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Abstract

In this paper, we discuss a global name space for NFSv4 and mechanisms for transparent migration and replication. By con-
vention, any file or directory name beginning with /nfs on an NFS client is part of this shared global name space. Our system
supports file system migration and replication through DNS resolution, provides directory migration and replication using built-
in NFSv4 mechanisms, and supports read/write replication with precise consistency guarantees, small performance penalty, and
good scaling. We implement these features with small extensions to the published NFSv4 protocol, and demonstrate a practical
way to enhance network transparency and administerabilityof NFSv4 in wide area networks.
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1. Introduction
To meet the distributed filing needs of the world-wide Inter-
net, the NFSv4 protocol [27] is engineered to provide good
scaling and consistent sharing. Our goal in this work is to
build on that foundation to increase network transparency
and to simplify administration.

Network transparency is the collection of the abstract
concepts and mechanisms that make a distributed system
appear as if it were a single united system. In practice,
network transparency is really all about opacity, i.e., a sys-
tem is made transparent by concealing properties derived
from separation. In a distributed file system, network trans-
parency involves three aspects: naming, performance, and
failure resiliency.

Naming plays an important role in distributed file sys-
tems. A file system is said to provide name transparency if
it satisfies the following three requirements. First, any file
is accessible from any location. Second, the same name is
used at every location. And third, the file location is not
reflected in the name.

To achieve name transparency, we develop a naming
scheme that allows organizations to export their data au-
tonomously in a single shared global name space. Users on
any NFSv4 client, anywhere in the world, can then use an
identical rooted path name to access a file or directory. Fur-
thermore, by allowing a NFSv4 file system to be accessed
with a logical name, instead of its physical location, we sup-
port location independent naming, which facilitates file sys-
tem migration and replication.

Good performance is always a critical goal. A distributed
file system provides performance transparency if it hides ac-
cess latency for remote resources.

In a distributed file system, a client’s access can be in-
terrupted by any number of machine or network failures.
Failure transparency requires that the system hides a failure
and recovery of resources.

Distributed systems often use replication to improve per-
formance transparency and failure transparency. There are
two primary reasons for replicating data. First, replica-
tion improves performance by allowing access to distributed
data from nearby or lightly loaded servers. Second, replicat-
ing data improves availability in the face of failure by allow-
ing users and applications to switch from a failed replication

server to a working one.
In distributed file systems, the main problem intro-

duced by replication is maintaining consistency: whenever
a replica is updated, that replica becomes different from the
others. To keep replicas consistent, we need to propagate
updates in such a way that temporary inconsistencies are
not observable. However, doing so may severely degrade
performance, especially in large-scale distributed systems.

In this paper, we discuss a read/write (or mutable) repli-
cation protocol for NFSv4 that balances the tradeoff among
consistency, performance, and availability by offering strin-
gent yet flexible consistency guarantees to applications. The
protocol can guarantee either ordered writes or synchronous
access, while imposing no performance overhead for nor-
mal reads. It can tolerate any number of server crash or link
failures, even when these lead to network partitioning. The
protocol uses standard POSIX features, which makes it easy
and practical to deploy, and opens the door to standardize
the extensions to NFSv4 protocol.

Our work is also motivated by the need for easy ad-
ministration of NFSv4 systems. As storage systems be-
come larger and more complex, storage management plays
a prominent and increasing role in system administration.
This makes administerability an important goal in file sys-
tem design. The past twenty years has seen numerous re-
search and development efforts intended to facilitate file
system administration. E.g., in AFS, volumes [34] were
developed to organize data within a storage complex, which
breaks the association between physical storage and the unit
of migration and replication. Independent of the physical
configuration of the system, volumes provide a degree of
transparency in addressing, accessing, and storing files. The
volumes abstraction also facilitates data movement and op-
timization of existing storage.

In NFSv3 and v2, the lack of transparent file relocation
support makes data movement among different NFS sys-
tems a cumbersome administration task, often disrupting
users and applications while data is distributed to new loca-
tions. Migration and replication address this problem: our
design allows data to be created, copied, removed, and re-
located easily within NFSv4 without disrupting service to
clients. We also provide a framework for automatic failover
and load balancing to facilitate administration of large scale
distributed file systems.



The remainder of this paper is organized as follows: Sec-
tion 2 reviews the background and related work. Section
3 describes a naming scheme that supports a global name
space and transparent replication and migration. Section 4
presents a mutable replication protocol that guarantees or-
dered writes and synchronized access. Section 5 evaluates
the performance with a prototype implementation, and Sec-
tion 6 concludes.

2. Background and Related Work
The first popular distributed file system, Sun Microsys-
tem’s Network File System (NFS) [1, 30] was announced in
1984. NFS was originally developed by Sun for use on its
UNIX-based workstations, but NFS designers paid special
attentions to portability and heterogeneity. NFS employs
a client/server architecture. The NFS protocol defines an
RPC interface that allows servers and clients to communi-
cate over the network. The protocol does not specify how
servers or clients should implement this interface. As a re-
sult, NFS can run easily on a heterogeneous collection of
computers.

Version 3 of NFS (NFSv3) [2, 26], the widely adopted
current version, was released in 1994. At that time, com-
puters were less powerful than today’s and networks were
more commonly local area networks rather than wide area
networks. This has led to problems in using NFS in today’s
network environment. So a new version of NFS, NFSv4
[33, 27], is being developed. Like previous versions of NFS,
NFSv4 has a straightforward design, simplified error recov-
ery, and independence of transport protocols and operating
systems for file access in heterogeneous networks. NFSv4
also introduces some new features intended to improve In-
ternet access and performance, such as the introduction of
compound RPC that groups multiple related operations into
a single RPC packet, the delegation capabilities to enhance
client performance for narrow data sharing applications, the
integration of file locking that can support different oper-
ating system semantics and error recovery, the mandatory
strong security via an extensible authentication architecture
built on GSS-API [10], and the facilities to support file sys-
tem migration and read-only replication. However, the pub-
lished NFSv4 protocol does not provide mechanisms to sup-
port a global name space, transparent file system replication
and migration, and mutable replication. These oversights
impact the network transparency and administerability that
NFSv4 file systems provide.

The absence of a global name space hampers collabora-
tive work and sharing of data because users lack a common
frame of reference. No support for transparent file system
replication and migration embarrasses data distribution and
management. And the limit of read-only replication sacri-
fices network transparency for write operations. To over-
come these deficiencies, we develop a naming and repli-

cation scheme that provides the above missing features, as
described detailedly in the subsequent sections.

Another widely used distributed file system, the Andrew
File System (AFS), originated at Carnegie Mellon Univer-
sity in 1983 [31, 24]. The principle goal of AFS is to present
a homogeneous, location-transparent name space to per-
sonal and time-sharing computers on a campus-wide net-
work, but AFS also pays special attention to scalability, ad-
ministerability and availability.

AFS clients cache files and directories aggressively on
local disk. Servers record the files clients are caching, then
execute callback routines to notify clients when cached data
has changed. The AFS consistency guarantee is that a client
opening a file sees the data stored when the most recent
writer closed the file. However, this guarantee is hard to
honor in a partitioned network when the callback operation
can not be performed. The recent practice of caching partial
“chunks” of a file further complicates matters.

To enhance availability and to evenly distribute server
load, AFS employs read-only replication on data that is fre-
quently read but rarely modified. Subtrees that contain such
data may have read-only replicas at multiple servers, but
there is only one read-write replica and all updates are di-
rected to it. Propagation of changes to the read-only replicas
is done by an explicit operational procedure.

To enrich file system administration, AFS organizes data
into volumes [34]. A volume is a collection of files forming
a partial subtree of the file system hierarchy. Independent of
the physical configuration of the system, volumes provide a
degree of transparency in addressing, accessing, and storing
files. They also facilitate data movement and optimization
of existing storage. However, it is a relatively heavyweight
operation to configure a machine as an Andrew server. This
is in contrast to NFS, where it is trivial for a machine to
export a subset of its local file system.

Coda [32, 17], a cousin of AFS, has been designed for
high data availability. It achieves this with two complemen-
tary mechanisms: server replication and disconnected oper-
ation. When a client opens a file for the first time, it contacts
all active replicas to make sure it will access the latest copy
and that all replicas are synchronized. Upon close, updates
are propagated to all available replicas. In the presence of
failure, Coda sacrifices consistency for availability. When a
Coda client is not connected to any servers, users can still
operate on files in their cache. The modified files are auto-
matically transferred to a preferred server upon reconnec-
tion.

The strategy that allows an object to be be read and mod-
ified as long as one of its copies is accessible provides high
availability. However, data consistency can not be guaran-
teed upon partition failures, as data copies might be updated
concurrently in two or more partitions. Although the Coda
group has investigated automated file and directory conflict



detection and resolution mechanisms [19, 18], not all con-
flicts can be resolved. In some cases, user involvement is
needed to get the desired version of data.

Echo [14] andHarp [21] are two distributed file systems
that use primary copy scheme to support mutable replica-
tion with variants of view change protocol for failure recov-
ery. Both systems assume a local area network environment
and use a single primary server to perform all updates and
reads. Availability is enhanced by electing a new primary
server if the original one fails. In some sense, performance
can be improved by spreading the load so that different
servers act as primaries for different partitions. However,
a single primary server remains a potential bottleneck if it
contains hot-spot partitions.

Recent years have seen a lot of work in peer-to-peer
(P2P) file systems, includingOceanStore [28], Ivy [25],
Pangaea [29], andFarsite [4]. These systems address the
design of systems in untrusted, highly dynamic environ-
ments. Consequently, reliability and continuous data avail-
ability are usually critical goals in these systems; perfor-
mance or data consistency are often sacrificed. Compared
to these systems, our system addresses data access and stor-
age needs of global scientific collaboration, which can em-
ploy more reliable hardware but have more stringent re-
quirements on average I/O performance. This leads to dif-
ferent design strategies in our approach.

The Grid [11] is an emerging infrastructure that aims
to connect globally distributed resources to a shared vir-
tual computing and storage system. Driven by the needs
of scientific collaborations, the sharing that the Grid con-
cerns with is not primarily file exchange but rather direct
access to computers, software, data, and other resources, as
is required by a range of collaborative scientific problem-
solving patterns.

Various middleware systems have been developed to fa-
cilitate data access on the Grid. For example,Storage Re-
source Broker (SRB) [6] utilizes a metadata catalog ser-
vice to allow location-transparent access for heterogeneous
data sets.NeST [7], a user-level local storage software,
provides best-effort storage space guarantees, mechanisms
for resource and data discovery, user authentication, quality
of service and multiple transport protocol support, with the
goal of bringing appliance technology to the Grid.

A common missing feature among these systems is the
lack of semantic supporting for fine-grained data sharing.
Furthermore, most of these systems provide extended fea-
tures by defining their own API. In order to use them, an
application has to be re-linked with their libraries. NFSv4
would be a complementary data access scheme to these sys-
tems in the sense that it can provide a unified name space,
consistency, and file system semantics necessary to support
global applications.

3. Naming Scheme
A file system provides access to a file by names. Naming
therefore plays an important role in distributed file systems.
In wide area networking, several principles guide the design
of a naming scheme.

First, a global name space for all files in the system is
desirable. By providing everyone a common frame of ref-
erence, a global name space encourages collaborative work
and sharing of data. Users on any NFS client, anywhere
in the world, can then use an identical rooted path name to
refer to a file or directory.

Second, location independent naming facilitates trans-
parent migration and replication. A distributed system pro-
vides transparent migration and replication by using ab-
stract concepts and mechanisms to hide the fact that a re-
source is migrated or replicated, and thus present users the
appearance of a single united system. With location inde-
pendent naming, files are not bound by name to individual
servers, so they can be transparently migrated or replicated.

Third, name space operations should scale well in the
face of wide or massive distribution. A scalable distributed
system is one that can easily cope with the addition of
users and sites and whose growth involves minimal ex-
pense, performance degradation, and administrative com-
plexity. These requirements suggest that a naming scheme
should adopt a hierarchical architecture and allow delega-
tion of administration.

Fourth, a naming scheme should be easy to apply in prac-
tice. With the purpose to develop a system that can be
used in reality, many of our design decisions are motivated
by this principle. E.g., we avoid employing a new direc-
tory service, but utilize the existing Domain Name Service
(DNS) [22], which has been pervasively deployed and used
for years, to support a global name space and location inde-
pendent naming.

In the remaining of this section, we detail the design and
implementation of a naming scheme that provides these fea-
tures. Section 3.1 presents a DNS based global name space
and client-side extensions that provide seamless access to
the constructed name space. Section 3.2 describes how our
design supports transparent file system migration and repli-
cation. Following that, Section 3.3 describes the mecha-
nisms to support directory migration and replication.

3.1. DNS Based Global Name Space
To provide worldwide name transparency, a distributed file
system should support a global name space so that appli-
cations and users can access data from everywhere with-
out any special effort. There are two ways to implement a
global name space.

First, a distributed file system can build a global in-
frastructure on its own to manage naming information. A



prominent example that takes this approach is AFS.
In AFS, multiple administration domains are defined as

cells, each with its own servers, clients, system adminis-
trators, and users. A cell’s name space is represented as a
mount point entry in the top level /afs directory. Each cell
maintains a root volume that contains the mount point in-
formation in the top level /afs directory. Thus, AFS allows
transparent access to any file in the global name space from
any client without requiring a site to relinquish administra-
tive control over its own system. However, with this design,
addition or deletion of a mount point in the top-level /afs
directory requires each cell to make changes to its root vol-
ume, which leads to a potential scalability problem as the
number of participating sites increase. Naturally, one solu-
tion to this problem is to use a hierarchical naming architec-
ture. However, implementing such a naming infrastructure
in a global scale remains a practical problem.

Alternatively, a distributed file system can utilize an ex-
isting global name service to avoid extra development and
maintenance overhead. As mentioned previously, an im-
portant feature of NFS is its simple configuration, i.e., it is
trivial to configure a machine as an NFS server, compared
with the relatively heavyweight work required in AFS. To
provide name transparency in NFS without hurting its sim-
plicity, we use the existing Domain Name System (DNS) to
support global naming operations.

DNS is implemented in a hierarchy of name servers,
with the hierarchy roughly corresponding to organizational
structures. The primary use of DNS is for looking up host
addresses and mail servers. However, because DNS is in-
tentionally extensible, researchers are continuously propos-
ing, implementing, and experimenting with new query types
and functions.

In DNS, a name server maintains a collection of resource
records (RR), each of which maps a name to some resource
information. There are different types of resource records.
The one we use is service locator resource record (SRV)
which is designed to specify the location of the server(s) for
a specific protocol and domain [12]. The format of the SRV
RR is
service.proto.name TTL class SRV

priority weight port target,
whereservice is the symbolic name of the desired ser-

vice;proto indicates the transport protocol type, typically
either TCP or UDP;name is the DNS domain name this RR
refers to;priority sets the preference for a host specified
in thetarget field; weight can be used in addition to
priority for load balancing when multiple servers spec-
ified in thetarget field have the same priority;port is
the server port on thetarget host that provides this ser-
vice; andtarget specifies the DNS domain name of the
host that provides the type of service being requested.

We choose SRV RR to maintain NFS server location in-

formation on account of its explicit support for server repli-
cation and load balancing. However, SRV RR has a rela-
tively strict format, which imposes two restrictions on NFS
server and client implementation, as discussed below.

First, the SRVtarget field can only be used to spec-
ify a server’s DNS domain name, instead of name and path
combinations. For clarification, we specify that a top-level
mount entry is always mapped to the root directory exported
by that NFS server. In Section 3.3, we explain how the
pseudo file system concept introduced in NFSv4 supports
this assumption.

Second, in SRV RR, there is no open-text field that we
can use to embed file system mount options. An NFS
server thus cannot declare its recommended mount options
through naming resolution. I.e., with the given global name
space, mount options can only be used to specify client
preference. The proper options controlling the way a file
system is access should be determined through the client’s
initial communication with the server. Because the pub-
lished NFSv4 protocol has provided necessary procedures
for server and client to dynamically determine proper ac-
cess options, we consider this requirement easy to satisfy.

On NFS client side, we use an extended Auto-
mount/AutoFS utility to provide transparent access to the
proposed global name space. Automount and AutoFs are
tools that allow users of one machine to mount a remote file
system automatically at the instant that it is needed. Au-
tomount, often referred as AMD, is a daemon that installs
AutoFs mount points and associates an automount map with
each AutoFs mount point. AutoFs is a file system imple-
mented in the kernel that monitors attempts to access a sub-
directory within a designated directory and requests AMD
to perform mounts or unmounts. Upon receiving a mount
request from the kernel, the AMD uses the automount map
to locate a file system, which it then mounts at the point
of reference within the AutoFs file system. If the mounted
file system is not accessed for a specified interval, AutoFs
instructs the daemon to unmount it.

We extend the Automount daemon program to support
DNS query. The global root directory of NFS,/nfs by
convention, is made an AutoFs mount point with DNS map-
ping as the associated automount map method. Initially, /nfs
is empty. The first time a user or application accesses any
NFS file system, the referenced name is forwarded to the
modified Automount daemon which queries DNS to map
the given name to a file server, and mounts it at the point of
reference.

Below we provide a fictional example that shows how
naming resolution works. Suppose a user types
ls /nfs/umich.edu/lib/file1
on a NFS client while the directory/nfs contains no en-

try at that time. The lookup request for entryumich.edu
is forwarded to the extended Automount daemon which



then performs a DNS query withnfs.umich.edu as the
lookup name andSRV as the lookup type. Suppose the DNS
server in the University of Michigan contains the following
entry

nfs IN SRV 0 0 2049 nfs1.umich.edu
IN SRV 1 0 2049 nfs2.umich.edu

The queried results nfs1.umich.edu and
nfs2.umich.edu indicate the server locations of
the NFS file system provided by the University of Michi-
gan. Upon receiving the queried results, the extended
Automount daemon selects the server with the lowest
priority number, i.e.,nfs1.umich.edu:/ in this exam-
ple, and mounts it at directory/nfs/umich.edu. The
subsequent access under/nfs/umich.edu directory is
then the same as normal NFS access.

Because DNS is hierarchically distributed, addition or
deletion a mount entry in the top-level global directory is
quite simple. When an NFS file system is created, the
administrator updates its local DNS server, adding a map-
ping from the file system domain name to the corresponding
server location. After that, files on that file system is imme-
diately available everywhere.

3.2. File System Replication and Migration
Although the published NFSv4 protocol includes features to
support replication and migration, for the lack of dynamic
server location resolution, it remains hard to perform these
tasks transparently to client access. E.g., after a migration, it
remains a question that how long the old server should keep
running so that it can re-direct persistently connected clients
to the new server. It is also hard to add or delete a replica-
tion server for notifying each client every time replication
servers change can be a cumbersome administration task
with a large number of widely distributed clients. Although
the problem can be resolved through the server redirection
mechanism suggested in the NFSv4 protocol, a single redi-
rection server is potentially a performance and availability
bottleneck.

In contrast, the presented DNS based naming resolu-
tion scheme automatically support transparent file system
replication and migration. When a file system is replicated
to a new server, the administrator updates the DNS entry,
adding a mapping from the file system reference name to
the new NFSv4 server location. Similarly, when a file sys-
tem is migrated to another NFSv4 server, the old mapping
is updated to point to the new server. Once the migra-
tion is completed, the old server returns a special error,
NFS4ERRMOVED for subsequent client requests, as spec-
ified by the published NFSv4 protocol. Upon receiving this
error, the client queries DNS to get new file system loca-
tions and connects to a specified new server. Having redi-
rected all the currently connected clients, the old server only

needs to be kept for a short duration, equal to the Time-To-
Live (TTL) of the SRV RR that stores corresponding server
location information.

3.3. File System Name Space and Directory
Migration & Replication

The file system name space provided by an NFSv4 server is
called a pseudo file system. A pseudo file system glues all
exported directories on an NFS server into a single rooted
tree. Portions of the server name space that are not exported
are bridged so that an NFSv4 client can browse seamlessly
from one export to another. Exported file system structures
are controlled by servers, so a server can dictate a common
view of the file system that it exports. This feature is essen-
tial for support of a single global name space, as mentioned
in Section 3.1.

NFSv4 usesexportfs utilities on the server side to ex-
port a directory. In the Linux kernel, anexport structure
is maintained for each currently accessed directory export.
To support directory migration and replication, we extend
theexportfs interface, allowing the reference string of
a replicated directory to be passed into the kernel. After
that, the reference string is maintained in the corresponding
export structure.

A reference string includes information on how to get
directory replica locations, such as replica lookup meth-
ods and lookup key. When a replicated directory is ac-
cessed by a client for the first time, the server resolves the
replica locations of that directory with the attached refer-
ence string. It then sends this information to the client
through theFS LOCATIONS attribute, as the NFSv4 pro-
tocol specifies. Upon receiving the replica locations, the
client selects a nearby replication server, mounts it at the
place of reference, and continues its access. When a di-
rectory is migrated to another server, the old server returns
NFS4ERRMOVED error for subsequent directory requests.
Upon receiving the error, the client obtains the new loca-
tion of the migrated directory by examining the content of
the FS LOCATIONS attribute and connects to the specified
server.

In our implementation, the NFS server performs replica
location lookup throughrpc-cache. When an NFS client
encounters a directory export with an attached reference
string, the server calls cache lookup with the reference
string as the lookup key. If there is a cache hit, the cached
value is returned. If a cache miss occurs, an upcall is made
to a user-level handler, which performs the lookup and adds
the queried data to the cache. Upon any changes of replica
location information, administrator can useexportfs fa-
cility to flush stale data out ofrpc-cache.

The current prototype allows four types of reference
strings: LDAP, DNS, File and Server Redirect. The for-
mat of each type is presented in the appendix. Support-



ing multiple lookup methods is based on the concern that
different NFS systems can have different requirements and
preference for replica location management. A system that
holds a large number of or frequently changed replicated
directories may prefer to using LDAP, with which it is easy
for administrator to check and manage replica information
through LDAP queries and updates. DNS RR is suitable
for managing a moderate number of infrequently changed
replicated directories. With a small number of replicated
directories, a NFS server can simply store their location in-
formation in a file, avoiding extra service management. In
case of migration, Server Redirect can be used which re-
quires no extra configuration and guarantees fast response
time.

4. Mutable Replication
In this section, we present the design and implementation of
an extension to NFSv4 that enables mutable (i.e. read/write)
replication with flexible consistency guarantees, small per-
formance penalty, and good scaling properties. The system
can guarantee either ordered writes or synchronized access,
without adding overhead on normal reads. It can tolerate
a large class of server crash or link failures, even when
these lead to network partitioning. Our design uses stan-
dard POSIX features, which makes it easy to deploy. Be-
low, we first describe a replication scheme that guarantees
ordered writes in Section 4.1. Based on that, we present
the additional mechanisms to enforce synchronized access
in Section 4.2. In the following discussion, we refer the first
consistency model as sequential consistency, and the second
as synchronized accessed.

4.1. Sequential Consistency
To support mutable replication, we need mechanisms to dis-
tribute updates when a replica is modified and to control
concurrent accesses when writes occur. To prevent muta-
ble replication from affecting exclusive read or shared read
performance, we adopt an extended primary copy scheme
with operation forwarding to coordinate concurrent writes.
Compared with the traditional primary copy scheme, our
design has the following advantages.

First, the overhead to support mutable replication is in-
duced only when writes occur. When there are no writes,
the system behaves as a read-only replication system, i.e.,a
client accesses data from any nearby replication server.

Second, a primary server is selected on the granularity of
a single file, which allows fine-grained load balancing.

Third, in our scheme, a primary server is dynamically
chosen when a file write opened for write. In most cases
(exclusive write cases), a client’s write requests are served
by a nearby primary server. The solution is well suited for
wide-area collaborations in which a replica is often dynam-

ically created and it is hard to decide an optimal primary
server for a file in advance.

Fourth, it provides higher availability because a client
can choose any working server to read or write a file.

Below we first describe the mechanisms we use to sup-
port file updates in Section 4.1.1. Section 4.1.2 then
presents the failure recovery mechanism of the protocol in
case of server crash and network partitions. For directory
updates, a similar approach is used, with several perfor-
mance improvements presented in Section 4.1.3.

4.1.1. File Updates

When a client opens a file for writing, the chosen server
temporarily becomes the primary for that file. All other
replication servers are instructed to forward client writere-
quests for that file to the primary server. When the file is
closed, the primary server withdraws from its leading role
by notifying other replication servers to stop forwarding
writes. In the following discussion, we refer to the first pro-
cedure as disabling replication, and the latter as re-enabling
replication, although by default, read requests received on
other replication servers are still processed locally.

While a file is open for writing, the primary server is
responsible for distributing updates to other replicas. We
consider two strategies for distributing updates. The firstis
distributing updates when the modified file is closed. The
second strategy distributes updated data to other replicasas
they arrive.

Although naive, the update-on-close strategy does avoid
multiple updates should some or all of the file be written
several times. However, if a client writes a massive amount
of data to a file and then closes it, the close operation takes
a long time to return. Furthermore, we run the risk of los-
ing all client updates if the primary server fails before dis-
tributing the new data, which invalidates any assurance of
durability to the client for individual write operations.

Distributing updated data to other replication servers ev-
ery time the primary server receives a write request elim-
inates the update propagation delay for a close request. It
also facilitates recovery from primary server failure: a client
receives a positive acknowledgment for every successful
write, so if the primary server fails, the client can connectto
a new server (using standard NFSv4 client recovery mech-
anisms) and reissue at most one unacknowledged write re-
quest. However, unlike distributing updates at the time the
file is closed, this strategy adds to network traffic if a client
overwrites file blocks.

We prefer the latter scheme. We hesitate to impose a
sweeping change to system call behavior and we are willing
to expend some network resources to reduce latency. Yet,
by making client-to-server writes synchronous with updates
to other replication servers, it appears that we are increas-
ing client write latency, not reducing it. The paradox is re-



solved by observing that NFSv4 writes are usually through
an I/O daemon that delays writes for some seconds [20].
This relaxes the dependency of application performance on
primary server latency. The I/O daemon’s delayed-write
policy also increases the likelihood that the updates will be
long-lived [5].

The primary server distributes updates to other replica-
tion servers in parallel. Updates must be delivered in or-
der, either by including a serial number with the update or
through a reliable transport protocol such as TCP. In addi-
tion to the data payload, each update message from the pri-
mary server to other replicas also includes metadata related
to the update, such as modification time. Each replication
server modifies its copy of file metadata appropriately after
updating file data. This guarantees that the metadata of the
file is consistent among replicas, which as we show in Sec-
tion 4.1.2, makes it easy to determine the most recent file
copies during failure recoveries.

Initially, a replication server is unsure if a received up-
date is valid- e.g., the primary server might send out an
update request and then immediately crashed- so it does
not apply the update at once. Rather, the request is cached
until the next update or a replication re-enabling message is
received from the primary.

Two or more servers may try to become the primary
for a file at the same time. When these servers are in the
same partition, contention is always apparent to the con-
flicting servers. We resolve the conflict by having conflict-
ing servers cooperate: the server that has already disabled
more replicas is allowed to continue; the server that has so
far disabled fewer replicas hands its collection of disabled
replicas to the first server; when a tie happens, the server
with bigger IP address is allowed to proceed. If conflicting
servers are in different partitions, at most one can collectac-
knowledgments from a majority of the replication servers.
For some kinds of failure, e.g., multiple network partition
failures, it is possible that no primary server can be elected.
We discuss this case further in the next subsection.

4.1.2. Failure Recovery

Our primary copy scheme guarantees consistent access
when all replicas are in working order. However, failure
complicates matters. Different kinds of failure may occur,
including client failure, replication server crash failure, net-
work partition, and combinations of these cases. Here, we
briefly describe the failure detection and recovery mecha-
nisms for each case. A detailed description and proof of
correctness is presented elsewhere [35].

Following the specification of NFSv4, a file opened for
writing is associated with a lease on the primary server, sub-
ject to renewal by the client. In the event of a client failure,
the server receives no further renewal requests, so the lease
expires. Once the primary decides that the client has failed,

it closes any files left open by the failed client on its be-
half. If the client was the only writer, then the primary re-
enables replication for the file at this time. Unsurprisingly,
the file content reflects all writes acknowledged by the pri-
mary server prior to the failure.

To support sequential consistency, the system maintains
an active group view among replicas and allows updates
only in the active group. We require that an active group
contain a majority of the replicas to ensure its uniqueness.
During file modifications, the primary server removes from
its active group view any replicas that fail to acknowledge
replication disabling requests or update requests. The pri-
mary server updates its local copy and acknowledges a
client write request only after it has received update ac-
knowledgments from a majority of replicas. If the active
view shrinks to less than a majority, the primary server
“fails” the client request. The primary server sends its active
view to other replication servers when it re-enables replica-
tion. A server not in the active view may have stale data,
so the re-enabled servers must refuse any later replication
disabling or update requests that come from a server not in
the active group. A failed replication server can rejoin the
active group only after it synchronizes with the up-to-date
copy.

If a primary server crashes or is separated in a minor-
ity partition, a replication server (in the majority partition)
detects this failure when a forwarded request times out. In
that case, the replication server starts a failure recoverypro-
cedure to become the replacement primary. Basically, the
replication server asks other active replicas for permission
to become the new primary server. If this succeeds, the re-
placement synchronizes all active replicas with the most up-
to-date copy found in the majority partition, and distributes
a new active group view. It then re-enables replication on
the active servers.

With these mechanisms, our system can guarantee se-
quential consistency and continuously serve client requests
as long as a majority of replicas are in working order and
can communicate. If there are multiple partitions and no
partition includes a majority of the replication servers, read
requests can continue to be satisfied, but no write requests
can be served until the partition heals. We assume this hap-
pens rarely.

To tolerate various edge scenarios, e.g., in the case that
all servers crash when the primary server is processing a
write request, it appears that a replication server should
record in its stable storage all information related to an up-
date, such as the current primary server, cached update,
serial number and failed replicas. This strategy, however,
would reduce write performance. Instead, we rely on the
system administrator’s involvement in the case that more
than majority of replication servers fail. Because our proto-
col guarantees sequential consistency, the administratorcan



simply use a synchronization tool (i.e.,rsync) which com-
pares the data states among replication servers and selects
the most recent copy if inconsistent copies are detected. Af-
ter the synchronization is complete, the administrator can
bring all replication servers to normal state. Thus, a repli-
cation server needs to record in stable storage only minimal
information, i.e., the failed replication servers it currently
knows and the primary server it currently admits for a file.

El-Abbadi et al. have studied the failure recovery prob-
lem of read-one-write-all replication scheme in distributed
database systems. They point out that replicas can not inde-
pendently or asynchronously update theircan-communicate
views because network connections may be intransitive or
replicas may detect connection changes at different time.
Taking a further step, they present a series of properties and
rules which they show are sufficient conditions for a repli-
cation protocol to guarantee one-copy serializability. We
have extended this theory into distributed file systems and
have proved that our failure recovery protocol guarantees
sequential consistency in the face of node crash or network
partition. The basic rationale lies in having a single server
(primary server or replacement server) decide the view of
the majority partition. This view is then distributed to and
sustained by all the members contained in it. Thus, a unique
and consistent majority view is guaranteed. For more de-
tails, readers can refer to our technical report [35].

4.1.3. Directory Updates

Directory modifications include creation, deletion, and
modification of entries in a directory. Unlike file writes,
a directory modification may involve more than one ob-
ject. We require replication for all involved objects to be
disabled before processing a directory update. These dis-
abling requests are grouped and processed together, so that
no deadlock might happen. Furthermore, little time elapses
between the start and finish of a directory update, which
reduces the likelihood of concurrent access to a directory
while it is being updated. So instead of redirecting ac-
cess requests to a replicated directory while an update is in
progress, replication servers block access requests to that di-
rectory until the primary server re-enables replication. Like
directory modifications, attribute updates proceed quickly,
so we handle them the same way.

When disabling directory replication, the primary server
sends the replication disabling request and the update re-
quest together in one compound RPC. A replication server
receiving this compound RPC caches the update, begins to
block local update, and acknowledges the request. After re-
ceiving replies from a majority of replication servers, the
primary server acknowledges the client request. Simultane-
ously, the primary server could send a commit message, no-
tifying other replication servers to apply the update. How-
ever, to reduce network traffic, we delay this notification

until the primary server re-enables replication, i.e. a repli-
cation server applies the cached update when it receives the
re-enabling replication request from the primary server.

One issue introduced by this optimization is the possi-
bility for a replication server to receive “invalid” replication
disabling requests. Consider a simple example in which a
client first creates a filec in directory/a/b/, then opens
it for writing. As described above, with the create request,
the connected server sends replication disabling requestsfor
directory/a/b/ combined with the update request to cre-
ate entryc to other replication servers. It acknowledges the
client after receiving replies from a majority of replication
servers. As the client might send the write open request for
file c immediately after receiving this acknowledgment, it
is possible that the connected server sends a replication dis-
abling request for file/a/b/c before it re-enables replica-
tion for directory/a/b/ on other replication servers. As
a result, the replication disabling request for filec would
be rejected by other replication servers since they have not
applied the cached create request. Although the problem
can be solved by having the primary server simply keep
re-sending the second request, a lot of redundant network
traffic would be induced, especially when the system con-
sists of slow (far) replication servers. So instead, we take
another approach. In our implementation, before sending a
replication disabling request, the primary server first checks
whether any parent directory of the to-be-modified entry is
being disabled ; if so, it would wait untill that directory was
re-enabled.

Consequently, the performance of directory updates is
normally decided by the RTT between the primary server
and the majority of replication servers; however, when a
client issues a burst of directory updates, the performance
might be slowed down by a replication server far away as
the primary server re-enables the replication for a directory
when it receives acknowledgments for the previous replica-
tion disabling requests from all other replication serversor
upon a timeout if a failure happens. Other solutions exist to
solve this kind of problem. For example, the primary server
can pre-send a commit request for a directory update. In our
future study, we want to compare these different solutions
in terms of their performance and induced network traffic
with real application operations.

4.2. Access Synchronization
The protocol discussed so far efficiently provides sequential
consistency guarantees. However, applications may some-
times require stronger consistency guarantees, i.e., syn-
chronized access. To meet such needs without imposing
overhead on data access that requires sequential consis-
tency only, our system provides synchronization guarantee
as an option that can be demanded by applications through
POSIX synchronization flags in the open system call inter-



face [3].
By the POSIX specification, if an application opens a

file with O SYNC flag set, a subsequent write operation is
complete only when the written data and all file attributes
relative to the operation, e.g., modification time, is written
to the permanent storage; if an application opens a file with
both O SYNC andO RSYNC flags set, a read operation is
complete only when any pending writes affecting the data to
be read is successfully transferred to the requesting process.

In a local file system, support for these synchronization
requirements usually adopt the same solution, so some op-
erating systems, notably Linux, treat the three synchroniza-
tion flags equally. However, in a distributed environment,
it is beneficial to distinguish these different synchronization
requirements, as the cost to support them can be consider-
ably different.

In NFSv4, a client’sWRITE operation request includes
a special flag that declares whether the written data is to be
synchronized. A NFSv4 client sets this flag on user’s be-
half if the O SYNC flag of the file is set or the user issues
a fsync system call. However, the synchronization re-
quirement specified withO RSYNC flag set is not addressed.
We notice that the synchronization guarantees required with
O SYNC andO RSYNC flags set correspond to synchronized
read requirement. Taking these flags as the hint that the ap-
plication is demanding synchronized access, we refine our
replication protocol as follows.

When the primary server receives a synchronous write
request from a client, it must ensure that the replication for
the file has been disabled on every other replication server
before returning a reply to the client. By default, a repli-
cation server forwards write requests only while its repli-
cation is disabled. However, if during this period, a client
opens the file with bothO SYNC andO RSYNC flags set, the
replication server forwards the client’s read requests to the
primary server as well.

In most cases, the update distribution procedure works
the same way as that in the sequential consistency model
- The primary server acknowledges a client’s write request
after it gets acknowledgments from a majority of replica-
tion servers; if there is a failure detected during update dis-
tribution, the primary server can still process client’s read
and/or write requests as long as it is in the majority parti-
tion. However, if the primary server is separated in a mi-
nority partition, it is not guaranteed the distributed update
reaches the majority partition. If a client opens the file with
both O SYNC andO RSYNC flags set, the primary server
must refuse its subsequent read requests for the file to guar-
antee that no stale data is served. In the majority partition,
the failure recovery mechanism described in Section 4.1.2
can be used to recover the fresh copy of data. After that,
read requests can be served in the majority partition.

With the described mechanism, slight overhead is in-

duced to guarantee synchronized access when applications
demand it; longer delay is charged on forwarded operations
if concurrent writes occur; If a file is not under modification,
any read requests for the file, even those with synchroniza-
tion requirement, are processed by a nearby server.

It is easy to see that this approach provides synchroniza-
tion guarantee at the cost of sacrificing system availability
for synchronous write operations. I.e., if a failure happens,
an application can not synchronously write a file. Several
methods can be used to bypass this restriction if it is critical
to guarantee system availability for write operations as well
as synchronized access. For example, we can use periodic
heartbeat messages to detect partition failures, and require
a replication server to reject any client requests if it fails to
receive replies from a majority of replication servers. Con-
sequently, the system can continue to process synchronous
write operations after a heartbeat period, as long as a ma-
jority of replication servers are active. However, we believe
that the current solution is superior in most scenarios be-
cause it adds no overhead or network traffic to normal oper-
ations.

There are other possible ways to decide consistency
guarantees for a file. For example, we can implement it as
an extended attribute associated with the file. The proposed
approach is favored for it allows applications to control file
sharing behavior more flexibly. Consider the example of
an edit-and-run procedure: The program is edited on one
client, and then a number of clients are instructed to execute
it. Because the execution instruction can be issued immedi-
ately after the program editing, the access on the file must
be coordinated. In our replication system, correct synchro-
nization behavior can be guaranteed if the editor applica-
tion (writer) issues afsync system call after completing
the editing, and the execution application (reader) opens the
file with bothO SYNC andO RSYNC flags set. On the other
hand, another application, e.g., a snapshot tool, can choose
to open the file without setting any synchronization flags as
sequential consistency is sufficient to guarantee its correct-
ness. In the extreme case, if a file is always opened with
O SYNC andO RSYNC flags set, strict consistency is pro-
vided.

However, using open synchronization flags also intro-
duces two issues: First, existing programs might not use
these flags to specify synchronization requirements. Thus
modifications are required on the program’s open calls to
ensure synchronized access. We believe such modifications
can be performed easily enough that it does not affect the
prevalence of the system. Second, the NFSv4 protocol does
not provide the mechanism for a client to send open syn-
chronization flags to its server. Our current implementa-
tion conveys this information by using the extra bits of the
share access flag inopen operation request, which re-
quires extension to the published NFSv4 protocol.



5. Evaluation
This section presents the evaluation results for the described
naming scheme and replication protocol. In all the pre-
sented experiments, we use a prototype implemented in
Linux 2.6.12 kernel. Servers and clients all run on dual
2.8GHz Intel Pentium4 processors with 1024 KB L2 cache,
1 GB memory, and dual Intel 82547GI Gigabit Ethernet
cards onboard. We use TCP as the transport protocol. The
number of bytes NFS uses for reading (rsize) and writing
files (wsize) is set as 32768 bytes.

5.1. Naming Evaluation
When a client accesses an NFSv4 file system for the first
time, the logical name that it uses needs to be mapped
to the physical locations. To evaluate this cost, we mea-
sured the delay a client experiences when it first accesses
an NFSv4 file system in the provided global name space.
The evaluation data are collected at the client side with
gettimeofday utility, which has microsecond resolution
in 2.6 Linux. Table 1 presents the evaluation results col-
lected with the NFS client and the connected server within
the same LAN. The round trip latency (RTT) between the
client and the server is around 200µsec. As the results
show, when server and client are close to each other, the
overhead of naming resolution in the top-level directory is
small relative to the overall mount time.

Both DNS query latency and mount latency increase as
client and server are further apart. DNS performance has
been studied in large-scale previously. E.g., in 2000, Jung
et al. conducted a detailed analysis of DNS traces collected
on the Internet links of the MIT Laboratory for Computer
Science and the Korea Advanced Institute of Science and
Technology (KAIST) [16]. They observe that more than
half of lookups are answered in 0.1 second in all the col-
lected traces. With MIT traces, around 90% of lookups are
answered in 1 second. The KAIST trace has more long-
latency queries than MIT traces, roughly about 25% of them
takes more than 1 second. Most of these lookups correspond
to names outside Korea.

In this paper, we do not intend to repeat such detailed
DNS evaluations. However, to estimate the relative over-
head added by DNS query to NFSv4 over wide area net-
works, we compare the client-perceived latency for DNS
query and NFSv4 mount with hosts taken from Planetlab,
an open, globally distributed platform consisting of 160 ma-
chines hosted by 65 sites spanning 16 countries [9]. The
RTT between the client and the 522 Planetlab hosts used in
our experiment ranges from 0.6 millisecond to more than
300 milliseconds. Figure 1 shows the cumulative RTT dis-
tribution measured with the client pinging each Planetlab
host. Figure 2 presents the cumulative DNS lookup distri-
bution collected by runningdig on the client. Figure 3 dis-
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Figure 1:. Cumulative distribution of RTT for Planetlab
machines.

plays the client-perceived mount latency across the range of
client-to-server RTT measured in Figure 1 experiment. In
the experiment, we use NistNet [8] to simulate the network
delay between the server and the client.

As Figure 2 shows, even in a worst case scenario where
DNS queries are performed at the first time to a large scale
of remote hosts, more than 60% lookups complete in 1 sec-
ond. Compared with the mount latency depicted in Figure
3, e.g., mount takes around 1.5 seconds corresponding to
0.1 second client-to-server RTT, the overhead of DNS query
over WAN is still insignificant. Furthermore, we note that
when a client mounts a NFS file system with server host
name, it also experiences DNS lookup overhead. Because
answers for SRV RR queries normally contain servers’ ad-
dresses as well, resolving a mount point name in the dis-
cussed global name space actually adds little overhead com-
pared to conventional mount.

Phase Time (ms)
Replica List Query (DNS) 0.973
Mount 6.45
Others (upcall, etc.) 0.619
Total 8.05

Table 1:. First-time access latency for a local NFSv4 file
system in the top-level directory.

To evaluate the cost of looking up physical locations for
a replicated directory, we measured the latency that a server
experiences when a client accesses a replicated directory for
the first time. Table 2 presents the experimental results for
LDAP, DNS, and File query methods. In all experiments,
the referenced directory is replicated on two servers.

As the data shows, File query is the fastest with around
0.1ms query time. The presented result for File query is col-
lected with the file containing no extra entries except for the
replica list of the tested directory. The query time increases
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Figure 2:. Cumulative distribution of DNS lookup latency
for Planetlab machines.
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Figure 3:. Client-perceived mount latency as client-to-server
RTT increases.

as the file contains more replica entries. For example, our
measurements show that when the file contains 1000 en-
tries, the query time increases to 0.83ms. However, because
File method does not provide a central point of informa-
tion management, we expect it is only used to manage a
small number of replicated directories. With the other two,
the query time for DNS TXT RR is around 0.8ms, and that
for LDAP is about 4.8ms. The performance difference is
mostly caused by the different transport protocol used in
these two types of queries, i.e., LDAP uses TCP but DNS
uses light-weight UDP.

Generally, we consider the measured overhead for all of
the supported query methods is acceptable. Furthermore,
we note that by using rpc-cache, this query cost is induced
only once for a replicated directory that is repeatedly ac-
cessed.

Query Method Time (ms)
LDAP 4.77
DNS TXT RR 0.847
FILE 0.124

Table 2:. First-time access latency for a replicated directory
with different lookup methods.

5.2. Replication Evaluation
To assess the cost of replication, this subsection presentsthe
experimental results of running a modified Andrew bench-
mark over rNFS. The Andrew benchmark [15] is a widely
used file system benchmark that models a mix of file oper-
ations. It measures five stages in the generation of a soft-
ware tree. Stage (I) creates the directory tree, (II) copies
source code into the tree, (III) scans all the files in the
tree, (IV) reads all of the files, and finally (V) compiles the
source code into a number of libraries. The modified An-
drew benchmark used in our experiments differs from the
original Andrew benchmark in two aspects. First, in the last
stage, it compiles different source code than that includedin
Andrew benchmark package. Second, the Andrew bench-
mark writes a log file in the generated directory; if writes
are slow compared to reads, the cost of updating the log file
dominates the overall cost of a stage that mostly reads, hin-
dering analysis. Therefore, we use local disk to hold the log
file.

Our first experiment looks at replication in a LAN en-
vironment, such as a cluster. Figure 4 depicts the perfor-
mance of the modified Andrew benchmark as the number
of replicas increases. The measured RTT between any two
machines is around 200µsec. Figure 4 shows that in a LAN,
the penalty for replication is small. Replication induces
no performance overhead in Stages (III) and (IV), as these
two phases consist of read operations only. Stage (V) is
compute-intensive, so the performance difference between
single server and replicated servers is negligible. Most of
the performance penalty for replication comes in Stages
(I) and (II), which consist of file and directory modifica-
tions. However, with a fast network, the aggregate penalty
is still only a few percent. Furthermore, because a primary
server distributes updates to other replication servers inpar-
allel, performance is not adversely affected as the number
of replication servers increases.

The next experiment, depicted in Figure 5 compares the
cost of replicating to a distant server vs. the cost of access-
ing a distant server directly. We ran the modified Andrew
benchmark with an increasingly distant file server, the up-
per line in Figure 5, and again with a local replication server
and an increasingly distant replication server, the middle
of the three lines in Figure 5. The RTT marked on the X-
axis shows the round-trip time between the primary server
and the remote replication server for the replication experi-
ments, and between the client and the remote file server for
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Figure 4:. MAB in LAN replication.
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the remote access experiments.
In Figure 5, the smallest RTT measured is 200µsec., the

network latency of our test bed LAN. For the other mea-
surements, we use Netem [13], a Linux tool that simulates
network delays. Each experiment first warmed the client’s
cache with two runs.

Figure 5 shows that replication outperforms remote ac-
cess in all five stages. In Stages (III) and (IV), the read-only
stages, replication is as fast as local access, since no mes-
sages need to be sent to the other replication server in these
stages. But replication also dominates remote access in the
other three stages. To see why, we take a close look at the
network traffic in the measured experiments, where we find
that with replication, fewer messages are sent to the remote
server, accounting for its advantage.

We model this as follows. The running time in each stage
can be estimated as

T = Tbasic + RTT × NumRPC (1)

whereTbasic denotes the computation time at the client
and the request processing time at the connected server. For

replication,RTT represents the round-trip time between the
primary server and the replication server, andNumRPC rep-
resents the number of RPC messages sent from the primary
to the replication server in the corresponding stage. For re-
mote access,RTT represents the round-trip time between
the client and the remote server, andNumRPC is the total
number of RPC requests sent from the client to the server.

TheTbasic cost is about the same for replication and re-
mote access, so any difference in performance must be ac-
counted for by the second part of the formula. For example,
Stage (I) creates 20 directories at a cost of 85 RPC requests
sent from the client to the connected server (20create,
13access, 17getattr and 35lookup). The reported
access, getattr and lookup requests are unavoid-
able even for a warm cache run because they are requesting
information on newly created directories. However, with
replication,access, getattr andlookup requests are
served locally at the primary server, eliminating their cost
altogether at the scale of this experiment. Furthermore, al-
though each create costs two RPC messages, the primary
server replies to the client after receiving the response to
only the first of these two. Consequently, the number of
latency-inducing remote RPC messages in the replication
experiment decreases from 85 to 20. Table 3 shows sum-
mary RPC counts for the other stages.

One important feature of rNFS is that a primary server
can reply to a client request as soon as it gets acknowledg-
ments from half of the other replication servers. Given a
set of replication servers, then, the performance of rNFS
is dictated by the largest RTT between the primary server
and half of the nearest replication servers, which we call the
majority diameter.

To illustrate how this feature can be used to advantage,
we added a third replication server halfway (in terms of
RTT) between the other two and re-ran the modified An-
drew benchmark. The result is the lowest of the three lines
in Figure 6. Placing the third replication server midway be-
tween the local and remote replication servers cuts the ma-
jority diameter in half and for the Andrew benchmark, this
cuts the overall run time, which is dominated by the cost of
remote RPCs, nearly in half.

The results imply if most writes to a replicated file come
from one site, the performance overhead for remote replica-
tion can be made scant by putting a majority of replication
servers near that site. Furthermore, if a site is using local
replication, then the penalty for adding a distant replication
server, say, for off-site backup, is negligible.

Figure 6 compares the running time of the modified An-
drew benchmark with a fixed majority diameter and a vary-
ing number of replication servers. The servers used in
this experiment are described in Table 4. The experimen-
tal results show that with the majority diameter fixed (at 40
msec), increasing the number of replication servers has neg-



System Model Mkdir Copy Scandir Readall Make Total
Replication 20 228 0 0 71 309
Remote Access 85 735 154 510 589 2073

Table 3:. Number of remote RPCs of MAB in Replication and Remote Access.

Replication servers RTT to the primary server
P (the primary server) -
R2, R3 20 msec
R4 40 msec
R5, R6, R7 60 msec

Table 4:. Servers used in Figure 6 experiments.
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Figure 6:. MAB with different replication server sets.

ligible effect on system performance, which is key to good
scaling.

To summarize, the evaluation data presented in this sub-
section illustrate two main points. First, network RTT is the
dominant factor in rNFS WAN performance. By locating a
replication server close to the client , rNFS can mask RTT-
induced latency. Second, rNFS scales well in this work-
load. Application performance is unaffected by adding ad-
ditional replication servers while keeping the majority di-
ameter fixed.

As a gedanken experiment, we might imagine the practi-
cal limits to scalability as the number of replication servers
grows. A primary server takes on an output bandwidth obli-
gation that multiplies its input bandwidth by the number of
replication servers. For the near term, unicast communica-
tion and the cost of bandwidth seem to be the first barriers
to massive replication.

6. Conclusion
This paper presents the design, implementation, and anal-
ysis of a naming and replication scheme for NFSv4. By
convention, any file or directory name beginning with /nfs
is part of a global shared name space. File system migration
and replication are supported through DNS resolution. Di-

rectory migration and replication use theFS LOCATIONSat-
tribute to redirect I/O requests. For mutable replication,we
use a variant primary copy scheme with operation forward-
ing to provide concurrency and consistency during replica
updates. The system performs admirably in environments
where reading is the dominant operation: replication intro-
duces no additional cost for exclusive or shared reads. The
system guarantees either ordered writes or synchronous ac-
cess, even in partition failures. With these features, we
believe that our system presents a promising way for ge-
ographically distributed organizations to access and store
data over the Internet.
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A. Format of Reference String for Di-
rectory Replication Lookup

• LDAP. The format of an LDAP reference string
is ldap://ldapserver/lookup-key [-b
searchbase] [-p ldapport]. The LDAP
server stores replica location records that can be
queried with the lookup-key. We define a new ob-
jectclass for NFS replica location information whose
format is provided in Appendix B. Each replica loca-
tion record includes one or more fslocations attribute.
An fslocations attribute includes the server name
holding that replica, the path where the replicated
directory located, and mount options. In our current



implementation, the following format is adopted:
server:/path option.

• DNS. The format of a DNS reference string is
dns://lookup-name. The format of lookup-name
follows domain name conventions. As mentioned in
Section 3.1, DNS SRV RR does not provide a way to
store server name and directory path combinations. So
we use another type of resource record, TXT RR [23],
to store directory replica location information. TXT
RR contains one or more character string fields that
are used to hold descriptive text. The semantics of the
text depends on the specific application it is used. Our
current implementation adopts the following format
for directory replica location information:
name class TXT NFSv4 server path
priority weight.
The keywordNFSv4 indicates that the record stores
NFS replica location information.priority and
weight follow the same interpretation as those in
SRV RR. E.g., the following TXT RR

user IN TXT NFSv4 s1.umich.edu
/user 0 1

IN TXT NFSv4 s2.umich.edu
/pub/u/ 0 1

provides two locations for a replicated directory:
one is s1.umich.edu:/user and the other is
s2.umich.edu:/pub/u.

• File. The format of File reference string is
file://pathname/lookup-key. The path-
name gives the path to the file storing lookup-key to
replica location mappings.

• Server Redirect. The format of Server Redirect
reference string isserver://hostname:/path,
wherehostname:/path gives the location of the
migrated or redirected directory.

B. LDAP Schema for NFS Replica Lo-
cation Information

# Attribute Type Definitions

attributetype ( 1.3.6.1.4.1.250.1.64
NAME ( ’fslocations’ )
DESC ’NFS version 4 FS Locations

Information’
EQUALITY caseIgnoreIA5Match
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

)

objectclass ( 1.3.6.1.4.1.250.1.65 NAME
’rnfs’

DESC ’NFS version 4 FS Locations
Information’
SUP top AUXILIARY
MUST ( cn $ fslocations )
MAY ( description ) )


