
CITI Technical Report 02-3

Improving Host Security with System Call Policies

Niels Provos
provos@citi.umich.edu

Abstract

We introduce a system that eliminates the need to run programs in privileged process contexts. Using our
system, programs run unprivileged but may execute certain operations with elevated privileges as determined by
a configurable policy eliminating the need for suid or sgid binaries. We present the design and analysis of the
“Systrace” facility which supports fine grained process confinement, intrusion detection, auditing and privilege
elevation. It also facilitates the often difficult process of policy generation. With Systrace, it is possible to generate
policies automatically in a training session or generate them interactively during program execution. The policies
describe the desired behavior of services or user applications on a system call level and are enforced to prevent
operations that are not explicitly permitted. We show that Systrace is efficient and does not impose significant
performance penalties.

November 11, 2002

Center for Information Technology Integration
University of Michigan

535 West William Street
Ann Arbor, MI 48103-4943



.



Improving Host Security with System Call Policies

Niels Provos Center for Information Technology Integration
University of Michigan
provos@citi.umich.edu

1 Introduction

Computer security is increasing in importance as
more business is conducted over the Internet. Despite
decades of research and experience, we are still unable
to make secure computer systems or even measure their
security.

We take for granted that applications will always
contain exploitable bugs that may lead to unauthorized
access [5]. There are several venues that an adversary
may choose to abuse vulnerabilities, both locally or
remotely. To improve the security of a computer sys-
tem, we try to layer different security mechanisms on
top of each other in the hope that one of them will be
able to fend off a malicious attack. These layers may
include firewalls to restrict network access, operating
system primitives like non-executable stacks or appli-
cation level protections like privilege separation [28]
. In theory and practice, security increases with the
number of layers that need to be circumvented for an
attack to be successful.

To recover quickly from a security breach, it is im-
portant to detect intrusions and to keep audit trails for
post-mortem analysis. While there are many intrusion
detection systems that analyse network traffic [26] or
host system activity [20] to infer attacks, it is often
possible for a careful intruder to evade them [29, 32].

Firewalls can prevent remote login and restrict ac-
cess, for example to a web server only [11]. However,
an adversary who successfully exploits a bug in the
web server, gains its privileges and may possibly use
them in subsequent attacks to gain even more privi-
leges. With local access to a system, an adversary may
obtain root privileges, e.g., by exploiting setuid pro-
grams [6, 10], using localhost network access or special
system calls [9].

Instead of detecting intrusions, we may try to con-
fine the adversary and limit the damage she can cause.
For filesystems, access control lists [14, 30] allow us to
limit who may read or write files. Even though ACLs
are more versatile than the usual Unix access model,
they do not allow complete confinement of an adver-
sary and are difficult to configure.

We observe that the only way to make persistent
changes to the system is through system calls. They
are the gateway to privileged kernel operations. By
monitoring and restricting system calls, an application
may be prevented from causing harm. Solutions based
on system call interposition have been developed in the
past [19, 23]. System call interposition allows these
systems to detect intrusions as policy violations and
prevent them while they are happening. However, the
problem of specifying an accurate policy still remains.

This paper presents Systrace, a solution that effi-
ciently confines multiple applications, supports multi-
ple policies, interactive policy generation, intrusion de-
tection and prevention, and can be used to generate
audit logs. Furthermore, we present a novel approach
called privilege elevation that eliminates the need for
setuid or setgid binaries. We discuss the design and
implementation of Systrace and show that it is an ex-
tensible and efficient solution to the host security prob-
lem.

The remainder of the paper is organized as follows.
Section 2 discusses related work. In Section 3, we
provide further motivation for our work. Section 4
presents the design of Systrace and Section 5 discusses
its implementation. We present an analysis of the sys-
tem in Section 6. In Section 7, we present a detailed
performance analysis of our system. We conclude in
Section 8.

2 Related Work

While capabilities [25] and access control lists [14,
30] extend the traditional Unix access model to provide
finer-grained controls, they do not prevent untrusted
applications from causing damage.

Instead, we may use mechanisms based on system
call interception or system call interposition to prevent
damage from successful intrusions.

Janus by Goldberg et al. [19] is one of the first sys-
tem call interception tools. It uses the ptrace and /proc
mechanisms. Wagner states that ptrace is not a suit-
able interface for system call interception, e.g., race



conditions in the interface allow an adversary to com-
pletely escape the sandbox [33]. The original Janus im-
plementation has several drawbacks: Applications are
not allowed to change their working directory or call
chroot because Janus can not keep track of the appli-
cation’s changed state. Janus has evolved significantly
over time and its latest version uses a hybrid approach
similar to Systrace to get direct control of system call
processing in the operating system [17].

One particularly difficult problem in application
confinement are symlinks, which can be used to redi-
rect filesystem access almost arbitrarily. Garfinkel in-
troduces safe calling sequences that do not follow any
symlinks. The approach uses an extension to the open
system call that is specific to the Linux operating sys-
tem but breaks any application that accesses filenames
containing symlinks. Systrace solves this problem us-
ing filename normalization and argument replacement.
Currently, Janus does not address intrusion detection,
auditing or policy generation.

Jain and Sekar [23] offer another fairly complete
treatment of system call interposition. On some sys-
tems their implementation is based on ptrace and suf-
fers the problems mentioned above. Furthermore, they
do not address the problem of naming ambiguities that
may result in policy circumvention. Because C++
is used as their policy language, creating comprehen-
sive policies is difficult. Systrace, on the other hand,
supports automatic and interactive policy generation
which allows us to create policies quickly even in very
complex environments.

Other systems that use mechanisms like system call
interception are Cerb [13], Consh [2], MAPbox [1] and
Subterfugue [12].

Peterson et al. present a general-purpose system call
API for confinement of untrusted programs [27]. The
API is flexible but has no provisions for recording audit
trails or intrusion detection. Furthermore, specifying
security policies is labor intensive as the sandbox needs
to be programmed into applications.

Domain Type Enforcement [4, 34] is a kernel-level
approach to restrict system access for all processes de-
pending on their individual domains. A complete DTE
implementation requires extensive changes to the op-
erating system and does not automatically extend to
new subsystems. Because policies are locked down on
system start, users may not create individual policies.
In contrast to Systrace, DTE domains do not differen-
tiate between users. We feel that system call interpo-
sition offers higher flexibility as it allows us to design
and create a simple system that also addresses policy
generation, audit trails, intrusion detection, etc.

The security architecture for the Flask microkernel

emphasizes policy flexibility and rejects the system call
interception mechanism claiming inherent limitations
that restrict policy flexibility [31]. Instead, the Flask
system assigns security identifiers to every object and
employs a security server for policy decisions and an
object server for policy enforcement. However, Flask
does not consider application confinement and provides
no support for auditing or intrusion detection.

SubOS [22] takes a similar approach based on object
labeling to restrict access to the system. Depending on
their origin, objects are assigned sub-user identifiers. A
process that accesses an object inherits its sub-user id
and corresponding restrictions. As a result, a process
subverted by a malicious object may cause only limited
damage. In practice, there are only a few applications
that can be subverted that way and enforcing security
policies for these applications is sufficient to prevent
malicious data from causing damage.

Forrest et al. analyze system call sequences to dis-
criminate between processes [15]. Their is extended
by Hofmeyer et al. to achieve intrusion detection by
recording the system calls that an application exe-
cutes and comparing the recorded sequences against a
database of good sequences [20]. Abnormal sequences
indicate an ongoing intrusion. The training process
that collects good system call sequences is similar to
the automatic policy generation in Systrace. While an-
alyzing system call sequences is an effective mechanism
to detect intrusions, it does not help to prevent them.
Recent research also shows that mimicry attacks can
evade the intrusion detection system [32]. Systrace not
only detects intrusions, it can also prevent them or at
least limit the damage they can cause. Furthermore,
evasion attacks are not possible as we discuss in Sec-
tion 6.

3 Motivation and Threat Model

Most applications that run on computer systems are
too complex and complicated to trust: web browsers,
name servers, etc. Even with access to the source code,
it is difficult to reason about the security of these appli-
cations. They might harbor malicious code or contain
bugs that are exploitable by carefully crafted input.

Because it is not possible to find all vulnerabilities,
we assume the existence of programming errors known
to the adversary that she can use to gain unauthorized
access to the system.

We aim to limit the impact an adversary can have on
the system by restricting the operations an application
is allowed to execute. The observation that security
relevant changes are performed via system calls makes



the enforcement of restrictions at the system call level
a natural choice.

An application is confined by a set of restrictions
which are expressed by a security policy. Defining
a correct policy is difficult and not possible without
knowing all possible code paths that an uncompro-
mised application may take. Therefore we require the
policy language to be intuitive while still expressive,
and it should be possible to generate policies without
complete knowledge of an application.

We may use the security policy as specification
that describes the expected behavior of an applica-
tion. When monitoring the operations an application
attempts to execute, any deviation from the specified
policy indicates a security compromise [24]. To further
facilitate forensic analysis of an intrusion, we also wish
to generate an audit log of previous operations related
to the application.

Experience shows that adversaries escalate their
privileges by abusing setuid or setgid programs [6].
These programs are executed by the operating system
with different privileges than the user starting them.
While increasing privileges is often necessary for cor-
rect operation, the setuid model is too coarse grained.
We aim to provide a fine-grained model that eliminates
the need for setuid binaries and integrates a method to
elevate privilege into a policy language.

Systrace realizes these goals and is an effective im-
provement of host security that limits the damage an
adversary can cause by exploiting application vulnera-
bilities. The next section discusses the design of Sys-
trace.

4 Design

There are several approaches for implementing sys-
tem call interposition. We may use existing intercep-
tion mechanisms to create an implementation com-
pletely in user space, we may implement the system
entirely at the kernel-level or choose a hybrid of both.
A user space implementation is often more portable but
may suffer a larger performance impact. Furthermore,
the interception mechanism may not provide the re-
quired security guarantees or make it difficult to keep
track of operating system state like processes exiting
and forking. A notable exception is SLIC [18], a mecha-
nism to create extensible operating systems via system
call interposition. Unfortunately, it is not portable and
adds significant complexity to the operating system.

On the other hand, an implementation completely
at the kernel-level is likely to be fast but less portable
and also causes a significant increase in the complexity

of the operating system.
We choose a hybrid approach to implement a small

part of the system at the kernel-level. The kernel-level
part supports a fast path for system calls that should
always be allowed or denied. That case should incur
almost no performance penality because it does not
require a context switch to ask a user space policy dae-
mon for a decision.

Some control in the kernel also allows us to make
the system fail-safe, i.e., no application can escape its
sandbox even if there are unforeseen errors that might
cause the monitor itself to terminate. When the sand-
boxing process terminates, the kernel terminates all
processes that it was monitoring. Additionally, the ker-
nel keeps track of new processes being created and of
processes that exit. Child processes inherit the policy
of their parents.

If the kernel can not use the fast path for a system
call, it needs to ask the policy daemon in user space for
a policy decision. In that case, the process is blocked
until the daemon returns with an answer to permit the
system call or to deny it with a certain error code.
Information is exported from the kernel to user space
via a simple yet comprehensive interface.

The user space policy daemon uses the interface to
the kernel to start monitoring processes and to get
information about pending policy decisions or state
changes. The state changes may be process creation,
processes exiting, processes changing their uid or gid,
and other state changes.

The daemon may also request information about the
result of a system call. This allows us to know, for ex-
ample if the execve system call has succeeded in replac-
ing the current process image with a new application.
This event can be used to install a new policy from the
policy database.

System call interception does not provide atomicity
between the time a policy decision is made and the time
a system call is executed. As a result, an adversary can
change the system call before it is executed but after
the policy daemon has inspected it. For example, two
processes that share parts of their address space may
cooperate to present one set of system call arguments
to the policy daemon and another one to the kernel.
When the kernel suspends the first process to consult
the policy daemon, the second process is still running
and may change the system call arguments of the first
process after they have been inspected by the daemon.
This lack of atomicity may result in the execution of
unchecked arguments allowing an adversary to escape
the sandbox.

We avoid these race conditions by replacing the sys-
tem call arguments in the kernel with the arguments



that were resolved and evaluated by Systrace. This en-
sures that the kernel executes only system calls that
passed the policy check.

Using argument replacement, it is possible to change
the way an application interacts with the operating sys-
tem. By changing filename arguments, it is possible to
present a virtual filesystem layout to the application.
We may also rewrite the addresses an application at-
tempts to access on the network. This allows us to
redirect network traffic to different hosts. A more de-
tailed analysis of this feature will be the subject of
future work.

Before making a policy decision, the system call and
its arguments are translated into a system independent
human-readable format. The policy language operates
on that translation and does not need to be aware of
system call specific semantics.

4.1 Policy

Existing frameworks for making policy decisions
propose generic policy languages [7, 8] that provide
policy evaluation methods but are more complex than
necessary in our case.

We use an ordered list of policy statements per sys-
tem call. A policy statement is a boolean expression B
combined with an action clause: B then action. Valid
actions are either deny or permit plus optional flags. If
the boolean expression evaluates to true, the specified
action is taken.

The variables Xn of a boolean expression are tuples
of the form (subject op data), where subject is the
translated name of a system call argument, data is a
string argument, and op a function with boolean return
value that takes subject and data as arguments.

The set of all lists forms the security policy. For a
given system call, policy evaluation starts at the be-
ginning of the system call specific list and terminates
with the first boolean expression that is true. The ac-
tion from that expression determines if the system call
is denied or allowed.

If no boolean expression becomes true, the policy
decision is forwarded to the user of the application or
automatically denied depending on the configuration.
Section 4.2 explains in more detail how this mechanism
is used to generate policies interactively or automati-
cally. When denying a system call, it is possible to
specify which error code is passed to the monitored
application.

To create comprehensive policies that apply to dif-
ferent users, policy statements may carry predicates.
A policy statement is evaluated only if its predicate
matches and ignored otherwise. Using predicates, it

is possible to restrict the actions of certain users or
be more permissive with others, for example system
administrators. Predicates are appended to the policy
statement and are of the form if {user, group} op data,
where op is either equality or inequality and data a user
or group name.

The log modifier may be added to a policy statement
to record matching system calls. Every time a system
call matches this policy statement, the operating sys-
tem records all information about the system call and
the resulting policy decision. This allows us to create
arbitrarily fine-grained audit trails.

4.2 Policy Generation

Creating policies is usually relegated to the user who
wishes to sandbox applications. Policy generation is
not an easy task as some policy languages resemble
complicated programming languages [23]. While those
languages are very expressive, the difficulty of creat-
ing good policies increases with the complexity of the
policy language.

We designed our policy language to be simple and
stateless. Each policy statement can be evaluated by
itself, thus it is possible to extend a policy by append-
ing new policy statements. The major benefit of this
approach is that a policy can be generated iteratively.

We create policies automatically by running an ap-
plication and recording the system calls that it exe-
cutes. We translate the system call arguments and
canonically transform them into policy statements for
the corresponding system calls. When an application
attempts to execute a system call during the training
run, it is checked against the existing policy and if not
covered by it, a new policy statement that permits this
system call is appended to the policy.

On subsequent runs of the application, the auto-
matically created policy is used. For some applications
that create random file names, it is necessary to edit
the policies by hand to account for nondeterminism.

When generating policies automatically, we assume
that the application itself does not contain malicious
code and that it operates only with benign data. Oth-
erwise, the resulting policies might permit undesirable
actions.

To address cases for which our assumptions do not
hold or for which it is impossible to exercise all code
paths in a training run, we use interactive policy gen-
eration. Interactivity implies a the user needs to make
policy decisions when the current policy does not cover
the attempted system call. When a policy decision is
required by the user, she is presented with a graphical
notification that contains all relevant information. She



Policy: /usr/sbin/named, Emulation: native

native- sysctl: permit

native-accept: permit

native-bind: sockaddr match "inet-*:53" then permit

native-break: permit

native-chdir: filename eq "/" then permit

native-chdir: filename eq "/namedb" then permit

native-chroot: filename eq "/var/named" then permit

native-close: permit

native-connect: sockaddr eq "/dev/log" then permit

...

Figure 1: Partial policy for the name daemon. Policies can be improved iteratively by appending new policy statements.
The policy statement for bind allows the daemon to listen for DNS requests on any interface.

then either improves the current policy by appending
a policy statement that covers the current system call
or terminates the application.

The system assists the user by offering generic pol-
icy templates that can be used as starting point. Once
an initial policy has been created, policy notifications
appear only when an attempted operation is not cov-
ered by the configured policy. This might indicate that
a new code path is being exercised, or that a security
compromise is happening. The user may either permit
the operation or deny and investigate it.

Once a security policy for an application has been
finalized, automatic policy enforcement may be em-
ployed. In that case, the user is not asked for a pol-
icy decision when an application attempts to execute a
system call that is not covered by the policy. Instead,
the system call is denied and an error code returned to
the application. The errant attempt is logged by the
operating system.

4.3 Privilege Elevation

Beyond restricting an application to its expected be-
havior, there are situations in which we would like to
increase its privileges. In Unix, there are many system
services and applications that require root privileges to
operate. Often, higher privileges are required only for
a few operations. Instead of running the whole ap-
plication with special privileges, we extend the policy
language to assign the desired privileges to a single
system call. The kernel raises the privileges just before
the system call is executed and lowers them directly
afterwards.

As every user may run their own policy daemon,
privilege elevation is available only when the Systrace
policy daemon runs as root. Otherwise, it would be
possible for an adversary to obtain unauthorized privi-
leges by creating her own policies. Identifying the priv-

ileged operations of setuid or setgid applications allows
us to create policies that elevate privileges of those op-
erations without the need to run the whole application
privileged. As a result, an adversary who manages to
seize control of a vulnerable application receives only
very limited additional capabilities instead of full priv-
ileges.

The ping program, for example is a setuid appli-
cation as it requires special privileges to operate cor-
rectly. To send and receive ICMP packets, ping cre-
ates a raw socket which is a privileged operation in
Unix. With privilege elevation, we execute ping with-
out special privileges and use a policy that contains a
statement granting ping the privilege to create a raw
socket.

Unix allows an application to discard privileges by
changing the uid and gid of a process. The change is
permanent and the process can not recover those privi-
leges later. If an application occasionally needs special
privileges throughout its lifetime dropping privileges is
not an option. In this case, privilege elevation becomes
especially useful. For example, the ntpd daemon syn-
chronizes the system clock. Changing system time is
a privileged operation and ntpd retains root privileges
for its whole lifetime. A recent remote root vulnerabil-
ity [16] could have been prevented with single system
call privilege elevation.

5 Implementation

We now give an overview of the Systrace implemen-
tation. Systrace is available for Linux, NetBSD, and
OpenBSD; we concentrate on the OpenBSD implemen-
tation.

To help reason about the security of our implemen-
tation, simplicity is one of our primary goals. We keep
the implementation simple by introducing abstractions



Kernel

Userland

Application

System Call

System Call
Gateway

Entry

Systrace

In-Kernel Policy
Permit
Deny

Ask
Exit

System Call
Result

Systrace

Policy
 Decision

Evaluate
Policy

Permit
Deny

Ask

Translate

Answer

Notification
Policy decision

by user Sandbox

Figure 2: Overview of system call interception and policy decision. For an application executing in the sandbox, the
system call gateway requests a policy decision from Systrace for every system call. The in-kernel policy provides a fast
path to permit or deny system calls without checking their arguments. For more complex policy decisions, the kernel
consults a user space policy daemon. If the policy daemon can not find a matching policy statement, it has the option
to request a refined policy from the user.

that separate different functionalities into their own
components. A conceptual overview of the system call
interception architecture is shown in Figure 2.

When a monitored application executes a sys-
tem call, the kernel consults a small in-kernel policy
database to check if the system call should be denied
or permitted without asking the user space daemon.
At this point, policy decisions are made without in-
specting any of the system call arguments. Usually,
system calls like read or write are always permitted.
The kernel communicates via the /dev/systrace de-
vice to request policy decisions from the daemon.

While processes may have different policies, the ini-
tial policy for all system calls defers policy decisions to
a corresponding user space daemon. When the kernel
is waiting for an answer, it suspends the process that
requires a policy decision. If the process is awakened by
a signal before a policy decision has been received, the
kernel denies the current system call and returns an er-
ror. To enforce synchronization, each message from the
kernel carries a sequence number so that answers from
user space can be matched against the correct message.
The sequence number ensures that a user space policy
decision is not applied to a system call other than the
one that caused the message.

When the user space policy daemon receives a
request for a decision, it looks up the policy associated
with the process and translates the system call argu-

ments. To translate them, we register translators for
each argument in a system call. The translation of the

socket(AF INET, SOCK RAW, IPPROTO ICMP);

system call takes the following form:
socket: sockdom: AF INET, socktype: SOCK RAW

While many argument translators are fairly simple,
translating filenames is more complicated. Filenames
in Unix are relative to the current working directory of
a process. In order to translate a filename into an un-
ambiguous absolute path name, we need to know the
current working directory of the monitored application
even if it is working in a chroot environment. Addition-
ally, all symbolic links in components of the file name
need to be resolved so that access restrictions imposed
by policy can not be circumvented by an adversary.

The translators also act as argument normalizers.
The argument replacement framework is used to re-
place the original arguments with their translation. As
the kernel sees only normalized arguments, an adver-
sary can not use misleading arguments to circumvent
a security policy. The kernel installs the rewritten ar-
guments on the stack of the monitored process before
resuming execution of the system call.

A policy statement that permits the creation of raw



sockets might look like this:
socket: socktype eq "SOCK RAW" then permit

The operators in the boolean expression use the
translated human-readable strings as input arguments.
We currently support eq, match, re and sub as op-
erators:

• The eq operator evaluates to true only if the sys-
tem call argument matches the text string in the
policy statement exactly.

• The match operator performs file name globbing
as found in the Unix shell. It can be used to match
files in directories for file name arguments.

• The re operator uses regular expressions to match
system call arguments. It is very versatile but
more expensive to evaluate than other operators.

• The sub operator evaluates to true only if the sys-
tem call argument contains the specified substring.

If evaluating the policy for the current system call
results in either deny or permit, the policy daemon re-
turns the answer to the kernel which then awakens the
sleeping process. Otherwise, the user monitoring the
applications is asked for a policy decision. The notifi-
cation mechanism can be implemented independently
from the rest of the system and is currently either a
graphical user interface or a text prompt on the termi-
nal. At this point, the user can add new policy state-
ments to the policy.

Policies for system calls accessing the filesystems
tend to be similar. For example, the access, stat, and
lstat system calls all fulfill similar functionality. In or-
der to avoid duplication of policy, we introduce system
call aliasing to map system calls with similar function-
ality into a single virtual system call which is then used
for policy evaluation. Currently, fsread is used for sys-
tem calls that read from the filesystem, and fswrite for
system calls that cause change in the filesystem. The
open system call is mapped to fsread or fswrite depend-
ing on the kind of filesystem access that is indicated by
its arguments. System call aliasing reduces the size of
policies and simplifies policy generation.

It is possible to make policies more flexible by us-
ing predicates. Policy statements are only evaluated if
their predicate matches. For example, to prevent root
access via the SSH daemon, a policy statement that
permits the execution of a shell could be predicated so
that it applies only to non-root users. In order to keep
track of a process’ uid and gid, the kernel sends infor-
mational messages to the policy daemon when those
values change.

The execve system call is treated specially. When
a process executes another application, its in-memory
image is replaced with the one of the executed pro-
gram. To support more fine-grained policies, we can
set a new policy for the process. The policy is obtained
from the name of the executed application. As a re-
sult, one Systrace daemon may concurrently enforce
multiple policies for multiple processes.

Policies for different applications are stored in a pol-
icy directory as separate files. Users may store their
own policies in a user specific policy directory. The
system administrator may also provide global policies
for all users.

6 Analysis

An adversary who takes control of a sandboxed ap-
plication may try to escape the sandbox by confusing
the policy enforcement tool and tricking it into allow-
ing actions that violate policy. While many sandboxing
tools share common problems, we present novel solu-
tions to some of them and discuss inherent limitations
of policy systems based on system call interposition.

6.1 Security Analysis

To enforce security policies effectively by system call
interposition, we need to resolve the following chal-
lenges: incorrectly replicating OS semantics, resource
aliasing, lack of atomicity, and side effects of denying
system calls [17, 31, 33].

We briefly explain their nature and discuss how we
address them.

The sandboxing tool needs to track operating sys-
tem state in order to reach policy decisions. Systrace,
for example, has to keep track of process uids and the
filename of the program binary the monitored process
is executing. In order to avoid incorrectly replicating
OS semantics, our kernel-level implementation informs
the Systrace daemon about all relevant state changes.

Resource aliasing provides multiple means to ad-
dress and access the same operating system resource.
For example, on some Unix systems, it is possible to
gain access to files by communicating with a system
service or by using symbolic links in the filesystem to
create different names for the same file. An adversary
may use these indirections to circumvent policy and
obtain unauthorized access. The system call interposi-
tion mechanism is unaware of system services that al-
low proxy access to operating system resources. When
creating policies that allow a sandboxed application to
contact such system services, we need to be aware of



the consequences. However, we can prevent aliasing
via symbolic links or relative pathnames as discussed
below.

Another problem is the lack of atomicity that may
cause the mapping of names to resource to change be-
tween policy decision and system call execution. An
adversary may cause such a state change that allows
a process to access a different resource than the one
originally approved, for example a cooperating process
sharing memory may rewrite system call arguments be-
tween policy check and execution.

Systrace solves both aliasing and atomicity problems
by normalizing the system call arguments. We provide
the normalized values to the operating system in such
a way that the name to resource mapping can not be
changed by an adversary. For filenames this includes
resolving all symbolic links and all relative paths.

Side effects of denying system calls need to be taken
into consideration when system calls are being denied.
If we assume correct security policy, system calls are
denied only if an application attempts to do something
that it should not. As the behavior of many applica-
tions depends on the error code returned to them, we
can specify the error code as part of the Systrace policy.
Every system call has its own set of valid return codes
which do not always include EINTR or EPERM. To avoid
confusing applications, we allow policies to set their
own error code instead of mandating a fixed value. For
example, we let the kernel return EACCESS for the stat
system call if the application should think that it is not
permitted to access a certain file. On the other hand,
returning ENOENT causes the application to think that
the file does not exist.

Furthermore, we address secure process detaching
and policy switching, problems that are often over-
looked. When an application executes a new program,
the operating system replaces the code that the pro-
cess is running with the executed program. If the new
program is trusted, we may wish to stop monitoring
the process that runs it. On the other hand, a new
program also implies new functionality that could be
confined better with a different, more suitable policy.
If requested, Systrace reports the return value of a sys-
tem call to indicate if it was successfully executed or
not. In the case of execve, success indicates that the
monitored process is running a new program and we al-
low the policy to specify if we should detach from the
process or allow a different policy to take effect. After
these changes take effect, the execution of the process
is resumed.

Because the security of our system relies on the in-
tegrity of the filesystem, we assume that it is secure.
If an adversary can control the filesystem, she may

modify the policies that determine the permissible op-
erations for monitored applications or replace trusted
programs with malicious code. We may relax this as-
sumption if other security mechanisms are in place such
as a secure bootstrap architecture [3] that prevent an
adversary from corrupting the filesystem.

Audit trails may be generated by adding the log
modifier to policy statements. An an example, for an
audit trail of all commands a user executes, it is suffi-
cient to Systrace her shell and log all the executions of
exexve.

The benefit of privilege elevation is the reduction
of privileges an application requires for its execution.
Applications that formerly required root privileges for
their entire lifetime now execute only specific system
calls with elevated privileges. Other system calls are
executed with the privileges of the user who invoked
the application. The semantics of setuid prevent a user
from debugging privileged applications via ptrace. We
apply the same semantics when policy elevates an ap-
plication’s privileges.

6.2 Policy generation

Policy generation is an often neglected problem. In
order for a sandbox to function correctly, it requires
a policy that restricts an application to a minimal set
of operations without breaking its functionality. To
facilitate policy generation, our policy language allows
policies to be improved iteratively by appending new
policy statements.

We can generate policies automatically by execut-
ing applications and recording their normal behavior.
Each time we encounter a system call that is not part of
the existing policy, we append a new policy statement
that matches the current translated system call.

The resulting policy covers the executed code path
of the application. For applications that randomize
arguments, we post process the policy to make it inde-
pendent of arguments with random components.

For example, when mkstemp("/tmp/confXXXXXX")
creates the file /tmp/confJ31A69, automatic policy
generation appends a corresponding policy statement:
fswrite: filename eq "/tmp/confJ31A69" then permit

Post processing changes the policy statement so
that it is independent of the randomness and thus
applies to subsequent executions of the application:
fswrite: filename match "/tmp/conf*" then permit

Automatic policy generation and the process of pro-
filing normal application behavior by Hofmeyr et al.[20]
face similar problems. We need to make sure that no



abnormal behavior occurs during policy training and
try to exhaust all possible code paths. However, in-
teractive and automatic policy generation go hand in
hand. We do not require a complete policy to sandbox
an application because we may request a policy deci-
sion from the user if an operation is not covered by the
existing policy.

The feasibility of our approach is demonstrated by
monkey.org, a Unix shell provider in Ann Arbor, who
uses Systrace to sandbox over two hundred users. They
generated separate policies for approximately 250 ap-
plications.

65 70 75 80 85 90
Number of system calls in policy

0 0

10 10

20 20

30 30

40 40

50 50

60 60

F
re

qu
en

cy

Figure 3: Analysis of the number of system calls that
applications are allowed to execute. Most applications
use only sixty to ninety different system calls. As average
Unix systems support several hundred system calls, we
disallow the execution of all other system calls to prevent
an adversary from using them to cause damage. Note
that the abscissa origin is not zero.

An analysis of the policies shows that applications
are allowed to call 71 different system calls on average;
see Figure 3. Usually Unix systems support several
hundred system calls. When an adversary gains control
over an application, she may attempt to obtain higher
privileges by using all possible system calls. By limiting
the adversary to only those system calls required by the
application, we reduce her potential to cause damage.

We notice two peaks, one at sixty four system calls
and the other one at eighty seven. The first peak
is caused by policies for standard Unix utilities like
chmod, cat, rmdir or diff all of which have similar poli-
cies. The second peak is caused by identical policies for
the different utilities in the MH message system, which
require more system calls for establishing network con-
nections and creating files in the filesystem.

Most of the policy statements specify access to the
filesystem: 24% of them control read access, 6% write

access and 5% the execution of other programs.

6.3 Intrusion Detection and Prevention

The capability for intrusion detection and preven-
tion follows automatically from our design. System
calls that violate the policy are denied and recorded
by the operating system. This prevents an adversary
from causing damage and creates an alert that contains
the restricted operation.

A correct policy restricts an application to only
those operations required for its functionality. While
this prevents an adversary from harming the operating
system arbitrarily, she may still abuse an application’s
functionality to cause damage. We employ audit trails
to log malicious activity not prevented by policy.

6.4 Limitations

Although powerful, policy enforcement at the sys-
tem call level has inherent limitations. Monitoring the
sequence of system calls does not give complete infor-
mation about an application’s internal state. For ex-
ample, some system services change the privileges of
a process on successful authentication but deny extra
privileges if authentication fails. A sandboxing tool at
system call level can not account for such state changes.
However, it is still possible to enforce global restric-
tions that, for example, state that root should never
be allowed to login. This is possible because those re-
strictions do not depend on an application’s internal
state.

To increase the security of authentication services
like SSH, it is possible to use a combination of privilege
separation [28] and system call policy enforcement.
With privilege separation, the majority of an appli-
cation is executed in an unprivileged process context.
Vulnerability in the unprivileged code path should not
lead to privilege escalation. However, in a Unix sys-
tem an unprivileged process can still execute system
calls that allow local network access. Using Systrace
to sandbox the application, we can prevent the unpriv-
ileged process from executing any system calls that are
not necessary for its functionality.

6.5 Other Applications

Systrace may also be used for quality assurance
by injecting random faults into a running application.
This allows us to introduce error conditions that are
not normally triggered and to observe if the applica-
tion recovers correctly from them. For example, we
may simulate resource starvation such as a full filesys-
tem or out-of-memory conditions.



7 Performance

To determine the performance impact of Systrace,
we measured its overhead on the execution time of sin-
gle system calls and on several applications. All mea-
surements were repeated several times on a 1.14 GHz
Pentium III running OpenBSD. The results are dis-
played as averages with corresponding standard devia-
tion.

Mode
Real time User time System time
in µsec in µsec in µsec

Normal 0.35± 0.00 0.14± 0.03 0.22± 0.03
In-kernel 0.46± 0.01 0.17± 0.04 0.28± 0.04

User space 37.71± 0.18 0.30± 0.07 5.60± 0.61

Figure 4: A microbenchmark to compare the overhead of
a single geteuid system call for an unmonitored process
and for process confinement with different policies. Mak-
ing a policy decision in the kernel is considerably faster
than requesting a policy decision from the user space pol-
icy daemon.

We conduct the microbenchmarks of a single system
call by repeating the system call several hundred thou-
sand times and measuring the real, system, and user
time. The execution time of the system call is the time
average for a single iteration.

As a baseline, we measure the time for a single ge-
teuid system call without monitoring the application.
We compare the result with execution times obtained
by running the application under Systrace with two
different policies. The first policy permits the geteuid
via the in-kernel policy table. For the second policy,
the kernel consults the user space policy daemon for
a decision. We see that the in-kernel policy evalua-
tion increases the execution time by 31% ± 3% and
that slightly more time is spent in the kernel. When
the kernel has to ask the user space daemon for a pol-
icy decision, executing a single system call takes much
longer, mostly due to two context switches required for
every policy decision. The results are shown in Fig-
ure 4.

The open system call requires more work in the ker-
nel than getuid. A microbenchmark shows that the
in-kernel evaluation of the policy increases the execu-
tion time by 7%± 0.6%. The execution time for a user
space policy decision depends on the depth of the file
in the directory tree. When the path to the filename
has only one component, the increase in execution time
is over 25-fold. Each directory component in the path
adds approximately thirty microseconds to the execu-
tion time due to filename normalization, as shown in

Mode
Real time User time System time
in µsec in µsec in µsec

Normal 5.52± 0.01 0.34± 0.20 5.08± 0.16
In-kernel 5.88± 0.03 0.31± 0.22 5.55± 0.22
1-deep 139.20± 0.09 0.56± 0.12 15.80± 1.01
2-deep 167.72± 0.41 0.64± 0.18 15.84± 1.10
3-deep 198.34± 0.67 0.40± 0.17 18.28± 0.38
4-deep 231.121± 0.27 0.43± 0.13 19.40± 1.39

Figure 5: A microbenchmark to compare the overhead
of the open system call. Due to filename normalization,
the time to make a policy decision in user space depends
on the number of components in the filename. Every
component adds a about 30 µsec.

Mode
Real time User time System time
in µsec in µsec in µsec

Normal 37.61± 0.03 0.11± 0.11 37.34± 0.10
In-kernel 37.61± 0.03 0.14± 0.16 37.45± 0.21

Figure 6: A microbenchmark to compare the overhead
of the read system call when reading a 1 kbyte buffer
from /dev/arandom. In this case, there is no measurable
performance penality for the in-kernel policy decision.

Figure 5.
The last microbenchmark measures the overhead of

using the read system call to read a 1 kbyte buffer from
/dev/arandom, which outputs random data created by
a fast stream cipher. There is no noticeable difference
in execution time and system time increases by less
than 1% for in-kernel policy evaluation. We omit mea-
surement of user space because read requires no user
space policy decision. The results are shown in Fig-
ure 6.

Enforcing system call policies adds overhead to an
application’s execution time, but the overall increase is
small.

Figure 7 compares the runtime of gzip for different
file sizes from 500 kByte to 5 MByte. Gzip executes
thirty system calls per second on average, most of them
read and write. In this case, the execution time is not
significantly effected by Systrace, because the applica-
tion spends most of its time computing, and executes
relatively few system calls.

To assess the performance penality for applications
that frequently access the filesystem, we created a
benchmark similar to the Andrew benchmark [21]. It
consists of copying a tar archive of the Systrace sources,
untarring it, running configure, compiling the sources
and then deleting all files in the source code sub-
directory.



File size
Normal Systrace

Increase
in MByte in percent

0.5 0.88± 0.04 0.92± 0.07 4.5± 9.3
1.4 2.51± 0.01 2.52± 0.01 0.4± 0.6
2.3 4.15± 0.01 4.17± 0.01 0.5± 0.3
3.2 5.62± 0.01 5.64± 0.01 0.4± 0.3
4.0 7.18± 0.03 7.18± 0.03 0.0± 0.6
4.9 8.55± 0.01 8.57± 0.02 0.2± 0.3

Figure 7: A macrobenchmark comparing the runtime of
an unmonitored gzip process to gzip running under Sys-
trace. Because this benchmark is computationally inten-
sive, policy enforcement does not add a significant over-
head.

br
ea

k

cl
os

e

fc
nt

l

si
gp

ro
cm

as
k

re
ad

op
en

m
m

ap

ge
tr

us
ag

e

si
ga

ct
io

n

st
at

fs
ta

t

ls
ee

k

ac
ce

ss

w
ai

t4

ge
tti

m
eo

fd
ay

w
rit

e

is
se

tu
gi

d

ge
tp

id

ex
it

fo
rk

si
gr

et
ur

n

0
System calls

0

5000

10000

15000

20000

25000

30000

35000

40000

S
ys

te
m

 c
al

l f
re

qu
en

cy

Figure 8: Histogram of system call frequency for compila-
tion benchmark. The performance impact of application
confinement depends mostly on the number of system
calls that require a policy decision by the user space dae-
mon. The histogram shows that the most frequent system
calls can be handled by the in-kernel policy.

During the benchmark, forty four application pro-
grams are executed. We use Systrace to generate poli-
cies automatically, then improve the policies that result
with a simple script. The benchmark executes approxi-
mately 137, 000 system calls. A decomposition into the
most frequent system calls is shown in Figure 8. The
system call with the highest frequency is break which is
used to allocate memory. System calls that access the
filesystem are also prominent.

A direct comparison between the execution times is
shown in Figure 9. Under Systrace, we notice an in-
crease in running time by 31% ± 1.4%. The number
of system calls increases to approximately 726, 000 be-
cause filename normalization requires the getcwd func-
tion, which causes frequent calls to lstat and fstat. Run-
ning the same benchmark under NetBSD 1.6I shows a
significantly smaller increase in system calls because it

Benchmark
Normal Systrace Increase
in sec in sec in percent

Compile 10.44± 0.09 13.71± 0.09 31± 1.4
Crawler 0.84± 0.03 0.88± 0.03 4.8± 5.2

Gzip-4.9M 8.55± 0.01 8.57± 0.02 0.2± 0.3

Figure 9: Overview of different macrobenchmarks com-
paring the execution time of an unmonitored run with the
execution time running under Systrace. The compilation
benchmark incurs the highest performance penality. On
the other hand, it is very complex, consisting of more than
forty applications and still shows acceptable performance.
Running the other benchmarks with Systrace incurs only
small performance penalties.

implements a getcwd system call.
A second macrobenchmark measures the runtime of

a web crawler that downloads files from a local web
server. The crawler retrieves approximately one hun-
dred forty files with an average throughput of two
megabytes per second. For this macrobenchmark,
the running time under Systrace increases only by
4.8%± 5.2%; see Figure 9.

The additional cost of Systrace, although noticeable
is not prohibitive, especially for interactive applications
like web browsers, in which there is no observable per-
formance decrease for the end user.

8 Conclusion

This paper presents a new approach for applica-
tion confinement that supports automatic and inter-
active policy generation, auditing, intrusion detection
and privilege elevation and applies to both system ser-
vices and user applications. We argued that system
call interception is a flexible and appropriate mecha-
nism for intrusion prevention. Our hybrid implemen-
tation enables fail-safe operation and low performance
overhead while maintaining good portability. This pa-
per addresses important issues not addressed by pre-
vious research. The translation of system call argu-
ments into human-readable strings allows us to design
a simple policy language. It enables our system to gen-
erate fine grained policies both automatically and in-
teractively. The resulting policies restrict applications
without breaking their functionality.

Privilege elevation in conjunction with application
confinement allows us to reduce significantly the priv-
ileges required by system services. Using privilege ele-
vation, we assign fine-grained privileges to applications
without requiring the root user. Instead of retaining



root privileges throughout an application’s lifetime, an
application may run without special privileges and re-
ceives elevated privileges as determined by policy.

Our security analysis discusses how we overcome
problems common to system call interception tools and
how our design allows for further functionality such as
intrusion detection and prevention.

We analyzed the performance of Systrace and
showed that additional performance overhead is ac-
ceptable and often not observable by the user of a sand-
boxed application.

9 Acknowledgments

I would like to thank Peter Honeyman, Perry Met-
zger, Terrence Kelly and Jose Nazario for careful re-
views. I also thank Perry Metzger, Dug Song, Markus
Watts and Marius Eriksen for helpful discussions on
this topic.

References

[1] Anurag Acharya and Mandar Raje. MAPbox: Us-
ing Parameterized Behavior Classes to Confine Appli-
cations. In Proceedings of the 9th USENIX Security
Symposium, August 2000. 3

[2] Albert Alexandrov, Paul Kmiec, and Klaus Schauser.
Consh: Confined Execution Environment for Internet
Computations, 1998. 3

[3] William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A Secure and Reliable Bootstrap
Architecture. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 65–71,
May 1997. 9

[4] Lee Badger, Daniel F. Sterne, David L. Sherman, Ken-
neth M. Walker, and Sheila A. Haghighat. A Domain
and Type Enforcement UNIX Prototype. In Proceed-
ings of the 5th USENIX Security Symposium, pages
127–140, June 1995. 3

[5] Steven M. Bellovin. Computer Security - An End
State? Communications of the ACM, 44(3), March
2001. 2

[6] Matt Bishop. How to write a setuid program. ;login;,
12(1):5–11, 1987. 2, 4

[7] Matt Blaze, Joan Feigenbaum, John Ioannidis, and
Angelos Keromytis. The KeyNote trust-management
system version 2. RFC 2704, September 1999. 5

[8] Matt Blaze, Joan Feigenbaum, and Jack Lacy. De-
centralized Trust Management. In Proceedings of the
1996 IEEE Symposium on Security and Privacy, pages
164–173, May 1996. 5

[9] CERT. OpenBSD contains buffer overflow in “select”
call. Vulnerability Note VU#259787, August 2002.
http://www.kb.cert.org/vuls/id/259787. 2

[10] Hao Chen, David Wagner, and Drew Dean. Setuid
Demystified. In Proceedings of the 11th Usenix Security
Symposium, August 2002. 2

[11] William R. Cheswick and Steven M. Bellovin. Fire-
walls and Internet Security Repelling the Willy Hacker.
Addison-Wesley Publishing Company, 1994. 2

[12] M. Coleman. Subterfogue: A Framework for Oberserv-
ing and Playing with Reality of Software.
http://subterfugure.org/. 3

[13] Pawl J. Dawidek. Cerb: System Firewall Mechanism.
http://cerber.sourceforge.net/. 3

[14] G. Fernandez and L. Allen. Extending the UNIX Pro-
tection Model with Access Control Lists. In Proceed-
ings of the Summer 1988 USENIX Conference, pages
119–132, 1988. 2

[15] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,
and Thomas A. Longstaff. A Sense of Self for Unix
Processes. In Proceedings of the 1996 IEEE Symposium
on Research in Security and Privacy, pages 120–128,
1996. 3

[16] Przemyslaw Frasunek. ntpd ≤ 4.0.99k remote buffer
overflow. Bugtraq, April 2001. CVE-2001-0414. 6

[17] Tal Garfinkel. Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Tools. In
Proceedings of the ISOC Symposium on Network and
Distributed System Security, 2003. To appear. 3, 8

[18] Douglas P. Ghormley, Steven H. Rodrigues, David
Petrou, and Thomas E. Anderson. SLIC: An Ex-
tensibility System for Commodity Operating Systems.
In Proceedings of the USENIX 1998 Annual Technical
Conference, pages 39–52, June 1998. 4

[19] Ian Goldberg, David Wagner, Randi Thomas, and
Eric A. Brewer. A Secure Environment for Untrusted
Helper Applications. In Proceedings of the 6th Usenix
Security Symposium, July 1996. 2

[20] Steven A. Hofmeyr, Stephanie Forrest, and Anil So-
mayaji. Intrusion Detection Using Sequences of Sys-
tem Calls. Journal of Computer Security, 6(3):151–
180, 1998. 2, 3, 9

[21] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems, 6(1):51–81,
February 1988. 11

[22] Sotiris Ioannidis, Steven M. Bellovin, and Jonathan M.
Smith. Sub-Operating Systems: A New Approach to
Application Security. In Proceedings of the SIGOPS
European Workshop, September 2002. 3

[23] K. Jain and R. Sekar. User-Level Infrastructure for
System Call Interposition: A Platform for Intrustion
Detection and Confinement. In Proceedings of the
ISOC Symposium on Network and Distributed System
Security, February 2000. 2, 3, 5



[24] Calvin Ko, George Fink, and Karl Levitt. Auto-
mated detection of vulnerabilities in privileged pro-
grams by execution monitoring. In Proceedings of the
10th Annual Computer Security Applications Confer-
ence, pages 134–144, December 1994. 4

[25] Henry M. Levy. Capability-Based Computer Systems.
Digital Press, 1984.
http://www.cs.washington.edu/homes/levy/capabook/.
2

[26] Vern Paxson. Bro: A System for Detecting Network
Intruders in Real-Time. In Proceedings of the 7th
USENIX Security Symposium, January 1998. 2

[27] David S. Peterson, Matt Bishop, and Raju Pandey. A
Flexible Containment Mechanism for Executing Un-
trusted Code. In Proceedings of the 11th USENIX Se-
curity Symposium, pages 207–225, August 2002. 3

[28] Niels Provos. Preventing Privilege Escalation. Techni-
cal Report CITI 02-2, University of Michigan, August
2002. 2, 10

[29] Thomas Ptacek and Timothy Newsham. Insertion,
Evasion, and Denial of Service: Eluding Network In-
trusion Detection. Secure Networks Whitepaper, Au-
gust 1998. 2

[30] Jerome H. Saltzer. Protection and the Control of In-
formation in Multics. Communications of the ACM,
17(7):388–402, July 1974. 2

[31] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike
Hibler, David Andersen, and Jay Lepreau. The Flask
Security Architecture: System Support for Diverse Se-
curity Policies. In Proceedings of the 8th Usenix Se-
curity Symposium, pages 123–139, August 1999. 3,
8

[32] David Wagner and Paolo Soto. Mimicry Attacks on
Host-Based Intrusion Detection Systems. In Proceed-
ings of the 9th ACM Conference on Computer and
Communications Security, November 2002. 2, 3

[33] David A. Wagner. Janus: an Approach for Confine-
ment of Untrusted Applications. Technical Report
CSD-99-1056, 12, 1999. 3, 8

[34] Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger,
Michael J. Petkac, David L. Shermann, and Karen A.
Oostendorp. Confining Root Programs with Domain
and Type Enforcement (DTE). In Proceedings of the
6th Usenix Security Symposium, July 1996. 3


	Introduction
	Related Work
	Motivation and Threat Model
	Design
	Policy
	Policy Generation
	Privilege Elevation

	Implementation
	Analysis
	Security Analysis
	Policy generation
	Intrusion Detection and Prevention
	Limitations
	Other Applications

	Performance
	Conclusion
	Acknowledgments

