
CITI Technical Report 02-2

Preventing Privilege Escalation

Niels Provos
provos@citi.umich.edu

Abstract

Many operating system services require special privileges to execute their tasks. A programming error in a
privileged service may open the door to system compromise in form of unauthorized acquisition of privileges. In
the worst case, a remote attacker may obtain superuser privileges. In this paper, we discuss the methodology and
design of privilege separation, a generic approach that lets parts of an application run without special privileges.
Programming errors occurring in these now unprivileged parts of the application can no longer be abused to gain
unauthorized privileges. Privilege separation is orthogonal to capability or role-based security systems and may
be used to enhance the security of such systems even further.

As a concrete example, the concept of privilege separation has been implemented in OpenSSH. We illustrate
how separation of privileges reduces the amount of OpenSSH code that is executed with privileges. Privilege
separation would have prevented past security vulnerabilities in OpenSSH including those that were unknown at
the time of its implementation.

August 5, 2002

Center for Information Technology Integration
University of Michigan

535 West William Street
Ann Arbor, MI 48103-4943

.

Preventing Privilege Escalation

Niels Provos
Center for Information Technology Integration

University of Michigan

1 Introduction

Services running on computers connected to the In-
ternet present a target for attackers to compromise
their security. This can lead to unauthorized access
of sensitive data or resources.

Services that require special privileges for their op-
eration are critically sensitive. A programming error
here may allow an attacker to obtain and abuse the
special privileges.

The degree of the escalation depends on which privi-
leges the attacker is authorized to hold and which priv-
ileges can be obtained in a successful attack. For exam-
ple, a programming error that permits a user to gain
extra privilege after successful authentication limits the
degree of escalation because the user is already autho-
rized to hold some privileges. On the other hand, a
remote attacker gaining superuser privileges without
any authentication presents a more severe escalation.

For services that are part of the critical Internet
infrastructure is it particularly important to protect
against programming errors. Sometimes these services
need to retain special privilege for the lifetime of a ses-
sion. For example, in SSH, the SSH daemon needs to
know the private host key during re-keying to authen-
ticate the key exchange. The daemon also needs to
open new pseudo-terminals when the SSH client so re-
quests. These operations require durable privileges as
they can be requested at any time during the lifetime
of a SSH connection. In current SSH implementations,
therefore, an exploitable programming error allows an
attacker to obtain superuser privileges.

Several approaches to help prevent security prob-
lems related to programming errors have been pro-
posed. Among them are type-safe languages [18]
and operating system mechanisms like protection do-
mains [9]. However, these solutions do not apply to
many existing applications as they are written in C to
run on a generic Unix operating systems.

Instead, this paper discusses the methodology and
design of privilege separation, a generic approach to
limit the scope of programming bugs. The basic prin-
ciple of privilege separation is to reduce the amount of

code that runs with special privileges without affect-
ing or limiting the functionality of the service. This
reduces the opportunity for bugs in code that is ex-
ecuted with privileges. Ideally, the only consequence
of an error in a privilege separated service is denial of
service to the attacker himself.

Privilege separation also facilitates source code au-
dits by reducing the amount of code that needs to be
inspected initially. While all source code requires au-
diting, the size of code that is most critical to security
decreases.

Privilege separation is instantiated by spawning un-
privileged children from a privileged parent. To exe-
cute privileged operations, the unprivileged child re-
quests a privileged operation from the privileged par-
ent.

The principle of separating privileges applies to any
privileged service on a Unix-like operating system. In
this paper, we use OpenSSH as an example of a ser-
vice whose privileges can be separated. We show that
bugs in OpenSSH that led to system compromise are
completely contained by privilege separation. Privilege
separation requires small changes to existing code and
incurs no noticeable performance penalty.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the principle of least privilege. We in-
troduce the concept of privilege separation in Section 3
and describe a generic implementation for Unix operat-
ing system platforms. We explain the implementation
of privilege separation in OpenSSH in Section 4. In
Section 5, we discuss how privilege separation improves
security in OpenSSH. We analyze its performance im-
pact in Section 6. Section 7 describes related work.
Finally, we conclude in Section 8.

2 Least Privilege

We refer to a privilege as a security attribute that
is required for certain operations. Privileges are not
unique and may be held by multiple entities.

The motivation for this effort is the principle of least
privilege: every program and every user should oper-

3

ate using the least amount of privileges necessary to
complete the job [16]. Applying the principle to appli-
cation design limits unintended damage resulting from
programming errors. Linden [11] suggests three ap-
proaches to application design that help prevent unan-
ticipated consequences from such errors: defensive pro-
gramming, language enforced protection, and protec-
tion mechanisms supported by the operating system.

The latter two approaches are not applicable to
many Unix-like operating systems because they are de-
veloped in the C language which lacks type-safety or
other protection enforcement. Though some systems
have started to support non-executable stack pages
which prevent many stack overflows from being ex-
ploitable, this mechanism is not available for most Unix
platforms.

Furthermore, the Unix security model is very coarse.
Process privileges are organized in a flat tree. At the
root of the tree is the superuser and its leaves are the
users of the system. The superuser has access to ev-
ery process, whereas users may not access processes of
other users. Privileges that are related to file system
access have finer granularity because the system grants
access based on the identity of the user and his group
memberships. In general, privileged operations are ex-
ecuted via system calls in the Unix kernel, which dif-
ferentiates mainly between the superuser and everyone
else.

This leaves defensive programming, which attempts
to prevent errors by checking the integrity of param-
eters and data structures at implementation, compile
or run time. For example, defensive programming pre-
vents buffer overflows by checking that the buffer is
large enough to hold the data that is being copied into
it. Improved library interfaces like strlcpy and strlcat
help programmers avoid buffer overflows [13].

Nonetheless, for complex applications it is still in-
evitable that programming errors remain. Further-
more, even the most carefully written application can
be affected by third-party libraries and modules that
have not been developed with the same stringency. The
likelihood of bugs is high, and an attacker will try to
use those bugs to gain unauthorized privileges. Even if
the principle of least privilege has been followed, an at-
tacker may still gain those privileges that are necessary
for the application to operate.

3 Privilege Separation

This section presents an approach called privilege
separation which cleaves an application into privileged
and unprivileged parts. Its philosophy is similar to the

decomposition found in micro-kernels or in Unix com-
mand line tools. Privilege separation is orthogonal to
other protection mechanisms that an operating system
might support, e.g., capabilities or protection domains.
We describe an implementation of privilege separation
that does not require special support from the operat-
ing system kernel and as such may be implemented on
almost any Unix-like operating system.

The goal of privilege separation is to reduce the
amount of code that runs with special privileges. We
achieve this by splitting an application into two parts.
One part that runs with privileges and the other that
runs without them. We call the privileged part the
monitor and the unprivileged part the slave. The slave
has to ask the monitor to perform any operation that
requires privileges. Before serving a request from the
slave, the monitor first validates it. If the request is
currently permitted, the monitor executes it and com-
municates the results back to the slave.

In order to separate the privileges in a service, it is
necessary to identify the operations that require them.
The number of such operations is usually small com-
pared to the operations that can be executed without
special privileges. Assuming a uniform distribution of
programming errors, privilege separation reduces the
number of programming errors that occur in a priv-
ileged code path. Furthermore, source code auditing
efforts can be directed towards code that is executed
with privileges which can further reduce the number of
programming errors remaining in it.

Although errors in the unprivileged code path can
not result in any immediate privilege escalation, it
might still be possible to abuse them for other attacks
like resource starvation. Such denial of service attacks
are beyond the scope of this paper.

In the following, we explain the Unix mechanisms
that allow us to implement a privilege separated ser-
vice. Processes are protection domains in a Unix sys-
tem. That means that one process can not access data
in another process. To achieve privilege separation, we
create two entities: a privileged parent process that
acts as the monitor and an unprivileged child process
that acts as the slave. The privileged parent can be
modeled by a finite-state machine (FSM) that moni-
tors the progress of the unprivileged child. The par-
ent accepts requests from the child for actions that re-
quire privileges. The set of actions that are permitted
changes over time and depends on the current state of
the FSM. If the number of actions that require privi-
leges is small, most of the application code is executed
by the unprivileged child.

A privilege separated service can be in one of two
different phases:

4

• Pre-Authentication Phase: A user has contacted
a system service but is not yet authenticated. In
this case, the unprivileged child has no process
privileges and no rights to access the file system.

• Post-Authentication Phase: The user has success-
fully authenticated to the system. The child has
the privileges of the user including file system ac-
cess, but does not hold any other special privileges.
However, special privileges are still required to cre-
ate new pseudo-terminals or to perform other priv-
ileged operations. For those operations, the child
has to request an action from the privileged par-
ent.

The unprivileged child is created by changing
its user identification (UID) and group identifica-
tion (GID) to otherwise unused IDs. This is achieved
by first starting a privileged monitor process. It forks a
slave process. The first action that the slave performs
is to change its UID and GID. As a result, it loses its
process privileges. To prevent access to the file system,
the child changes the root of its file system to an empty
directory in which it is not allowed to create any files.

To enable slave requests to the monitor, we use inter-
process communication (IPC). There are many differ-
ent ways to allow communication between processes:
pipes, shared memory, etc. In our case, we establish
a socket between the two processes using the socket-
pair system call. The file descriptor is inherited by the
forked child.

A slave may request different types of privileged op-
erations from the monitor. We classify them depending
on the result the slave expects to achieve: Information,
Capabilities, or Change of Identity.

A child issues an informational request if acquir-
ing the information requires privileges. The request
starts with a 32-bit length field followed by an 8-bit
number that determines the request type. In general,
the monitor checks every request to see if it is al-
lowed. It may also cache the request and result. In the
pre-authentication phase, challenge-response authenti-
cation can be handled via informational requests. For
example, the child first requests a challenge from the
privileged monitor. After receiving the challenge, the
child presents it to the user and requests authentication
from the monitor by presenting the response to it. In
this case, the monitor remembers the challenge that it
created and verifies that the response matches. The re-
sult is either successful or unsuccessful authentication.
In the case of OpenSSH, most privileged operations can
be implemented with informational requests.

Ordinarily, the only capability available to a process
in a Unix operating systems is a file descriptor. When

a slave requests a capability, it expects to receive a file
descriptor from the privileged monitor that it could
not obtain itself. A good example of this is a service
that provides a pseudo-terminal to an authenticated
user. Creating a pseudo-terminal involves opening a
device owned by the superuser and changing its own-
ership to the authenticated user, which requires special
privileges.

cmsg = CMSG_FIRSTHDR(&msg);

cmsg->cmsg_len = CMSG_LEN(sizeof(int));

cmsg->cmsg_level = SOL_SOCKET;

cmsg->cmsg_type = SCM_RIGHTS;

*(int *)CMSG_DATA(cmsg) = fd;

Figure 1: A file descriptor can be sent to another process
by a special control message.

Modern Unix operating systems provide a mecha-
nism called file descriptor passing. File descriptor pass-
ing allows one process to give access to an open file to
another process [17]. This is achieved by sending a con-
trol message containing the file descriptor to the other
process; see Figure 1. When the message is received,
the operating system creates a matching file descriptor
in the file table of the receiving process that permits
access to the sender’s file. We implement a capability
request by passing a file descriptor over the socket used
for the informational requests. The capability request
is an informational request in which the slave expects
the monitor to answer with a control message contain-
ing the passed file descriptor.

The change of identity request is the most difficult
to implement. The request is usually issued when a ser-
vice changes from the pre-authentication to the post-
authentication phase. After authentication, the ser-
vice wants to obtain the privileges of the authenticated
user. Unix operating systems provide no mechanism to
change the user identity a process is associated with un-
less the process has superuser privileges. However, in
our case, the process that wants to change its identity
does not have such privileges.

One way to effect a change of identity is to terminate
the slave process and ask the monitor to create a new
process that can then change its UID and GID to the
desired identities. By terminating the child process all
the state that has been created during its life time is
lost. Normally a meaningful continuation of the session
is not possible without retaining the state of the slave
process. We solve this problem by exporting all state
of the unprivileged child process back to the monitor.

Exporting all state is not easy. For global structures,
we use XDR [12] like data marshaling which allows us

5

to send all data contained in a structure to the monitor.
The data is unpacked by the newly forked child process.
This prevents any data corruption in the exported data
to affect the privileged monitor in any way.

For structures that are allocated dynamically, e.g.,
via malloc, data export is more difficult. We solve this
problem by providing memory allocation from shared
memory. As a result, data stored in dynamically allo-
cated memory is also available in the address space of
the privileged monitor. Figure 2 shows the interface to
shared memory allocator.

mm_master_t *mm_create(mm_master_t *, size_t);

void mm_destroy(mm_master_t *);

void *mm_malloc(mm_master_t *, size_t);

void mm_free(mm_master_t *, void *);

void mm_share_sync(mm_master_t **, mm_master_t **);

Figure 2: These functions represent the interface for
shared memory allocation. Using them allows the export
of data from a child process to its parent.

The two functions mm create and mm share sync
are responsible for permitting a complete export of
dynamically allocated memory. The mm create func-
tion creates a shared address space of the specified size.
There are several ways to implement shared memory,
we use anonymous memory maps. The returned value
is a pointer to a mm master structure that keeps track
of allocated memory. It is used as parameter in subse-
quent calls to mm malloc and mm free. Every call to
those two functions may result in allocation of addi-
tional memory for state that keeps track of free or al-
located memory in the shared address space. Usually,
that memory is allocated with libc’s malloc function.
However, the first argument to the mm create func-
tion may be a pointer to another shared address space.
In that case, the memory manager allocates space for
additional state from the passed shared address space.

Figure 3 shows an overview of how allocation in the
shared address space proceeds. We create two shared
address spaces: back and mm. The address space mm
uses back to allocate state information. When the child
wants to change its identity, it exits and the thread of
execution continues in the parent. The parent has ac-
cess to all the data that was allocated in the child.
However, one problem remains. The shared address
space back uses libc’s malloc that allocated memory
in the child’s address space to keep track of its state.
If this information is lost when the child process exits,
then subsequent calls to mm malloc or mm free fail. To
solve the problem, the parent calls the mm share sync
function which recreates the state information in the

mm = mm_create(back, 655360);

back = mm_create(NULL, 65536);

Parent

...

pid = fork();

waitpid(pid, NULL, 0);

Parent

p = mm_malloc(mm, size);

...

exit(0);

MmBack

Back Mm

Child

Figure 3: The shared memory allocator is backed by an-
other shared address space. This permits the complete
export of state that was allocated dynamically in the child.

shared address space back. Afterwards, freeing and al-
locating memory proceeds without any problems.

We use shared memory and XDR-like data marshal-
ing to export all state from the child to the parent. Af-
ter the child process exports its state and terminates,
the parent creates a new child process. The new pro-
cess changes to the desired UID and GID and then
imports the exported state. This effects a change of
identity in the slave that preserves state information.

4 Separating Privileges in OpenSSH

In this section, we explain how to apply the concept
of privilege separation to OpenSSH, a free implemen-
tation of the SSH protocols. OpenSSH provides secure
remote login across the Internet. OpenSSH supports
protocol versions one and two; we restrict our explana-
tion of privilege separation to the latter. The procedure
is very similar for protocol one.

When the SSH daemon starts, it binds a socket to
port 22 and waits for new connections. Every new con-
nection is handled by a forked process. The forked pro-
cess needs to retain superuser privileges throughout its
lifetime to create new pseudo terminals for the user, to
authenticate key exchanges when cryptographic keys
are replaced with new ones, to clean up pseudo termi-
nals when the SSH session ends, to create a process
with the privileges of the authenticated user, etc.

For privilege separation, the forked process acts as
the monitor and forks a slave process that drops all
its privileges and starts accepting data from the estab-
lished connection. The monitor now waits for requests
from the slave; see Figure 4. Requests that are per-
mitted in the pre-authentication phase are shown in

6

Key Exchange

Auth Result

Request Auth

User Request
Processing

privileged
OpenSSH

privileged
OpenSSH

privileged
OpenSSH

T
im

eline

Network connection

fork unprivileged child

State Export

User Network Data
Request PTY

Pass PTYMonitor

Monitor Processing
Network

Listen *:22

fork user child

unprivileged
OpenSSH

OpenSSH
user privileged

Authentication

Figure 4: Overview of privilege separation in OpenSSH.

Figure 5. If the child issues a request that is not per-
mitted, the privileged monitor terminates.

First, we identify the actions that require privileges
in OpenSSH and show which request types can fulfill
them. In the following, we describe the privileged re-
quests for the pre-authentication phase:

• Key Exchange: SSH v2 supports two different
key exchanges. One of them is the Diffie-Hellman
Group Exchange which allows the client to request
a group of a certain size from the server [8]. To
find an appropriate group the server consults the
/etc/moduli file. However, because the slave has
no privileges to access the file system, it can not
open the file itself. For that reason, it issues an
informational request to the monitor. The mon-
itor returns a suitable group after consulting the
moduli file. The returned group is used by the
slave for the key exchange. As seen in Figure 5,
the slave may issue this request only once.

• Authenticated Key Exchange: To prevent man-in-
the-middle attacks, the key exchange is authenti-
cated. That means that the SSH client requires
cryptographic proof of the server identity. At the
beginning of the SSH protocol, the server sends
its public key to the client for verification. As the
public key is public, the slave knows it and no spe-
cial request is required. However, the slave needs
to ask the monitor to authenticate the key ex-
change by signing a cryptographic hash of all val-
ues that have been exchanged between the client
and the server. The signature is obtained by an
informational request.

• User Validation: After successful key exchange, all
communication is encrypted and the SSH client
informs the server about the identity of the user

who wants to authenticate to the system. At this
point, the server decides if the user name is valid
and allowed to login. If it is invalid, the protocol
proceeds but all authentication attempts from the
client fail. As the slave can not access the pass-
word database, it has to issue an informational
request to the server. The server caches the user
name and reports back to the slave if the name is
valid.

• Password Authentication: Several methods can be
used to authenticate the user. For password au-
thentication, the SSH client needs to send a cor-
rect login and password to the server. Once again,
the unprivileged slave can not access the password
database, so it asks the monitor to verify the pass-
word. The monitor informs the slave if the au-
thentication succeeds or fails. If it succeeds, the
pre-authentication phase ends.

• Public Key Authentication: Public Key Authen-
tication is similar to password authentication. If
it is successful, the pre-authentication phase ends.
However, two informational requests are required
to use public keys for authentication. The first re-
quest allows the slave to determine if a public key
presented by the client may be used for authenti-
cation. The second request determines if the sig-
nature returned by the client is valid and signs the
correct data. A valid signature results in success-
ful authentication.

At any time, the number of requests that the slave
may issue are limited by the state machine. When
the monitor starts, the slave may issue only the first
two requests in Figure 5. After the key exchange has
finished, the only valid request is for user validation.
After validating the user, all authentication requests
are permitted. The motivation for keeping the number
of valid requests small is to reduce the attack vector
available to an intruder who has compromised the slave
process.

All requests up to this point have been informa-
tional. The pre-authentication phase ends with suc-
cessful authentication as determined by the monitor.
At this point, the slave needs to change its identity
to that of the authenticated user. As a result, the
slave obtains all privileges of the user, but no other
privileges. We achieve this with a change of identity
request.

The monitor receives the state of the slave process
and waits for it to exit. The state consists of the fol-
lowing: the encryption and authentication algorithms
including their secret keys, sequence counters for in-

7

struct mon_table mon_dispatch_proto20[] = {

{MONITOR_REQ_MODULI, MON_ONCE, mm_answer_moduli},

{MONITOR_REQ_SIGN, MON_ONCE, mm_answer_sign},

{MONITOR_REQ_PWNAM, MON_ONCE, mm_answer_pwnamallow},

{MONITOR_REQ_AUTHSERV, MON_ONCE, mm_answer_authserv},

{MONITOR_REQ_AUTHPASSWORD, MON_AUTH, mm_answer_authpassword},

[...]

{MONITOR_REQ_KEYALLOWED, MON_ISAUTH, mm_answer_keyallowed},

{MONITOR_REQ_KEYVERIFY, MON_AUTH, mm_answer_keyverify},

{0, 0, NULL}

};

Figure 5: The table describes the valid requests that the slave may send to the monitor in the pre-authentication phase
for SSH protocol version two.

coming and outgoing packets, buffered network data
and the compression state.

Exporting the cryptographic key material is uncom-
plicated. The main problem is exporting the compres-
sion state. The SSH protocols use the zlib compression
format [5, 6] which treats network data as a stream
and not packet by packet. Treating it as a stream
allows zlib to improve its dictionary with increasing
amount of compressed data. On the other hand, it
also means that compression in the server can not be
stopped and then restarted as the client uses a dic-
tionary that depends on all the preceding data. For-
tunately, zlib provides hooks for user supplied mem-
ory management functions. We provide it with func-
tions that use mm malloc and mm free as back end.
After the child exits, the monitor only needs to call
mm share sync to import the compression state.

The monitor forks a new process that then changes
its process identification to that of the authenticated
user. The slave process obtains all the privileges of
the authenticated user. At this point, we enter the
post-authentication phase which requires only a few
privileged operations. They are as follows:

• Key Exchange: In SSH protocol version two, it
is possible to renew cryptographic keys. This re-
quires a new key exchange, so just as in the pre-
authentication phase, the monitor chooses a suit-
able group for the Diffie-Hellman key exchange
and signs for authentication.

• Pseudo Terminal Creation: After authentication,
the user requires a pseudo terminal whose creation
requires superuser privileges. For a Unix applica-
tion, a pseudo terminal is just a file descriptor.
The slave issues a capability request to the moni-
tor. The monitor creates the terminal and passes
the corresponding file descriptor to the child pro-
cess. An informational request suffices when the

slave wants to close the pseudo terminal.

Observe that the majority of all privileged opera-
tions can be implemented with informational requests.
In fact, some degree of privilege separation is possible
if neither capability nor change of identity requests are
available. If the operating system does not support file
descriptor passing, privilege separation perforce ends
after the pre-authentication phase. To fully support
the change of identify request shared memory is re-
quired. Without shared memory, the compression state
can not be exported without rewriting zlib. Nonethe-
less, systems that do not support shared memory can
disable compression and still benefit from privilege sep-
aration.

The changes to the existing OpenSSH sources are
small. About 950 lines of the 44,000 existing lines of
source code or about 2% were changed. Many of the
changes are uncomplicated:

- authok = auth_password(authctxt, pwd);

+ authok = PRIVSEP(auth_password(authctxt, pwd);

The new code that implements the monitor and the
data marshaling amounts to about three thousand lines
of source code, or about seven percent increase in the
size of the existing sources. While support for priv-
ilege separation increases the source code size, it ac-
tually reduces its complexity. Privilege separation re-
quires clean and well abstracted subsystem interfaces
so that their privileged sections can run in a different
process context. During the implementation, the in-
terfaces for several subsystems had to be improved to
facilitate their separation. As a result, the source code
is cleaner and less complex.

5 Security Analysis

To measure the effectiveness of privilege separation
in OpenSSH, we analyse how it would have affected

8

security problems in the past. We do not discuss prob-
lems of cryptographic primitives, our assumption is
that the employed cryptography is secure.

The SSH-1 Daemon CRC32 Compensation Attack
Detector Vulnerability permits an attacker to gain su-
peruser privileges remotely without authenticating to
the systems [19]. The problem is caused by an inte-
ger overflow in a function that processes network pack-
ets. With privilege separation, the function is executed
without any privileges making it impossible for an at-
tacker to directly compromise the system.

Similarly, the off-by-one error in OpenSSH’s chan-
nel code allows an attacker to gain superuser privileges
after authenticating to the system [14]. With privilege
separation, the process has only the privileges of the
authenticated user. As a result, an attacker can not
obtain system privileges in this case either.

A security problem in the external zlib compression
library was found that might allow a remote attacker
to gain superuser privileges without any authentica-
tion [2]. As this problem occurs in a third-party library,
no audit of the OpenSSH source code itself can find it.
Privilege separation prevents a system compromise in
this case, too.

At the time of this writing, more security problems
were found in OpenSSH. A bug in the Kerberos ticket
passing functions allowed an authenticated user to gain
superuser rights. A more severe problem in code for
challenge-response authentication allowed a remote at-
tacker to obtain superuser privileges without any au-
thentication [3]. Privilege separation already part of
OpenSSH prevents both of these problems and is men-
tioned in the CERT advisory as a solution.

These examples demonstrate that privilege separa-
tion has the potential to contain unknown security
problems in the future. It prevents the problems dis-
cussed above.

Subsystem Lines of Code Percentage
Unprivileged 10360 75.27%

Ciphers 267 1.93%
Packet Handling 1093 7.94%

Miscellaneous 7944 57.71%
Privsep Interface 1056 7.67%
Privileged 3403 24.73%

Authentication 803 5.84%
Miscellaneous 1700 12.35%

Monitor 900 6.54%

Table 1: Number of source code lines that are executed
with and without privileges.

After privilege separation, three quarters of the
source code are executed without privileges as shown
in Table 1. The numbers do not include code from
third-party libraries that runs unprivileged now, too.
If we assume that programming errors are distributed
fairly uniformly, we can estimate the increase of secu-
rity by counting the number of source code lines that
are now executed without privileges. We argue that
seventy five percent of all programming errors will not
result in privilege escalation or that only twenty five
percent of the source code requires auditing.

A programming error in the slave process might al-
low an attacker to gain complete control over it. One
way an attacker may try to gain additional privileges is
to attack the interface between the privileged monitor
and the slave. The attacker could send badly format-
ted requests in the hope of exploiting programming er-
rors in the monitor. For that reason, it is important
to carefully audit the interface to the monitor. In the
current implementation, the number of valid requests
is small and any request detected as invalid causes the
privileged monitor to terminate.

Nonetheless, there may be other ways that an at-
tacker might try to harm the system. She might try to
starve the resources of the system by forking new pro-
cesses or by running very time intensive computations.
As a result, the system might become unusable. The
effect of such an attack can be mitigated by placing
process limits on the slave process. For example, we
can limit the number of file descriptors the slave may
open and the number of processes it is allowed to fork.
The monitor may also watch other resource utilization
like CPU time and terminate the process if a certain
threshold is reached. While an attacker controlling the
unprivileged child has no access to the file system, he
may use other system calls to continue the attack. For
example, the unprivileged child can initiate local net-
work connections and potentially abuse trust relations
based on IP addresses. We may further restrict the
child’s ability to access the system by employing exter-
nal policy enforcement mechanisms like Systrace [15].

6 Performance Analysis

To analyze the performance of privilege separated
OpenSSH, we measure the execution time for several
different operations between normal OpenSSH and the
privileged separated version. We conduct the measure-
ments on a 1.13 GHz Pentium III laptop with all data
in the memory cache.

The first test measures the time it takes to login us-
ing public key authentication. We measure the time

9

Test Normal Privsep
Login

- compressed 0.775s± 0.0071s 0.777s± 0.0067s
- uncompressed 0.767s± 0.0106s 0.774s± 0.0097s
Data Transfer

- compressed 4.229s± 0.0373s 4.243s± 0.0411s
- uncompressed 1.989s± 0.0223s 1.994s± 0.0143s

Table 2: Performance comparison between normal
OpenSSH and privilege separated OpenSSH.

with compression enabled and without compression.
The next two tests measure the data transfer time of
a 10 MB file filled with random data, with compres-
sion enabled, and without compression. The results
are shown in Table 2. It is evident that privilege sepa-
rated OpenSSH does not penalize performance.

7 Related Work

The principle of least privilege has guided applica-
tion developers for a long time. There are several ap-
plications that make use of privilege separation as we
discuss below. The main difference in this research is
the degree and completeness of the separation.

Carson demonstrates how to reduce the number of
privileges that are required in the Sendmail mail sys-
tem [1]. His design follows the principle of least priv-
ilege. While Sendmail is a good example, the degrees
of privilege separation demonstrated in OpenSSH are
much more extensive. For example, we show how to
change the effective UID and how to retain privileges
securely for the whole duration of the session.

Evans very secure FTP daemon uses privilege sep-
aration to limit the effect of programming errors [7].
He uses informational and capability requests in his
implementation. His work is very similar to the imple-
mentation of privilege separation in OpenSSH, but not
as extensive and less generic.

Solar Designer uses a process approach to switch
privileges in his Owl Linux distribution [4]. His POP3
daemon popa3d forks processes that execute protocol
operations with lower privileges and communicate re-
sults back to the parent. The interaction between par-
ent and child is based completely on informational re-
quests.

Separating the privileges of an application causes a
decomposition into subsystems with well defined func-
tionality. This is similar to the design and functionality
of a µ-kernel where subsystems have to follow the prin-
ciple of independence and integrity [10]. For a privilege

separated application, independence and integrity are
realized by multiple processes that have separate ad-
dress spaces and communicate via IPC.

8 Conclusion

Programming errors in privileged services can re-
sult in system compromise allowing an attacker to gain
unauthorized privileges.

Privilege separation as a concept that allows the ma-
jority of an application to run without any privileges
at all. Programming errors in the unprivileged part of
the application can not lead to privilege escalation.

As a proof of concept, we implemented privilege sep-
aration in OpenSSH and show that past errors that al-
lowed system compromise would have been contained
with privilege separation.

There is no performance penalty when running
OpenSSH with privilege separation enabled.

9 Acknowledgments

I thank Markus Friedl for his help with the final im-
plementation of privilege separation in OpenSSH and
Peter Honeyman for helpful suggestions and comments.

References

[1] Mark E. Carson. Sendmail without the Superuser. In
Proceedings of the 4th USENIX Security Symposium,
October 1993. 9

[2] CERT/CC. CERT Advisory CA-2002-07 Double Free
Bug in zlib Compression Library.
http://www.cert.org/advisories/CA-2002-07.html,
March 2002. 8

[3] CERT/CC. CERT Advisory CA-2002-18 OpenSSH
Vulnerabilities in Challenge Response Handling.
http://www.cert.org/advisories/CA-2002-18.html,
June 2002. 8

[4] Solar Designer. Design Goals for popa3d.
http://www.openwall.com/popa3d/DESIGN. 9

[5] P. Deutsch. DEFLATE Compressed Data Format
Specification version 1.3. RFC 1951, 1996. 7

[6] P. Deutsch and J-L. Gailly. ZLIB Compressed Data
Format Specification version 3.3. RFC 1950, 1996. 7

[7] Chris Evans. Comments on the Overall Architecture
of Vsftpd, from a Security Standpoint.
http://vsftpd.beasts.org/, February 2001. 9

[8] Markus Friedl, Niels Provos, and William A. Simpson.
Diffie-Hellman Group Exchange for the SSH Transport

10

Layer Protocol. Internet Draft, January 2002. Work
in progress. 6

[9] Li Gong, Marianne Mueller, Hemma Prafullchandra,
and Roland Schemers. Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java
Development Kit 1.2. USENIX Symposium on Internet
Technologies and Systems, pages 103–112, 1997. 2

[10] Jochen Liedtke. On µ-Kernel Construction. In Pro-
ceedings of the Symposium on Operating Systems Prin-
ciples, pages 237–250, 1995. 9

[11] Theodore A. Linden. Operating System Structures to
Support Security and Reliable Software. ACM Com-
puting Surveys, 8(4):409–445, 1976. 3

[12] Sun Microsystems. XDR: External Data Representa-
tion. RFC 1014, June 1987. 4

[13] Todd C. Miller and Theo de Raadt. strlcpy and strl-
cat – Consistent, Safe, String Copy and Concatena-
tion. In Proceedings of the 1999 USENIX Technical
Conference, FREENIX track, June 1999. 3

[14] Joost Pol. OpenSSH Channel Code Off-By-One
Vulnerability.
http://online.securityfocus.com/bid/4241,
March 2002. 8

[15] Niels Provos. Systrace - Interactive Policy Generation
for System Calls.
http://www.citi.umich.edu/u/provos/systrace/,
May 2002. 8

[16] Jerome H. Saltzer. Protection and the Control of In-
formation in Multics. Communications of the ACM,
17(7):388–402, July 1974. 3

[17] W. Richard Stevens. Advanced Programming in the
UNIX Environment. Addison-Wesley, 1992. 4

[18] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Ed-
ward W. Felten. Extensible Security Architectures for
Java. 16h Symposium on Operating System Principles,
pages 116–128, 1997. 2

[19] Michal Zalewski. Remote Vulnerability in SSH
Daemon CRC32 Compensation Attack Detector.
http://razor.bindview.com/publish/advisories/adv ssh1crc.html,
February 2001. 8

	Introduction
	Least Privilege
	Privilege Separation
	Separating Privileges in OpenSSH
	Security Analysis
	Performance Analysis
	Related Work
	Conclusion
	Acknowledgments

