

CITI Technical Report 05-02

Scaling NFSv4 with Parallel File Systems

 Dean Hildebrand Peter Honeyman
 dhildebz@eecs.umich.edu honey@citi.umich.edu

ABSTRACT
Large grid installations require global access to massive data stores. Parallel file
systems give high throughput within a LAN, but cross-site data transfers lack seamless
integration, security, and performance. The GridNFS project, aims to provide
scalable, transparent, and secure data management as well as a scalable and agile
name space. A key challenge in exporting a parallel file system with NFSv4 is to
provide high performance without sacrificing consistency. This paper introduces
extensions to the NFSv4 protocol to support parallel access. We implemented a
prototype of our design and present experiments demonstrating its scalable
architecture.

March 7, 2005

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

Scaling NFSv4 with Parallel File Systems

Dean Hildebrand
Center for Information Technology Integration

University of Michigan
dhildebz@eecs.umich.edu

Peter Honeyman
Center for Information Technology Integration

University of Michigan
honey@citi.umich.edu

Abstract
Large grid installations require global access to

massive data stores. Parallel file systems give high
throughput within a LAN, but cross-site data transfers
lack seamless integration, security, and performance.
The GridNFS project, aims to provide scalable,
transparent, and secure data management as well as a
scalable and agile name space. A key challenge in
exporting a parallel file system with NFSv4 is to provide
high performance without sacrificing consistency. This
paper introduces extensions to the NFSv4 protocol to
support parallel access. We implemented a prototype of
our design and present experiments demonstrating its
scalable architecture.

1. Introduction
Collaborations such as TeraGrid [1] allow global

access to massive data sets in a nearly seamless
environment distributed across several sites. The degree
of transparency between sites can determine the success
of these collaborations. Several factors affecting data
access transparency are latency, bandwidth, security and
software interoperability.

To improve performance and transparency within each
site, the use of symmetric or asymmetric parallel file
systems1 is on the rise, allowing applications direct,
concurrent and scalable access to a single file system.
Parallel file systems allow storage systems to grow with
storage needs and reduce management costs by
aggregating all storage into a single framework.

Figure 1 shows a general model for the flow of data in
this environment consisting of four primary components.
The first component is storage, which can be anything
from a SAN to a single directly attached disk. The
second component is a set of metadata nodes that describe
and control access to storage. The third component is a
set of file nodes that provide a front-end for storage
access. All data must flow from storage through these

1 In symmetric file systems, nodes perform identical tasks. Asymmetric
file systems assign distinct roles to nodes, e.g., metadata management,
storage recovery, etc.

nodes. The fourth component is a set of application
nodes that generate and analyze data. In a symmetric
parallel file system, file nodes, metadata nodes, and
application nodes exist on the same machine. In a
conventional distributed file system, the file nodes
(servers) and application nodes (clients) are distinct
elements.

Figure 1. General data access model

This paper focuses on the third and fourth components
of the model: file nodes and application nodes. The need
for remote access from multiple operating systems,
metadata scalability, and security and performance over
the WAN often necessitates separating file nodes and
application nodes.

The GridNFS project at the University of Michigan
aims to facilitate the management and flow of large data
sets in the grid. It aims to provide scalable, transparent,
and secure data management as well as scalable and agile
name space management for establishing and controlling
identity in virtual organizations [2] and for specifying
virtual organization data resources. To realize these two
vital but missing capabilities, GridNFS extends the “best
of breed” Internet technologies with established Grid
architectures and protocols. The foundation for data
sharing in GridNFS is NFS version 4 [3], the IETF
standard for distributed file systems that is designed for
security, extensibility, consistency, and high performance.

GridNFS allows researchers access to remote files and
databases using the same programs and procedures that
they use to access local files, as well as obviating the
need to create and update local copies of a data set

manually. To meet quality of service requirements across
metropolitan and wide-area networks, GridNFS may need
to use all available bandwidth provided by the parallel file
system’s file nodes. In addition, GridNFS must be able to
provide parallel access to a single file from large numbers
of clients, a common requirement of high-energy physics
applications.

This paper discusses the challenge of achieving full
utilization of a storage system’s available bandwidth with
NFSv4 and introduces extensions that allow NFSv4 to
scale beyond a single server by distributing data access
across file nodes in the remote data store. These
extensions include a new server-to-server protocol and a
file description and location mechanism. For the rest of
this paper, we will refer to NFSv4 with these extensions
as Split-Server NFSv4.

The remainder of this paper is organized as follows.
Section 2 establishes the throughput scaling focus in this
paper. Section 3 discusses scaling limitations of the
NFSv4 protocol. Section 4 covers related work. Section
5 describes the NFSv4 protocol extensions in Split-Server
NFSv4. Sections 6 and 7 discuss fault tolerance and
security implications of these extensions. Section 8
provides performance results of our Linux-based
prototype and discusses performance issues of NFS with
parallel file systems. Section 9 is devoted to future
directions and Section 10 concludes this paper.

2. Scaling I/O in NFS
NFS I/O consists of four major access models:

1. A single client accessing a single file.
2. A single client accessing multiple files.
3. Multiple clients accessing a single file.
4. Multiple clients accessing separate files.

To exhaust all available bandwidth when exporting a
parallel file system, NFS depends on the parallel file
system to receive or produce data at network speed or
faster. Since storage networks generally have larger
bandwidth capacity than the client network, a single client
accessing a single file should receive very good
performance. Gains in this area will be realized through
increased disk and network bandwidths, as well as the
resolution of issues discussed in Section 8.4.

This paper focuses on access models 3 and 4:
increasing the aggregate throughput of multiple clients
accessing a single file or separate files by balancing client
load among file nodes. We assume distributed locking is
provided by the underlying parallel file system, and
therefore consistent file access is its responsibility. Split-
Server NFSv4 depends on the performance of the parallel
file system in this area.

3. NFSv4 state maintenance
NFS versions 2 and 3 [4, 5] are stateless, which

simplifies crash recovery semantics and many other
aspects of the protocol. A separate protocol, the Network
Lock Manager, isolates the inherently stateful aspects of
file locking.

NFSv4 departs from the stateless model to support
exclusive opens called share reservations, mandatory
locking, and file delegations. The NFSv4 server must
store some information about clients, users, and files, as
well as information about the outstanding share
reservations, locks, and delegations.

A share reservation controls access to a file. A client
issuing an OPEN operation to a server specifies both the
type of access required (read, write, or both) and the types
of access to deny others (deny none, deny read, deny
write, or deny both). The NFSv4 server maintains
access/deny state to ensure that future OPEN requests do
not conflict with current share reservations. NFSv4 also
supports mandatory and advisory byte-range locks.

An NFSv4 server can pass control of a file to a client
in response to an OPEN request. A delegation grants the
client exclusive responsibility for consistent access to the
file. The NFSv4 server remembers all outstanding
delegations on a file for revocation on conflicting
requests.

The need to manage consistency of state information
on multiple nodes fetters NFSv4’s ability to export an
object via multiple servers. This “single server”
constraint becomes a bottleneck if load increases while
other nodes in the parallel file system are underutilized.
Partitioning the file space among multiple NFS servers
can work around this limitation to an extent, but increases
management cost and fails to address scalable access to a
single file or directory—a critical requirement of many
high performance applications [6]. Some work has been
done to aggregate partitioned NFS servers into a single
file system image [7, 8], but this is at the expense of
interoperability with other file systems.

4. Related work
AFS [9] and NFSv3 constrain file modifications to a

single server, a bottleneck for a single file or directory.
AFS file system design of volumes, cells, sites, etc and its
lack of native file access, impairs its integration with high
performance file systems. NFSv3 has long suffered from
well-known security, consistency, and performance
problems that preclude its use in a WAN environment.

GridFTP [10] is used extensively in the grid to enable
high throughput, operating system independent, and
secure WAN access to high-performance file systems.
Successful and popular, GridFTP nevertheless has some
serious limitations: it copies data instead of providing
shared access to a single copy, complicating its

consistency model and decreasing storage capacity; lacks
a global namespace; and cannot integrate with the local
file system.

GridNFS is not intended to replace GridFTP, but to
work alongside it. For example, in tiered projects such as
ATLAS at CERN, GridFTP remains a natural choice for
long-haul scheduled transfers among the upper tiers,
while the file system semantics of GridNFS offers
advantages in the lower tiers. GridNFS lets domain
scientists work with files directly using conventional
names, which promotes effective data management.
GridNFS also offers seamless support for operating
system extensions such as RDMA or file replication and
migration.

GPFS [11], Lustre [12], PolyServe Matrix Server [13]
and GFS [14, 15] are examples of parallel file systems,
architectures in which client nodes access data in parallel
from storage nodes or disks. They provide the high-speed
storage systems that Split-Server NFSv4 utilizes to
improve I/O throughput.

5. Design
The design goals of our NFSv4 extensions are:

• Read and write performance scales linearly as parallel
file system nodes are added or removed.

• Single file system image with no partitioning.
• Negligible impact to NFSv4 security model and fault

tolerance semantics.
• Support for COTS NFSv4 servers and clients.
• Independent of underlying parallel file system.

5.1. NFSv4 extensions
Our design exports the file system from all available

parallel file system nodes. Any increase or decrease in
available throughput of the parallel file system, e.g.,
additional nodes, increased network bandwidth, etc., will
be reflected in Split-Server NFSv4.

To export a file from multiple NFSv4 servers
exporting shared storage, the servers need a common
view of the global state. NFSv4 servers must share state
information and must do so consistently, i.e., with single-
copy semantics. Without a consistent view of the state,
conflicting file and byte-range locks may cause data
corruption and leave the door open to malicious clients
wishing to read and write unauthorized data.

We use state servers to replicate the portions of state
needed to serve READ, WRITE, and COMMIT requests
at I/O nodes, known as data servers. Figure 2 displays
the Split-Server NFSv4 architecture. By transforming
NFSv4 into an out-of-band protocol, shown in Figure 3,
we unleash the I/O scalability of the underlying parallel
file system.

A system administrator can partition the file space
among several state servers, ensuring that all state for a
single file resides on a single state server. Control
processing can be distributed by allowing data servers to
handle operations that do not affect NFSv4 server state,
e.g., unmodified SETATTR and GETATTR.

Figure 2. Split-Server NFSv4 architecture.
Storage consists of a parallel file system such
as GPFS. NFSv4 servers are divided into
data servers, which handle all READ, WRITE,
and COMMIT requests, and state servers,
which handle all other requests.

Figure 3. Process flow. Client’s access data
servers for I/O and non-state related requests
and access state servers for file independent
and file state requests. State servers replicate
state on data servers.

5.2. Configuration and setup
The mechanics of a client connection to a server are

the same as NFSv4 with the client mounting the state
server managing the file space of interest.

Data servers register with state servers at start-up or
any time thereafter and are immediately available to Split-
Server NFSv4 clients, allowing easy incremental growth.

5.3. Distribution of state information
On receiving an OPEN request, a state server

determines which data server will service the data
request. Our implementation currently uses a round-robin
algorithm across the data servers. The state server then
replicates the appropriate state for the request on the
selected data server.

The following items constitute a unique identifier for
share reservation state:

• Client Name • Client Verifier
• Client IP Address • File Open Owner
• Access Bits • Deny Bits
• File handle • State Server ID

On receiving a CLOSE request from a client, the state
server reclaims the state from the data server. Once
reclamation is complete, the standard NFSv4 close
procedure proceeds.

Beyond share reservations, lock support does not
require maintaining any additional state. NFSv4 uses
POSIX locks and relies on the locking subsystem of the
underlying parallel file system. Delegations also require
no additional state on the data servers as state servers
manage conflicting access requests for a delegated file.

5.4. Redirection of clients
Client redirection uses a new attribute called

FILE_LOCATION, which extends the recommended
FS_LOCATIONS attribute to enable Split-Server NFSv4 to
provide access to a single file via multiple nodes.

The FILE_LOCATION attribute specifies:
• Data server location information
• Root pathname
• Read-only flag

Clients use this information to direct READ, WRITE
and COMMIT requests to the named server. The root
pathname allows each data server to have its own
namespace. The read-only flag declares whether the data
server will accept WRITE commands. This flag can
limit the number of nodes that can issue updates, possibly
reducing data consistency overhead.

6. Fault tolerance
Our failure model follows that of NFSv4 with the

following modifications:
1. A failed state server can recover its runtime state by

retrieving each part of the state from the data servers.
2. The failure of a data server is not critical to system

operation.

6.1. Client failure and recovery
An NFSv4 server places a lease on all share

reservations, locks, and delegations. Clients must send
RENEW operations, i.e., heartbeat messages, to the
server to retain their leases. If a server does not receive a
RENEW operation from the client within the lease period,
the server is allowed to reap all state associated with the
given client. In NFSv4, implicit RENEW operations
occur on all operations that require the client to send its
identifier, saving network bandwidth and server CPU
cycles.

Since our out-of-band extensions redirect READ,
WRITE, and COMMIT operations to the data servers, the

renewal implicit in these operations no longer occurs on
the state server. In Split-Server NFSv4, RENEW
operations are sent to a client’s mounted state server
either by the client or by the data server that is actively
fulfilling client requests. Enabling data servers to send
RENEW messages on behalf of a client may improve
scalability by limiting the maximum number of renewal
messages received by a state server to the number of data
server nodes, potentially much smaller than the number of
Split-Server NFSv4 clients.

6.2. State server failure and recovery
A recovering state server stops servicing requests

while querying the data servers and using its State Server
ID to identify and rebuild its state.

6.3. Data server failure and recovery
A failed data server is discovered by the state server as

it tries to replicate state or by clients as they issue
requests. Clients obtain a new data server by re-
requesting the FILE_LOCATION attribute from the
appropriate state server. A partitioned data server
immediately stops fulfilling client requests, preventing a
state server from granting conflicting file access requests.

7. Security
The addition of data servers to the NFSv4 protocol

does not require extra security mechanisms. The client
uses the security protocol negotiated with a state server
for all nodes. Servers communicate over RPCSEC_GSS,
the secure RPC mandated for NFSv4.

8. Evaluation
In this section, we present the results of our scalability

experiments with unmodified NFSv4 vs. Split-Server
NFSv4 as they export a GPFS file system. The test
environment is shown in Figure 4. All nodes are
connected via an IntraCore 35160 gigabit switch with
1500 byte Ethernet frames.

Server System: The five server nodes are equipped
with 850 MHz Pentium 4 processors with a 256 KB
cache, 2 GB of RAM, a Seagate 80GB, 7200 RPM hard
drive with an Ultra ATA/100 interface and a 2 MB cache,
an IBM/Hitachi 32GB, 7200 RPM hard drive with an
Ultra ATA/100 interface and a 2 MB cache, and two
3Com 3C996B-T gigabit cards. They run a modified
Linux 2.4.18 kernel with Red Hat 9.

Client System: Client nodes one through three are
equipped with dual 1.7 GHz Pentium 4 processors with a
256 KB cache, 2 GB of RAM, a Seagate 80 GB, 7200
RPM hard drive with an Ultra ATA/100 interface and a 2
MB cache, and a 3Com 3C996B-T gigabit card. Client

node four is equipped with 1.4 GHz Intel Xeon
processors with a 256 KB cache, 1 GB RAM, an Adaptec
40 GB, 10K RPM SCSI hard drive using Ultra 160 host
adapter, and a AceNIC gigabit Ethernet card. All clients
run the Linux 2.6.1 kernel with a Red Hat 9 distribution.

Netapp FAS960 Filer: The storage device has two
processors, 6 GB of RAM, and a quad gigabit card. It is
connected to eight disks running RAID4.

The five servers are running the parallel file system
GPFS v1.3 with a 40 GB file system and a 16 KB block
size on the Netapp Filer. GPFS maintains a 32 MB file
and metadata cache known as the pagepool. All NFS
experiments use forty server threads except the Split-
Server NFSv4 write experiments, which uses a single
server thread since we are seeking the best possible
performance (discussed in Section 8.4).

Figure 4. Experimental setup. The system
has four Split-Server NFSv4 clients and five
GPFS servers exporting a common file
system. The GPFS servers are exported by
Split-Server NFSv4, consisting of a single state
server and at most four data servers.

8.1. Scalability experiments
To evaluate the scalability of our design, we compare

the aggregate I/O throughput as we increase the number
of clients accessing GPFS, NFSv4, and Split-Server
NFSv4. Since both standard NFSv4 and Split-Server
NFSv4 export a GPFS file system, the GPFS
configuration provides the theoretical ceiling on NFSv4
and Split-Server NFSv4 I/O throughput. The extra hop
between the GPFS server and the NFS client prevents the
performance of NFSv4 and Split-Server NFSv4 from
equaling GPFS performance. The goal is for Split-Server
NFSv4 to scale linearly with GPFS. The GPFS
configuration consists of a four node GPFS file system
directly connected to the filer. The NFSv4 configuration
consists of a single NFSv4 server running on a GPFS
node and four clients. The Split-Server NFSv4
configuration consists of a state server, four data servers
(each running on a GPFS file system node), and four
clients. At most one client accesses each data server
during an experiment.

To measure the aggregate throughput, we used the
IOZone [16] benchmark tool. The first set of experiments
involves each client reading/writing a separate 500 MB
file. The second set of experiments involves each client

reading/writing disjoint 500 MB portions of a single pre-
existing file. The aggregate throughput is calculated
when the last client completes its task. The presented
value is the average over ten executions of the
benchmark. The write timing includes a flush of the
client’s cache to the server. Clients and servers purge
their caches before each read experiment. All read
experiments use a warm filer cache to eliminate disk
access irregularities.

The experimental goal is to demonstrate that Split-
Server NFSv4 scales linearly with additional resources.
We engineered a server bottleneck in the system by using
a small GPFS pagepool and block size, and by cutting the
number of server clock cycles in half. By ensuring that
each server is fully utilized, we are confident that our
results are applicable to any system that needs to scale
with additional servers.

8.2. Read performance
First, we measure the read performance as the number

of clients increases from one to four. Figure 5a presents
the results with separate files and Figure 5b presents the
results with a single file. GPFS sets the ceiling on
performance with an aggregate read throughput of 23
MB/s with a single server and with four servers reaching
94.1 MB/s and 91.9 MB/s in multiple and single file
experiments respectively. The slight decrease in
performance for the single file experiment is because all
servers must access a single metadata server. With Split-
Server NFSv4, as we increase the number of clients and
data servers the aggregate I/O throughput increases
linearly, reaching 65.7 MB/s with multiple files and 59.4
MB/s for the single file experiment. NFSv4 aggregate
throughput remains flat at approximately 16 MB/s in both
experiments, very explicitly demonstrating the single
server bottleneck.

8.3. Write performance
The second experiment measures the aggregate write

throughput as we increase the number of clients from one
to four. We first measure the performance of all clients
writing to separate files, as shown in Figure 6a.

GPFS sets the limit with an aggregate write throughput
of 16.7 MB/s with a single server and a maximum of 61.4
MB/s with four servers. The fourth server overloads the
filer’s CPU. NFSv4 and Split-Server NFSv4 initially
have an aggregate throughput of approximately 8 MB/s.
The aggregate throughput of Split-Server NFSv4
increases linearly, reaching a maximum of 32 MB/s. As
in the read experiments, the aggregate throughput of
NFSv4 remains flat as the number of clients is increased.

 Figure 5a. Separate files Figure 5b. Single file

Aggregate read throughput - GPFS consists of up to four file system nodes. NFSv4 is up to four clients
accessing a single GPFS server. Split-Server NFSv4 consists of up to four clients accessing up to four
data servers and a state server. Split-Server NFSv4 scales linearly as we increase the number of GPFS
nodes but NFSv4 performance remains flat.

 Figure 6a. Separate files Figure 6b. Single file

Aggregate write throughput - GPFS consists of up to four file system nodes. NFSv4 is up to four
clients accessing a single GPFS server. Split-Server NFSv4 consists of up to four clients accessing up to
four data servers and a state server. With separate files, Split-Server NFSv4 scales linearly as we
increase the number of GPFS nodes but NFSv4 performance remains flat. With a single file, Split-Server
NFSv4 experiences reduced performance due to mtime synchronization.

Figure 6b shows the experimental results of each client
writing to different regions of a single file. The write
performance of GPFS and NFSv4 is similar to the
separate file experiments. The major difference occurs
with Split-Server NFSv4, achieving an initial aggregate
throughput of 6.1 MB/s and increasing to 18.7 MB/s. The
initial poor performance and lack of scalability is the
result of modification time (mtime) synchronization
between GPFS servers. This is disabled when accessing
GPFS directly, but is mandatory with NFS to ensure
client cache consistency. GPFS selects the first node that
accesses a file as its metadata server, thereby causing the
GPFS server that the state server exports to be among

servers that synchronize the mtime attribute, further
reducing performance.

8.4. Discussion
GPFS synchronizes the mtime attribute to comply

with the NFS protocol. As demonstrated in the previous
section, this comes at a price of severely hindering its
scalability for access to a single file. Client cache
synchronization requires this overhead, but environments
exist where it is unnecessary. Some programs cache data
themselves and use the OPEN option O_DIRECT to
disable client caching for a file. Other programs require
only non-conflicting write consistency, handling data
consistency without relying on locks or cache consistency

mechanisms. PVFS2 [17] is designed for such programs.
To succeed in these environments, the NFS protocol must
relax its client cache consistency semantics.

Traditionally, NFS block sizes have been very small.
Block sizes were 4 KB in NFSv2, grew to 8 KB in
NFSv3, and most recent implementations now support 32
KB or 64 KB. Synchronous writes along with hardware
and kernel limitations are some of the original reasons for
small block sizes. Another is UDP, which divides each
block into multiple requests over the wire so that the loss
of a single request means the loss of the entire block.
With the introduction of TCP to the Linux
implementation of NFS in 2002, jumbo frames, and larger
buffer space allow for larger block sizes, but the current
Linux kernel has a 32 KB limit. This creates a disparity
with many parallel file systems, which use a stripe size of
greater than 64 KB. To avoid this data request,
inefficiency on the file node, NFS implementations need
to catch up to parallel file systems like GPFS that support
block sizes of greater than 1 MB to transfer data between
storage, file and application nodes.

Multiple NFS server threads can also reduce I/O
throughput. Even with a single NFS client, the parallel
file system assumes all requests are from different
sources and performs locking between threads. In
addition, server threads can process read and write
requests out of order, hampering the parallel file system’s
ability to improve its interaction with the physical disk.

In NFSv3, the lack of OPEN and CLOSE commands
leads to an implicit open and close of a file in the
underlying file system on every request. This does not
degrade performance with local file systems such as Ext3,
but the extra communication required to contact a
metadata server in parallel file systems severely restricts
NFSv3 throughput.

9. Future work
We are currently clarifying the FILE_LOCATION

attribute with the Network Working Group and working
toward its adoption in a minor version extension of the
NFS protocol.

Coordinated use of the parallel file system’s cache
may be important under certain I/O access patterns.
Server load balancing algorithms other than round robin
may be better suited to these environments.

Even though the state servers do not handle I/O
requests, they may prove to be a bottleneck for a single
file. The Google file system [18] uses read-only
replication of metadata, but this is be insufficient for our
design as each state server requires write access.
Automatic partitioning of the file space among state
servers and automatic failover between state servers are
also areas for future research.

10. Conclusion
This paper discusses the performance issues involved

in exporting a parallel file system via NFS and introduces
extensions to the NFSv4 protocol to improve the
aggregate bandwidth and transparency between remote
sites in a data grid. Using on-demand replication and a
new FILE_LOCATION attribute, Split-Server NFSv4
provides parallel and scalable access to a parallel file
system. We implemented a prototype of our design and
demonstrated that Split-Server NFSv4 scales linearly with
the number of parallel file system nodes.

11. Acknowledgements
We thank Gary Grider and Lee Ward for valuable

insights and Brian Dixon for help with GPFS.
This research is partially supported by Lawrence

Livermore National Laboratory, Los Alamos National
Laboratory, and Sandia National Laboratories under
contract B523296.

12. References
[1] "IBM GPFS Scores Top Marks in Bandwidth Challenge at

SC2003," in GRIDtoday, vol. 2, Dec. 1, 2003.
[2] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of

the Grid: Enabling Scalable Virtual Organizations,"
International Journal on High-Performance Computing
Applications, vol. 15, pp. 200-222, 2001.

[3] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, and D. Noveck, "Network File System
Version 4 Protocol Specification," RFC 3530, April 2003.

[4] Sun Microsystems Inc., "NFS: Network File System
Protocol Specification," RFC 1094, March 1989.

[5] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D.
Lebel, and D. Hitz, "NFS Version 3 Design and
Implementation," In Proceedings of the Summer USENIX
Conference, June 1994.

[6] S. Berchtold, C. Boehm, D.A. Keim, and H. Kriegel, "A
Cost Model For Nearest Neighbor Search in High-
Dimensional Data Space," ACM PODS, May 1997.

[7] G.H. Kim, R.G. Minnich, and L. McVoy, "Bigfoot-NFS:
A Parallel File-Striping NFS Server (Extended Abstract),"
www.bitmover.com/lm, 1994.

[8] F. Garcia-Carballeira, A. Calderon, J. Carretero, J.
Fernandez, and J.M. Perez, "The Design of the Expand
File System," International Journal of High Performance
Computing Applications, vol. 17, pp. 21-37, 2003.

[9] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West, "Scale and
Performance in a Distributed File System," ACM
Transactions on Computer Systems, vol. 6, 1988.

[10] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal,
and S. Tuecke., "Data Management and Transfer in High
Performance Computational Grid Environments," Parallel
Computing Journal, vol. 28, pp. 749-771, May 2002.

[11] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk File
System for Large Computing Clusters," USENIX
Conference on File and Storage Technologies, 2002.

[12] Cluster File Systems Inc., "Lustre: A Scalable, High-
Performance File System," www.lustre.org, 2002.

[13] Polyserve Inc., "Polyserve Matrix Server Architecture,"
White Paper, www.polyserve.com, 2003.

[14] Red Hat Software Inc., "Red Hat Global File System,"
www.redhat.com.

[15] S.R. Soltis, T.M. Ruwart, and M.T. O'Keefe, "The Global
File System," In Proceedings of the Fifth NASA Goddard
Conference on Mass Storage Systems, 1996.

[16] W.D. Norcott and D. Capps, "IOZone Filesystem
Benchmark," www.iozone.org, 2003.

[17] PVFS2 Development Team, "Parallel Virtual File System,
Version 2," www.pvfs.org/pvfs2, September 2003.

[18] S. Ghemawat, H. Gobioff, and S.T. Leung, "The Google
File System," In Proceedings of the19th ACM Symposium
on Operating Systems Principles (SOSP ’03), October
2003.

