 KB—and represent a considerable portion of application 
execution time, even though approximately 90% of the data is 
transferred in large accesses.  In addition, most files are read-only 
or write-only and are accessed sequentially, but some read-write 
files are accessed randomly. 

The Scalable I/O study [8-10] had similar findings, but remarked 
that most requests are small writes into GB sized files, consuming 
98% of the execution time of one application.  Furthermore, it is 
common for a single node to handle the majority of reads and 
writes, gathering the data from, or broadcasting the data to the 
other nodes as necessary.  This indicates that single node 
performance still requires attention from parallel file systems.  
The study also notes that a lack of portability prevents 
applications from using enhanced parallel file system interfaces. 

A more recent study in 2004 of two physics applications [11] 
amplifies the earlier findings. 

NetCDF (Network Common Data Form) provides a portable and 
efficient mechanism for sharing data between scientists and 
applications [13].  NetCDF defines a file format and an API for 
the storage and retrieval of a file’s contents.  It is the predominant 
file format standard within many scientific communities [32].  
NetCDF stores data in a single array-oriented file, which contains 
dimensions, variables, and attributes.  Applications individually 
define and write thousands of data elements, creating many 
sequential and small write requests. 

HDF5 is another popular portable file format and programming 
interface for storing scientific data in a single file.  It provides a 
richer data model, with emphasis on efficiency of access, parallel 
I/O, and support for high-performance computing, but continues 
to define and store each data element separately, creating many 
small write requests. 

This paper demonstrates how pNFS can improve small write 
performance with parallel file systems for small and large files, 
regardless of whether an application or file format library 
generates the write requests. 

5. SMALL WRITES AND pNFS 
pNFS improves file access scalability by providing the NFSv4 
client with support for direct storage access.  We now turn to an 
investigation of the relative costs of the direct I/O path and the 
NFSv4 path. 



5.1. File System I/O Features 
A single large I/O request can saturate a client’s network 
endpoint.  Engineering a parallel file system for large requests 
entails the use of large transfer buffers, limited number of 
asynchronous requests, many storage nodes, and a write-through 
cache (if a cache even exists). 

NFS implementations have several features that allow them to 
compete with the direct write path: 

• Asynchronous client requests.  Many parallel file systems 
incur a per-request overhead that is non-negligible for small 
requests.  NFSv4 clients can hand small requests to the 
NFSv4 server, allowing the server to absorb this overhead 
without delaying the client application or consuming client 
CPU cycles.  In addition, asynchrony allows request 
pipelining on the NFSv4 server, reducing aggregate latency 
to the storage nodes. 

• One server per request.  Data written to a byte-range that 
spans multiple storage nodes (e.g., multiple stripes) requires 
two separate requests, further increasing the per-request 
overhead.  The NFSv4 single server design can reduce client 
request overhead for small requests in these instances. 

• SunRPC.  NFSv4 uses SunRPC, a low-overhead and low-
latency network protocol, well suited for small data transfers. 

• Client writeback cache.  NFSv4 increases the efficiency of 
small write requests by gathering sequential writes requests 
into a single request. 

• Server write gathering.  The NFSv4 server combines 
sequential write requests into a single request to the exported 
parallel file system.  This can be useful, e.g., for applications 
performing strided access into a single file. 

5.2. Small Write Performance Example: 
Postmark Benchmark 

To observe a parallel file system’s performance loss in a real-
world environment, we ran the Postmark benchmark with our 
pNFS prototype, standard NFSv4, and Ext3.  Postmark simulates 
metadata and small I/O intensive applications such as electronic 
mail, netnews, and web based services [33].  Postmark creates and 
performs transactions on a large number of small randomly sized 
files (between 1 KB and 500 KB).  Each transaction first deletes, 
creates, or opens a file, and then appends 1 KB.  Data is sent to 
stable storage before the file is closed.  Postmark performs 2,000 
transactions on 100 files.  The experiments use eight 1.7 GHz dual 
P4 processors with gigabit Ethernet.  PVFS2 has six storage nodes 
and one metadata server. 

Table 1 shows the Postmark results for Ext3, NFSv4, and pNFS.  
Ext3 outperforms remote clients, achieving a write throughput of 
5.02 MB/s.  NFSv4 achieves a write throughput of 4.03 MB/s.  
pNFS exporting the PVFS2 parallel file system performs poorly, 
achieving a write throughput of only 0.65 MB/s.  This is due to 
the inability of PVFS2 to parallelize requests effectively and its 
use of a write-through cache.  Using the features discussed in 
Section 5.1, NFSv4 raises the write throughput to PVFS2 up to 
2.4 MB/s.  This demonstrates that the parallel, direct I/O path is 
not always the best choice and the indirect path is not always the 
worst choice. 

 

Table 1: Postmark write throughput with 1 KB block 
size.  NFSv4 outperforms direct, parallel I/O for small 
writes. 

File System Write Throughput (MB/s) 
Ext3 5.02 

NFSv4/Ext3 4.03 
pNFS/PVFS2  0.65 
NFSv4/PVFS2 2.44 

 

 
Figure 5.  Determining the write threshold value 

Write execution time increases with larger request sizes.  
Application write requests are either small or large, with few 
requests in the middle.  The write threshold can be any value 
in this middle region. 

5.3. pNFS Write Threshold 
To use the indirect I/O path for small writes, we modified our 
pNFS client prototype to allow it to use the NFSv4 I/O protocol as 
well as the I/O protocol of the underlying file system.  To switch 
between them, we added a write threshold to the layout driver.  
Write requests smaller than the threshold follow the slower 
NFSv4 data path.  Write requests larger than the threshold follow 
the faster layout driver data path.  Figures 3 and 4 illustrate the 
implementation of the write threshold in both the general pNFS 
architecture and in our prototype.   

pNFS features a heterogeneous metadata protocol that enables it 
to benefit from the strengths of disparate I/O protocols.  A write 
threshold improves overall write performance for pNFS by hitting 
the sweet spot of both the NFSv4 and underlying file system I/O 
protocols. 

Just as any improvement to NFSv4 improves access to the file 
system it exports, our improvements to pNFS are portable and 
benefit all parallel file systems equally.  We therefore see our 
improvements as allowing pNFS (and its exported parallel file 
systems) to concentrate on large data requirements, while native 
NFSv4 efficiently processes small I/O. 

5.4. Setting the Write Threshold 
The big advantage of a write threshold is that applications that 
mix small and large write requests get the “best” I/O path 
automatically. 



 
Figure 6.  Single client consecutive write throughput 

Write throughput of a single client issuing consecutive small 
write requests.  NFSv4 exporting PVFS2 outperforms pNFS 
until a write size of 64 KB.  pNFS with a 32 KB write 
threshold achieves the best overall performance.  Data 
points are a power of two; lines are for readability. 

 
Figure 7.  Multiple client consecutive write 

throughput 
Aggregate write throughput of a ten clients issuing 
consecutive small write requests to a single file.  NFSv4 
exporting PVFS2 outperforms pNFS until a write size of 8 
KB.  pNFS with a 4 KB write threshold achieves the best 
overall performance. 

 
Figure 8.  Single client random write throughput 

Write throughput of a single client issuing random small 
write requests.  NFSv4 exporting PVFS2 outperforms pNFS 
until a write size of 128 KB.  pNFS with a 64 KB write 
threshold achieves the best overall performance. 

The optimal write threshold value depends on several factors, 
including server capacity, network performance and capability, 
and the utilized distributed and parallel file systems.  One way to 
choose a good threshold value is to compare execution times for 
distributed and parallel file systems with various write sizes and 
see where the curves cross.  However, the optimal threshold is 
sensitive to system load. 

Figure 5 displays write request execution time with increasing 
request size for a parallel file system and for an idle and busy 
distributed file system.  When the distributed file system is lightly 
loaded, the transfer size at which the parallel file system 
outperforms the distributed file system, labeled B, is the optimal 
write threshold.  When the distributed file system is heavily 
loaded, each request takes longer to complete, so the slope 
increases and intersects the parallel file system at the smaller 
threshold size, labeled A.  (If the distributed file system is 

thoroughly overloaded, the threshold value tends to zero, i.e., 
never use a distributed file system so heavily loaded.) 

The workload characterization studies mentioned in Section 4 
state that scientific applications usually have a large gap between 
small and large write request sizes, with very few requests in the 
middle.  Our experiments reveal that small requests are smaller 
than the “busy” write threshold value and the large requests are 
larger than the “idle” write threshold values, i.e., applications will 
reap large gains for any write threshold value between A and B.  
For example, the ATLAS digitization application (Section 6.3) 
achieves the same performance with any write threshold between 
32 KB and 274 KB.  In addition, 87 percent of the write requests 
are smaller than 4 KB, which suggests that we could make the 
threshold even smaller without hurting performance. 

The write threshold can be set at any time, including compile 
time, when a module loads, and run time.  For example, system 
administrators can determine the write threshold as part of a file 
system and network installation and optimization.  A natural value 
for the write threshold is the write gather size of the distributed 
file system.   

6. EVALUATION 
In this section, we evaluate the performance of our pNFS 
prototype with the write threshold heuristic. 

6.1.  Experimental Setup 
Our IOR and random write IOZone experiments use a pair of 
sixteen node clusters connected with Myrinet.  One cluster 
consists of 1.1 GHz dual-processor PIII Xeon nodes while the 
other consists of 1 GHz dual-processor PIII Xeon nodes.  Each 
node has 1 GB of memory.  The PVFS2 1.1.0 file system has 
eight storage nodes and one metadata server.  Each storage node 
has an Ultra160 SCSI disk controller and one Seagate Cheetah 18 
GB, 10,033 RPM drive, which has an average seek time of 5.2 
ms.  The NFSv4 server, PVFS2 client its exports, and the PVFS2 
metadata server are installed on a single node.  All nodes run 
Linux 2.6.12-rc4. 



 
 a. Percentage of total number of requests  b. Percentage of total amount of data output 

Figure 9.  ATLAS digitization write request size distribution with 500 events 

Our ATLAS experiments use an eight node cluster of 1.7 GHz 
dual P4 processors, 2 GB of memory, a Seagate 80 GB 7200 RPM 
hard drive with an Ultra ATA/100 interface and a 2 MB cache, 
and a 3Com 3C996B-T gigabit card.  The PVFS2 1.1.0 file system 
has six storage nodes and one metadata server.  The NFSv4 
server, PVFS2 client it exports, and the PVFS2 metadata server 
are installed on a single node.  All nodes run Linux 2.6.12-rc4. 

6.2. IOR and IOZone Benchmarks 
6.2.1. Experimental Design 
The first experiment consists of a single client issuing one 
thousand sequential write requests to a file, using the IOR 
benchmark [34].  A test completes when data is committed to 
disk.  We repeat this experiment with ten clients writing to 
disjoint portions of a single file.  The second experiment consists 
of a single client randomly writing a 32 MB file using IOZone 
[35]. 

For each experiment, we first compare the aggregate write 
throughput of pNFS and NFSv4 with a range of individual request 
sizes.  We then set the write threshold to be the request size at 
which pNFS and NFSv4 have the same performance, and re-
execute the benchmark. 

6.2.2. Experimental Evaluation 
Our first experiment, shown in Figure 6, examines single client 
performance.  NFSv4 writes to PVFS2 or Ext3 perform 
comparably because the NFSv4 write size of 32 KB is less than 
the PVFS2 stripe size of 64 KB, so writes are restricted to a single 
disk. 

The performance of a single pNFS client writing through the 
NFSv4 server to PVFS2 outperforms writing directly to PVFS2 
until the request size reaches 64 KB.  For 16-byte writes, NFSv4 
has sixty-seven times the throughput, with the ratio decreasing to 
one at 64 KB.  The maximum throughput difference of 10.2 MB/s 
occurs at 4 KB.  Write performance through the NFSv4 server 
reaches its peak at 32 KB, the NFSv4 client request size.  At 64 
KB, direct storage access begins to outperform indirect access.  
pNFS with a write threshold of 32 KB offers the performance 

benefits of both I/O protocols by using NFSv4 I/O until 32 KB, 
then switching to direct storage access with the PVFS2 I/O 
protocol. 

Figure 7 shows the results of ten nodes writing to disjoint 
segments of the same file.  Ext3 performance is limited by random 
requests from the NFSv4 server daemons.  Using NFSv4 I/O to 
access PVFS2 does not incur as many random accesses since the 
writes are spread over eight disks. 

PVFS2 exhibits linear scaling as it spreads its requests across all 
eight storage nodes.  The aggregate performance of NFSv4 is the 
same as with a single client, with the write performance crossover 
point between pNFS and NFSv4 occurring at 4 KB.  With 16-byte 
writes, NFSv4 has twenty times the bandwidth, with the ratio 
decreasing to one at just below 8 KB.  The maximum bandwidth 
difference of 9 MB/s occurs at 1 KB.  At 8 KB, direct storage 
access begins to outperform indirect access.  pNFS with a write 
threshold of 4 KB offers the performance benefits of both I/O 
protocols. 

Figure 8 shows the performance of randomly writing a 32 MB file 
with a range of request sizes.  NFSv4 outperforms pNFS until the 
individual write size reaches 128 KB, with a maximum difference 
of 13 MB/s occurring at 16 KB.  pNFS using a write threshold of 
64 KB again experiences the performance benefits of both I/O 
protocols. 

6.3. ATLAS Applications 
Not every application generates the small write behavior 
discussed in Section 4.  For example, large writes dominate the 
FLASH I/O benchmark workload [36], with 99.7 percent of 
requests greater than 163 KB (with default input parameters).  
However, in addition to the workload characterization studies, 
there is increasing anecdotal evidence to suggest that small write 
behavior is quite common. 

One application that exhibits small write behavior is the ATLAS 
simulator.  ATLAS [37] is a particle physics experiment that 
seeks new discoveries in head on collisions of high-energy 
protons using the Large Hadron Collider accelerator [38].  
Beginning in 2007, ATLAS will generate approximately a  



 
Figure 10.  ATLAS digitization write throughput for 50 
and 500 events 
pNFS with a 32 KB write threshold achieves the best overall 
performance by directing small requests through the NFSv4 
server and the 275 KB and 1MB requests to the PVFS2 
storage nodes.  

petabyte of data each year.  This data will be distributed for 
analysis to a multi-tiered collection of decentralized sites. 

Currently, ATLAS is performing large-scale simulation of the 
events that will occur within its detector.  These simulation efforts 
influence detector design and the development of real-time event 
filtering algorithms for reducing the amount of data.  The ATLAS 
detector can detect one billion events with a combined data 
volume of forty terabytes each second.  After filtering, data from 
fewer than one hundred events per second are stored for offline 
analysis. 

The ATLAS simulation event data model consists of four stages.  
The Event Generation stage produces pseudo-random 
events drawn from a statistical distribution of previous 
experiments.  The Simulation stage then simulates the passage 
of particles (events) through the detectors.  The Digitization 
stage combines hit information with estimates of internal noise, 
subjecting the hits to a parameterization of the known response of 
the detectors to produce simulated digital output (digits).  The 
Reconstruction stage performs pattern recognition and track 
reconstruction algorithms on the digits, converting raw digital 
data into meaningful physics quantities. 

6.3.1. Experimental Design 
This paper focuses on the Digitization stage, which is the 
only stage that generates a large amount of data.  With 500 events, 
Digitization produces approximately 650 MB of output data 
to a single file.  Data is written randomly with write request size 
distributions shown in Figure 9.  Figure 9a shows that only 4 
percent of write request sizes are 275 KB or greater, with the rest 
below 32 KB.  Figure 9b shows that 96 percent of write requests 
only write 5 percent of the data, with 95 percent of data written in 
requests greater than 275 KB.  This distribution of write request 
size and total amount of data output closely matches the workload 
characterization studies discussed in Section 4.  Analysis of the 
Digitization write request distribution with varying numbers 
of events indicates that the distribution in Figure 9 is a 
representative sample.  

An analysis of the Digitization trace data found a large 
number of fsync system calls.  For example, executing 
Digitization with 50 events produced more than 900 
synchronous fsync calls.  Synchronously committing data to 
storage reduces request parallelism and the effectiveness of write 
gathering. 

ATLAS developers inform us that the overwhelming use of fsync 
is an implementation issue rather than an application necessity.  
Therefore, to evaluate Digitization write throughput we 
used IOZone to replay the write trace data without the fsync calls 
for 50 and 500 events. 

6.3.2. Experimental Evaluation 
To evaluate pNFS with the ATLAS simulator, we analyzed the 
Digitization write throughput with several write threshold 
values. 

We initially used the IOZone benchmark to determine the 
maximum PVFS2 write throughput.  The maximum write 
throughput for a single-threaded application and an entire client is 
18 MB/s and 54 MB/s respectively.  The single threaded 
application maximum performance value sets the upper limit for 
ATLAS write throughput.  Increasing the number of threads 
simultaneously writing to storage increases the maximum write 
throughput three-fold.  Since ATLAS Digitization is a 
single threaded application generating output for serialized events, 
it cannot directly take advantage of this extra performance. 

As shown in Figure 10, pNFS achieves a write throughput of 11.3 
MB/s and 11.9 MB/s with 50 and 500 events respectively.  The 
small write requests reduce the application’s optimal write 
throughput by approximately 6 MB/s. 

With a write threshold of 1 KB, 49 percent of requests are re-
directed to the NFSv4 server, increasing performance by 23 
percent.  With a write threshold of 32 KB, 96 percent of write 
requests use the NFSv4 I/O path.  With 50 events, the increase in 
write performance is 57 percent, for a write throughput of 17.8 
MB/s.  With 500 events, the increase in write performance is 100 
percent, for a write throughput of 23.8 MB/s. 

It is interesting to note that 32 KB write threshold performance 
exceeds the single-threaded application maximum write 
throughput.  Since the NFSv4 server is multi-threaded, it can 
process multiple simultaneous write requests and outperform a 
single-threaded application.  This is yet another benefit of the 
increased parallelism available in distributed file systems. 

When pNFS funnels all Digitization output through the 
NFSv4 server, the performance drops dramatically, but is still 
slightly better than the performance of pNFS with direct I/O.  In 
this experiment, the improved write performance of the smaller 
requests overshadows the reduced performance of sending large 
write requests through the NFSv4 server. 

The 50 and 500 event experiments have slightly different write 
request size and offset distributions.  In addition, the 500 event 
simulation has ten times the number of write requests.  We believe 
the difference between the pNFS write threshold performance 
improvements in the 50 and 500 event experiments is due to a 
difference in behavior of the NFSv4 writeback cache with these 
different write workloads. 



6.4. Discussion 
Our experiments show that writing to the direct data path is not 
always the best choice.  Write request size plays an important role 
in determining the preferred data path. 

The Linux NFSv4 client gathers small writes into 32 KB requests.  
With very small requests, the overhead of gathering requests 
diminishes its potential, but it is still beneficial.  As the size of 
each write request grows, the benefit is considerable. 

Performing an increased number of parallel asynchronous write 
requests also improves performance.  This is seen in both Figures 
6 and 8, as the performance of writing 32 KB requests exceeds 
that of writing directly to storage. 

The Linux NFSv4 server does not perform write gathering.  Our 
experiments clearly show the benefit of increasing the write 
request size.  The ability for the NFSv4 server to combine small 
requests from multiple clients into a single large request should 
also win big. 

7. FUTURE WORK 
We are investigating a number of potential improvements: 

• Implement strided read and write interfaces in NFSv4. 
• Implement Linux NFSv4 server request gathering. 
• Implement symmetric pNFS servers. 

8. CONCLUSIONS 
Diverse file access patterns and computing environments in the 
high performance community make pNFS an indispensable tool 
for scalable data access.  This paper demonstrates that pNFS can 
increase write throughput to parallel data stores—regardless of 
file size—by overcoming parallel file system small write 
inefficiencies.  pNFS improves the overall write performance of 
parallel file systems by using direct, parallel I/O for large write 
requests and a distributed file system for small write requests.  
Our evaluation results using a real scientific application and 
several benchmarks demonstrate the benefits of this design.  The 
pNFS heterogeneous metadata protocol allows any parallel file 
system to realize these write performance improvements.  
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