CITI Technical Report 01-9

Efficient Kerberized Multicast
in a Practical Distributed Setting

Giovanni Di Crescenzo
Telcordia Technologies, Inc., NJ, USA

giovanni@research.telcordia.com

Olga Kornievskaia
Center for Information Technology Integration
aglo@citi.umich.edu

Abstract

Many of today’s distributed applications are based on group communication. Given the openness of today’s
networks, communication among group members must be secure and, at the same time, efficient.

In this paper we consider a realistic distributed setting modeling general networks, including the Internet,
that suggests the use of Kerberos, and, more specifically, a distributed mode of operation of Kerberos,
called crossrealm authentication protocol, as a desirable choice for distributed applications.

We design an efficient protocol for secure group communication via multicast, using Kerberos. While
developing the main components of our protocol, we construct an efficient paradigm for crossrealm au-
thentication protocols that decreases communication over the Internet, makes most operations local, and
reduces the workload of the involved components. We also design extensions of single-center multicast
encryption schemes to multiple-center schemes. Qur main protocol is obtained by combining these two
contributions.

August 21, 2001

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Efficient Kerberized Multicast
in a Practical Distributed Setting

Giovanni Di Crescenzo
Telcordia Technologies, Inc., NJ, USA
giovanni@research.telcordia.com

Olga Kornievskaia
University of Michigan, Ann Arbor
Center for Information Technology Integration
aglo@citi.umich.edu

1 Introduction

Audio and video conferencing, data casting, and
collaborative applications are among the next-
generation applications emerging on the Internet
that are based on group communication. When com-
munication is conducted over a wide-area network
such as the global Internet, security is crucial as mes-
sages traverse many links that are prone to attacks.
Group members must have the means to commu-
nicate securely, in a private and authentic manner.
While peer-to-peer security is a well-developed field,
and several practical security protocols and primi-
tives have been proposed, the problem of designing
practical and secure group communication protocols
is not as well explored.

In this paper we study, in a practical distributed
setting motivated by real-life and developed applica-
tions, the problem of secure group communication.
We now describe the setting we consider, the tools
used and previous results, and finally describe our
results.

Model considered. In this paper we consider se-
curity protocols for a practical distributed setting.
Specifically, we consider several users that are di-
vided into realms or Intranets, all of these being
connected through the Internet. Moreover, in each
Intranet there is a server or center responsible for
several operations related to security management
within its own Intranet. We assume that the com-
munication through the Internet is not secured by
default. This setting is sufficiently general, as al-

most any type of network can be characterized as
described, and, yet, offers a useful structure in the
form of a trusted server inside every Intranet.

Tools used and previous results. Two basic
tools we use are: Kerberos protocol and multicast
encryption schemes.

Kerberos, a widely used authentication mechanism,
is a key distribution protocol that states how to
share a secret between two participants. Crossrealm
authentication is an extension to the original proto-
col that states how to deal with authentication in
a distributed environment. One interesting feature
of Kerberos is that almost all of its design is based
on symmetric-key cryptography and does not suffer
from computational overhead or open status of cer-
tain public-key cryptography techniques (as, for in-
stance, digital signature revocation). Kerberos relies
on the existence of a trusted server, which may limit
its application to settings where this assumption is
realistic. On the other hand, the setting we con-
sider already satisfies this assumption. This, among
other factors, has strongly motivated our choice of
the Kerberos system. Although Kerberos (originally
designed as a third party protocol) has extensions to
distributed settings, we found out that the efficiency
of some of these extensions can be questioned, thus
leaving room for possible improvement.

Our results. In devising a practical and secure so-
lution to our problem, we rule out the use of public-
key crypto because of its enormous cost relative to
symmetric-key crypto. Public-key techniques are
suitable in a setting with no trusted centers. How-

ever, as our setting includes trusted centers, a com-
bination of efficient extensions of Kerberos to a dis-
tributed environment and efficient extensions of mul-
ticast encryption schemes offers more practical solu-
tion of our problem.

Globally speaking, the contribution of our paper is
the construction of a practical protocol for secure
group communication via multicast using Kerberos.

In developing this solution, we have designed exten-
sions to Kerberos and used some recently obtained
extensions to multicast encryption schemes. In par-
ticular, we have designed a new practical paradigm
for crossrealm Kerberos authentication that signifi-
cantly decreases the amount of slow communication
over the Internet, makes most operations local, and
reduces the workload of the involved components.
The scheme extends efficiently to handle multicast
encryption. Moreover, we use some new extensions
of multicast encryption schemes to the case of mul-
tiple centers, which is relevant in our setting.

Our main protocol is then obtained as a careful com-
bination of the new paradigm for crossrealm Ker-
beros authentication with the schemes for multi-
server multicast encryption. While performing this
combination, we pay special attention to communi-
cation and storage complexity.

Organization of the paper. The rest of the paper
is organized as follows. In Section 2, we present an
overview of the Kerberos authentication protocol. In
Section 3, we present an overview of crossrealm au-
thentication in Kerberos. In Section 4, we describe
multicast encryption schemes, where we recall the
notion and basic solution approach and then show,
in Sections 4.1 and 4.2, the two main paradigms
of key management schemes for multicast encryp-
tion. Readers familiar with the background mate-
rial should skip to Section 5, where we introduce
an efficient crossrealm authentication protocol. In
Section 6, we design extensions of known multicast
encryption key management protocols to the envi-
ronment of many multicast servers. In Section 7, we
show how to obtain our protocol for secure group
communication by carefully integrating the previ-
ous schemes, namely, the new crossrealm Kerberos
authentication protocols and the new multi-server
multicast encryption schemes.

2 Overview of Kerberos

Kerberos [9] is a network authentication system
based on the Needham-Schroeder protocol [8]. To
avoid quadratic explosion of prior key agreement,
Kerberos relies on a trusted third party, referred to
as a Key Distribution Center (KDC). Alice, a Ker-
beros principal, and Bob, a Kerberized service, each
establish shared secrets with the KDC.

Authentication is achieved when one party proves
knowledge of a shared secret to another. Kerberos
authentication process makes use of two special data
structures: a ticket and an authenticator. A ticket
is created by a KDC. It contains a secret key in-
tended for two entities that will engage in authenti-
cation. The ticket and the secret key are given to a
requestor. To authenticate the requestor creates an
authenticator by using the secret key received from
the KDC. Kerberos authentication is illustrated in
Figure 1.

Let us consider an example, where Alice wishes to
authenticate to Bob. At login, Alice receives a ticket
granting ticket, TGT, from the KDC. She uses her
password to retrieve a session key encrypted in the
reply. The TGT allows Alice to obtain tickets from a
Ticket Granting Service, TGS, for other Kerberized
services. To access a Kerberized service, Alice au-
thenticates to the TGS. She presents her TGT and
constructs the authenticator, {T}k , o5 If authen-
tication is successful, Alice receives a service ticket,
{Alice, Bob, K4 g} Kk,- To authenticate to Bob, Al-
ice constructs an authenticator, {T}k, 5, proving
to Bob that she knows the session key inside of the
service ticket.

3 Overview of crossrealm authentica-
tion in Kerberos

In this variant of Kerberos, there are several KDCs,
one for each realm. In addition to assuming that
there is a shared key between each user and their lo-
cal KDC, this protocol assumes that there is a shared
key between any two KDCs that participate in the
crossrealm authentication. Even if the original Ker-
beros protocol doesn’t specify how secret keys are
established between participating KDCs, any of the
solutions in the public-key cryptography literature
for sharing keys among two parties can be used. An

LOGIN PHASE:

1. Alice - KDC:

2. KDC — Alice:
ACCESSING SERVICES:
3. Alice —» TGS:

4. TGS — Alice:

5. Alice — Bob:

ONCE PER SESSION
“Hi, 'm Alice”
TGT = {Alice, TGS, KA,TGS}KTGS: {KA,TGS, T}KA
EVERY TIME BEFORE TALKING TO A SERVICE

Alice, Bob, TGT, {T}k 4 r¢s

TKT = {Alice, BOb, KA,B}KB; {KA,B; T}KA,TGS
“Hi, I'm Alice”, TKT, {T}KA,B

Figure 1: Kerberos authentication. Two phases are shown: initial authentication
and service ticket acquisition. KDC is the Kerberos Key Distribution Center. TGS is
the Ticket Granting Service. Most implementations combine these services. Krgs is a
key shared between the TGS and the KDC. K4 is a key shared between Alice and the
KDC, derived from Alice’s password. Ka, ras is a session key for Alice and TGS. Ka,5
is a session key for Alice and Bob. T is a timestamp used to prevent replay attacks.
In each step, the encrypted timestamp serves the role of an authenticator. Note the
version of Kerberos in this figure does not include an optional pre-authentication
in the initial authentication. Furthermore, the steps shown describe only one way
authentication, Alice to Bob. Mutual authentication is achieved with an additional

message from Bob to Alice.

example of an use of such a solution can be found in
an extension of Kerberos, called PKCROSS [5].

Once again, suppose Alice wishes to communicate
with Bob. Crossrealm authentication proceeds as
illustrated in Figure 2. As before, there is an initial
login phase where Alice authenticates to her local
KDC (this phase is not shown in the picture as it
is identical to the original Kerberos protocol). Alice
uses her TGT to request a remote ticket granting
ticket (RTGT) for the remote realm. A local KDC
Kerberos authenticates the request by verifying the
validity of the ticket and the authenticator. The
KDC constructs the RTGT and encrypts it with a
key shared between the two KDCs; in our example,
it’s KDC A and KDC B. Alice presents the RTGT to
KDC B and requests a service ticket for Bob. KDC
B checks that RTGT is valid and that Alice included
the corresponding authenticator, {T}x, xpop- It
proceeds by issuing a service ticket.

4 Multicast encryption with a single
server

The word multicast is often associated with a va-
riety of communication and networking topics; in
this paper we consider multicast encryption. In-
formally, multicast encryption schemes are meth-
ods for performing secure communication among a
group of users. In such schemes the group struc-
ture is dynamically changing, as a consequence of
additions and deletions of members. Moreover, they
are divided into two phases: an off-line initializa-
tion phase, in which a center communicates privately
with each group member, and an on-line communica-
tion phase, in which the only communication means
between center and group members is through a mul-
ticast channel, which the center (or any other party)
uses to broadcast messages to all others.

Given that the communication is secured through
symmetric-key encryption we consider the usual
paradigm of sharing a random key among the group
members. Once established, this group key is used
to encrypt and decrypt messages exchanged among

1-2 Kerberos login

w

. Alice - KDC A:
4. KDC A — Alice:

Alice, Bob@B, TGT, {T}kyxpca
RTGT = {Alice@A, KA,k DCB}Kxpoaxposs

{KA,KDCB; T}KA,KDCA

5. Alice - KDC B:
. KDC B — Alice
7. Alice — Bob:

(=2}

Alice@A, Bob@B, RTGT, {T}k, xpes
TKT = {Alzce@A, BOb@B, KA,B}Kg: {KA,B; T}KA,KDCB7
“Hi, I'm Alice@A”, TKT, {T}k, ,

Figure 2: Crossrealm authentication. Initial Kerberos authentication (steps 1-2)
is not shown in the figure. Also, a secret key, Kxpca,xpcB, shared between the

KDCs is assumed to be established prior to clients’ requests.

Alice authenticates

with her local realm by presenting the TGT and constructing the authenticator for
which she uses k. xpca, key shared between Alice and the KDC A. Alice receives a
remote ticket granting ticket, RTGT, encrypted with Kxpca,xkpcs. Alice proceeds
to request a service ticket from the remote KDC. The last two steps of the protocol
are equivalent to the last two steps of the original Kerberos.

members of the group. The problem is then reduced
from a multicast encryption to a key management
problem. The latter requires a scheme for manag-
ing keys among the group members in such a way
that the following invariant is maintained: all group
members have knowledge of the group key and all
others have no information about it, where the group
membership is not fixed, but varies through opera-
tions such as addition and deletions of users.

Key management protocols in the literature can
be divided into two types: collaborative and non-
collaborative. Collaborative key management refers
to a method of managing the group key between the
group members without any outside assistance; col-
laborative key management protocols have been pro-
posed, for instance, in [10, 1, 6]. Non-collaborative
key management, which we consider in this paper,
refers to a method that relies on the existence of a
center that is responsible for generating, distribut-
ing and updating the group key and other keys in
the system.

In the literature, all non-collaborative key manage-
ment architectures consider the scenario of a single
center managing N users that comprise a multicast
group. This center, which we call C, is responsible
for managing keys and distributing them to users Uj,

fori =1,...,N, both in an initial phase and while
they are joining and leaving the group.

Joining a group is inexpensive if no backward secrecy
is required. Typically, when a user wants to join a
group, he contacts a center and receives a group key
encrypted with a secret key established previously
(like a password in Kerberos). If backward secrecy
is required, then a new group key is created and dis-
tributed to all group members including the newly
joined user. When a user wants to leave a group,
the group key must be changed in order to satisfy
the stated invariant. A center then generates a new
group key and distributes it to the group. Multicast
encryption schemes differ in how the key update op-
eration is managed. In this paper we assume that
backward secrecy is not needed and thus the join
operation is simple. We mostly concentrate on de-
scribing what happens when a user leaves a group.

The multicast encryption schemes presented in the
literature are compared based on several complexity
measures, such as communication complexity, stor-
age complexity both for the user and the center,
and time complexity. Although all such complexity
measures are important, given the type of applica-
tions multicast encryption schemes are usually em-
ployed for, it is often of crucial importance to design

a scheme having small communication complexity
(for instance, at most polylogarithmic in the num-
ber of users, for each update operation). For more
extensive discussions, we refer the reader to [2, 3].
In the rest of this section we briefly review the two
main families of multicast encryption schemes in the
literature: minimal storage schemes and tree-based
schemes. Their performance, in the various com-
plexity measures, is summarized in the table in Fig-
ure 3.

4.1 Minimal storage schemes

A typical scheme in this family works as follows.
Each user U; holds two keys: a group key K, and
a unique secret key K; shared between this user and
the center. The center holds two keys: a group key
K, and a secret key I This secret key is used to
generate the keys for all the users in the group by
combining it with a pseudo-random function f, for
instance, as K; = f;(i). We now describe how the
center manages keys when users join or leave the
group, the latter case being the non-trivial one.

When a user, say Un41, joins the group, the center
just computes a key Kyy1 = fi(IN + 1) and gives it
to Un41; then the center privately sends the group
key to Un41 by first encrypting it using key Kny1.

When a user leaves the group, the center chooses a
new group key Ky, and, for each user U; who has
not left the group, the center encrypts K, using
K; as a key and transmits the result to U;. The
communication cost of this scheme is linear in the
number of clients in the group. The storage cost of
both user and center is constant.

4.2 Basic tree schemes

These schemes reduce the communication cost of key
update to logarithmic but increase the storage cost.
The center creates a balanced tree. For simplicity,
we assume that for n members, n = 2! for some
natural number ¢. A key is associated with each node
in the tree. Leaf nodes are associated with individual
keys known to a particular user. Each user is given
all the keys associated with nodes on the path from
the leaf node to the root. Thus, each user U; holds
logn + 1 keys. The root node is considered to be
a group key for the group since it is known to all

the users. The center stores all the keys in the tree,
requiring a storage cost of 2n + 1 keys. We now
describe how the center manages keys when users
join or leave the group; again, the latter case is the
non-trivial one.

When a user joins the group, the center adds a new
leaf to the tree, associates a new key and the new
member with the new leaf, and distributes all keys
on the path from this leaf to the root to the new
user.

When a user leaves the group, the center changes all
the keys on the path from the removed leaf to the
root. The center generates logn new keys. Each of
the keys is encrypted under the key of the unaffected
sibling node on the path and multicasted to all users.
Overall, only logn encrypted keys are sent.

Figure 3 shows an example of key assignments in the
basic tree scheme for N = 8. In addition to 8 leaf
nodes, there are 7 other keys in the system. User
U; stores 4 keys: Kgio, Ko1, Ko, and K. If user
Us; leaves, then keys Ky1, Ky, and K must change.
The new key K01 is encrypted with Kgi;. The new
key KO is encrypted with Kyo and Km- The new
session key is generated next and encrypted with KO
and Kj. This technique guarantees that new keys
will be known only to the rest of the group and not
to the removed user.

This scheme takes advantage of the fact that some
keys are shared between multiple clients and are not
on the affected path. The details of the update pro-
tocol are described in [2, 12, 13]. An improved bi-
nary tree scheme is described in [3], which gener-
alizes from binary trees to a-ry trees and applies a
minimal storage scheme on the groups of users of
size m at the bottom of the tree. In the version
of this scheme that achieves efficient communication
O(logn) and user storage O(logn), the center stor-
age is improved from linear to O(n/logn).

5 Efficient crossrealm authentication
protocol

In Section 3, we showed how users from differ-
ent Kerberos realms can authenticate each other.
We note that the crossrealm authentication proto-
col that was discussed requires the user to contact

. changed keys
@ enc keys

@Kw
s

. Ko
. KOl

@ Ki
OKlO

OKll

£ WY

Evaluation pa- | Minimal Basic tree | Improved
rameters storage tree
user storage 2 logn +1 logn
center storage 2 2n -1 orn
communication | n—1 logn logn
computation n logn logn

Figure 3: Basic tree scheme. The figure shows the tree created by the center in the
basic tree scheme, for N = 8. A highlighted path represents the affected path after a
user deletion. Keys of the affected nodes are shaded. The table above compares three

multicast encryption schemes.

the remote KDC before being able to contact the
other user. As a consequence, in the (typical) sit-
uation in which each user is in her own Intranet
and the two Intranets are connected through Inter-
net links, the crossrealm authentication protocol in-
troduces network delays associated with the traffic
going through Internet links, which are potentially
much slower than Intranet links. The fake ticket pro-
tocol described in this section reduces the network
delay seen by the client.

Our protocol maintains the same properties of the
original crossrealm authentication protocol. Specif-
ically, our protocol provides a mechanism for two
parties to establish a secret key and authenticate one
another in the process. For now we make an assump-
tion that the participating KDCs share a secret key.
The same assumption is made in the original cross-
realm authentication protocol. Additionally, we as-
sume that clients trust KDCs to make requests on
their behalf. The KDC is a trusted entity (recall
that this is a basic assumption of Kerberos itself),
so this assumption is reasonable.

Figure 4 gives details of the protocol, including the
flow of messages among the participants. First, we
give intuition behind the protocol; then we go over
each of the steps in detail. As in the original cross-

realm protocol, Alice makes a request to her local
KDC for a service ticket. The local KDC replies to
the user with a service ticket for Bob. Alice contin-
ues and makes a request to Bob, as in the original
Kerberos protocol.

Notice that in this protocol Alice’s local KDC can
not issue a valid service ticket for Bob, as he is not
in the same realm as Alice, therefore, Alice’s KDC
does not know the shared key between Bob and Bob’s
local KDC. Instead, Alice’s local KDC issues a fake
ticket. When a KDC issues any kind of a ticket to
an entity, the requestor has no way of verifying the
validity of the ticket because the ticket is encrypted
with a key that is not known to that entity. Alice
can not know that the ticket she has is not encrypted
with the proper key. Alice’s KDC generates a session
key to be used by Alice and Bob and gives this key
to Alice.

Upon receiving a service ticket from Alice, Bob is
unable to decrypt it because he doesn’t share any
secrets with Alice or Alice’s KDC. So Bob contacts
his local KDC and requests verification of the ticket.
The KDC extracts the session key from the ticket
and returns it to Bob.

In step 1, Alice makes a request for a service ticket

(Alice)

3

Y
>(Bob)

1. Alice - KDC A:
2. KDC A — Alice:

Alice, Bob@B, TGT, {T}k, xpca
FTKT = {Alice@A, Bob@B, K4 5} kypoaxpon:

{KAyB7 T}KA,KDCA

w

. Alice — Bob :
. Bob - KDC B:
5. KDC B — Bob:

o

“Hi, 'm Alice@A”, FTKT, {T}k, »
FTKT, TGT, {T}KB,KDC’B
TKT = {Alice@A, BOb@B, KA,B}KB; {T}KB,KDC‘B

Figure 4: Fake ticket protocol The figure shows the flow of messages between
participants in the protocol. Alice authenticates to the KDC A by presenting the TGT
and creating the corresponding authenticator. KDC A generates a fake service ticket,
(FTKT), encrypts the session key with the key it shares with Alice. She authenticates
to Bob with the ticket, (TKT), and the authenticator. Bob forwards to the ticket to
the KDC B which after authenticating Bob by validating his TGT and the included
authenticator creates a real service ticket.

from her local KDC. The format of the message is as
in previous protocols. The local KDC authenticates
the client and generates a session key to be used by
Alice and Bob. It encrypts the session key with the
key it shares with Alice. Also it generates a ticket
and sends the reply to Alice. The ticket is encrypted
with a key that is shared between Alice’s KDC and
Bob’s KDC, KkpcA,kDCB-

In step 3, upon receiving the reply from her KDC,
Alice creates a request to Bob that is identical to the
last step of the Kerberos protocol (see Figurel). The
request contains the service ticket for Bob that Alice
has just received and the authenticator, {T}k, 4,
proving to Bob that she knows the session key in-
side of the service ticket. The request is marked as
crossrealm authentication request.

In step 4, when the server gets the message that con-
tains this special type of a ticket, Bob forwards the
ticket to his local KDC B. Bob authenticates to the
KDC B by presenting his ticket and the authentica-
tor that proves that Bob knows the session key that
goes with the ticket.

In step 5, after successful authentication of Bob,
KDC B decrypts the ticket and retrieves the session
key. KDC B also checks that the service ticket was
intended for Bob before revealing the session key in-
side of the ticket. Furthermore, it checks that the

ticket is still valid by checking the expiration time.
KDC B creates a real service ticket for Alice and Bob
and returns this ticket to Bob.

Security analysis. The proposed protocol is a varia-
tion of the original crossrealm protocol. Thus, if the
original protocol is secure then so is the fake ticket
protocol. At each step of the protocol the sender
(and optionally the receiver) is authenticated with
the corresponding tickets and authenticators. Fur-
thermore, in order to prevent Charlie from capturing
a fake ticket and asking the KDC to reveal the session
key inside of it, we require that the party authenti-
cated in step 4 of the protocol be the same principal
for which the fake ticket was issued.

5.1 Comparison of protocols

In the previous sections, we presented two cross-
realm authentication protocols. One was previously
known and one was introduced in this paper. Both
protocols achieve the goal of establishing a secret key
between communicating parties and authenticating
each other in a setting where parties are divided into
realms. Each realm has a server responsible for var-
ious operations within a realm, such as key manage-
ment.

This section looks at how the protocols introduced
in this paper compare to the protocol previously
introduced in the literature. We consider the fol-
lowing comparison criteria: communication delays,
software compatibility, workload at the client side,
workload at the KDCs (local and remote) for each of
the protocols, and efficient multicast applicability.

5.1.1 Communication delays

To compare communication cost, we identify two
types of messages: Intranet (fast) and Internet
(slow). Overall, we observe that the fake ticket pro-
tocol is the most favorable. Each execution of the
original crossrealm protocol requires three Internet
messages, while the fake ticket protocol requires only
one. Intranet messages are assumed to be fast, so
the difference in their numbers (in our case two mes-
sages) should not affect overall performance.

5.1.2 Software compatibility

Each of the crossrealm protocols requires certain
modifications to Kerberos. To support crossrealm
operations in Kerberos, client software needs to
modified to handle communication with the remote
KDC. The fake ticket protocol doesn’t requires client
side modifications. In practice, it is very important
that the client side software remains unchanged.

Each of the protocols requires modifications to the
KDC. In the original crossrealm proposal, the remote
KDC must recognize remote ticket granting tickets.
In practice, this is not a major modification. In the
fake ticket protocol the ability to generate fake tick-
ets is required. Furthermore, the support for con-
verting fake tickets into regular tickets is needed. In
practice, the support for additional functionality is
implemented in terms of new services that run on the
same machine as the KDC and thus do not require
modification to already existing code.

In addition to these modifications, the fake ticket
protocol requires modifications to the server soft-
ware.

5.1.3 Client workload

We measure the workload of a component in terms of
the number of cryptographic operations and network
messages. The original crossrealm protocol produces
the biggest client workload. If the client machine is
not powerful enough to do encryption operations,
then overall performance of the system degrades. In
the original crossrealm protocol the client is required
to perform seven cryptographic operations (encryp-
tion/decryption) and process five messages. The
fake ticket protocol requires four cryptographic op-
erations and three messages.

5.1.4 KDC workload

In case of the remote KDC, all protocols produce the
same number of encryptions, which is not surprising
as the remote KDC is the only one that can generate
a valid service ticket for the server. This operation
takes three encryptions. The request for a service
ticket is authenticated by a ticket and a nonce. In
order to decrypt a ticket and a nonce, a KDC per-
forms two decryption operations.

5.1.5 Efficient multicast applicability

As it will become clear in Section 7, the fake ticket
protocol can be extended to allow multicast encryp-
tion by preserving its efficiency in all parameters.
The original crossrealm protocol can not be easily
combined with multicast encryption to produce a
protocol that is reasonably efficient.

6 Multicast encryption with many
servers

As we pointed out in Section 3, the solution that
assumes a single server responsible for all the clients
doesn’t scale to the environments such as an Internet
connecting several Intranets (as well as the Internet
itself). The previously reviewed schemes for multi-
cast encryption consider only a single center. In this
section, we discuss several protocols for the more
realistic case where there are multiple centers, each
managing a group of users. In Table 1 we summarize
performance characteristics of each of the schemes.

Imagine a dynamically-changing group of n users
(namely, with users being added to and removed
from the group); as before each client is denoted
as U;. A group is broken down into smaller groups
of size m. Each such group is managed by a center,
denoted as Cj.

The security requirements that a multi-server se-
cure multicast encryption scheme should satisfy can
be defined essentially in the same way as those of
a single-server scheme. The only difference is that
in the various operations of a multi-server protocol,
the users may potentially interact with many servers
(rather with only one), and the servers may have to
coordinate in order to perform all necessary opera-
tions. As a result, users managed by different centers
can belong to the same group.

A straight forward approach in constructing a multi-
server multicast encryption scheme, given a single-
server one, elects one out of the many servers as a
principal server and then uses it as the server when
executing the single-server scheme. The inconve-
nience of such a scheme is that for every operation,
each client must communicate to a server in a spe-
cific Intranet, which, in general, requires Internet
messages to be sent, degrading overall performance.

Instead, we would like multi-server schemes to sat-
isfy some basic efficiency requirements. First, we
require every user to communicate only to the lo-
cal server in the same Intranet during the various
management operations of the scheme. Moreover,
we require both the total communication among the
servers and the storage complexity of all servers to be
minimized. This list of requirements is not exhaus-
tive: it is not hard to think of other efficiency re-
quirements that might be necessary for certain spe-
cific applications.

6.1 A simple construction

A simple construction groups all users into a sin-
gle binary tree, as in the single server tree based
schemes, and then requires that the same tree data
structure is maintained by each of the centers. Ad-
dition of a user requires the user to communicate
only with its local center, who later communicates
the join to the other centers. Similarly, deletion of a
user is handled locally by the center associated with
the departing user, as for a single center scheme,

and later the center informs all other centers of the
deletion.

Although obtaining locality of key updates (the com-
munication for each update is efficient, as it is loga-
rithmic in n), this solution is inefficient in terms of
center storage. Each center is required to store all
the client keys, including the keys of the clients it
doesn’t manage. The total number of keys stored
among all the centers for a group is (2n — 1) - 2,
assuming there are ;- centers, each managing m out
of n clients.

6.2 A second construction,
tree-based schemes

extending

To improve on the previous scheme, we observe that
each of the centers doesn’t need to keep the informa-
tion about the users that don’t belong to the same
Intranet as that center. So if each center manages
m users, then each of the centers applies the single
center binary tree scheme to store information about
their users only. As a consequence, each user stores
only logm + 2 keys; a center stores the keys in the
tree for m clients. The root of each tree is a key
shared by m users and not all n users. Thus each
client additionally stores a session key for the group,
K. Each of the centers stores a secret key, K,
not known to the clients, that is used to distribute
a new session key.

When a user leaves, his local center creates a new
session key for the whole group. Distribution of the
session key to the local users is done by applying the
single center tree-based protocol. The shared key
among the centers is not affected, so the center uses
it to encrypt the new session key and broadcasts it to
the rest of the centers. Upon receiving the message
and decrypting it, each of the centers encrypts with
the corresponding root key for the local tree and
broadcasts it. The update operation takes logm+ -
messages. The total storage among all centers is
2(m+1) L.

We note that this scheme improves over the previ-
ously described scheme both in center and in user
storage, but has a more expensive communication
complexity for each key update.

| Parameters | Replicated tree | Master key | Weighted tree |
User storage logn +1 logm +1 O(logn)
Center storage 2n—1 2m O(m +1log 1)
Communication Zlogn logm + - O(logn)

Table 1: Multi-server multicast encryption schemes. The table summarizes the
complexity values for each of the multi-server multicast encryption schemes. Values
for center storage are of a single center. To get the total center storage among all the
centers each of the values need to by multiplied by number of centers, assumed for

the first two case to be -.

6.3 A third construction, based on cod-
ing theory algorithms

One possible extension of the previous scheme is to
create a better data structure for the keys shared
among the servers. Specifically, a binary tree having
centers as leaf nodes could help. Note that the re-
sulting data structure of the entire system contains
several binary trees, each in a different Intranet,
built over the users in that Intranet and having a
center as a root; and, moreover, one binary tree over
each of the centers. Overall, the data structure is in
fact a single binary tree; however, unlike the case in
which a binary tree is obtained by applying a sin-
gle center tree-based scheme, here the tree can be
unbalanced if the relative numbers of users in each
Intranet differ significantly from each other.

Consequently, the problem of finding the optimal
balancing, given as information the number of users
in each Intranet, naturally rises as a way to minimize
the average number of keys to be changed in the
next update operation (assuming that the next user
leaving is random). Interestingly, this problem can
be seen to be equivalent to the well-known coding
theory problem of finding codes for variable-length
sources that minimize the average codeword length.
A classical algorithm constructing such codes, based
on the is due to Huffman (see, e.g., [7]). This al-
gorithm, given their frequencies, constructs a tree
which minimizes the average length of the code-
words.

To construct an optimal multicast tree for our
scheme, we first construct a tree in each Intranet
using a single center tree-based scheme. Then, each
center is associated with a codeword. The number of
users in that Intranet divided by the number of to-
tal users is considered as the frequency of that code-
word. We run Huffman’s algorithm on these inputs

and obtain a minimal tree whose structure shared
among all clients and all servers and added to all
trees previously constructed for each Intranet. This
gives rise to a single, global tree.

Addition and deletion of users is handled as in the
single center tree-based scheme, but on the global
tree.

We note that in this scheme each user is given
at most logn keys; some come from the tree con-
structed for that Intranet, and some from the exe-
cution of Huffman’s algorithm, the relative sizes ac-
cording to how many users are in the same Intranet.
The communication per update is now only logarith-
mic in n, and is, in fact, optimal assuming that the
next deletion is from a randomly chosen user. The
total center storage is also efficient, although the ex-
act expression depends on the relative numbers of
users in each Intranet; in the case when all Intranets
have the same number m of users, each server stores
only log(Z) +m keys.

7 Integrating Kerberos with multi-
cast encryption schemes

In this section we combine two parts of this pa-
per into a single protocol for secure group commu-
nication via multicast using Kerberos-based proto-
cols. This protocol is designed into the practical
distributed setting considered in this paper; namely,
users are divided into realms or Intranets, which are
connected through the Internet.

We show how to combine both of the crossrealm pro-
tocols with any of the discussed multi-server multi-
cast encryption schemes. For simplicity of descrip-
tion, we discuss only tree-based multi-server multi-

KDCC KDC A KDC B
A
4 5 1 2 4 5

\

i

kBob)

Charlie \ Alice)
3

3

multicast

1. Alice - KDC A:
KDC A — Alice:

o

{K!}k7 Kl?elp’
Alice — Group:
Bob - KDC B:
Charlie - KDC C:
KDC B — Bob:

KDC C — Charlie:

CLOUR W

Alice, Group, TGT, {T}k, xpca

GTKT = {Alice@A, Group, Ko}k,

T}KA,KDCA7

“Hi, 'm Alice”, GTKT, {T}x,,

GTKT, TGT, {T}KB,KDCB

GTKT, TGT, {T}KC,KDCC

GTKT = {Alice@A, Group, Ky, K1 Yk, {T s xpos
GTKT = {Alice@A, Group, Ky, nglp}KCJ {T}ke xpec

Figure 5: Kerberized multicast encryption protocol

cast encryption schemes. To combine the protocols
we note that:

e the key K4 xpca in the crossrealm protocols
and the key in the multicast encryption scheme
shared between Alice and the server can be the
same key;

o the key K4, p shared between Alice and Bob can
be replaced by the group key that is shared dur-
ing the execution of the (key-distribution phase
of the) multicast encryption scheme;

Each of the proposed algorithms has the following
properties:

o Allows for secure group key distribution to par-
ticipants in the group. We consider a join by
invitation where the initiator of the group con-
tacts (invites) other entities to participate in a
group communication.

o Achieves sender authentication in a group mem-
bership setting, which allows this algorithm to
be used for the authenticated client join opera-
tion. To achieve sender authentication, the join
algorithm described below can be easily modi-
fied.

7.1 Kerberized multicast with fake tick-
ets

We add the requirement that a key is shared among
all centers in a preliminary stage. Note that be-
fore, analogously, a key was shared between KDC A
and KDC B; this key was computed using public-key
cryptography techniques (e.g., the two-party Diffie-
Hellman key-exchange [4]). For the above protocol
we can use any extension of these techniques to more
than two parties (e.g., the n-party generalized Diffie-
Hellman key-exchange [11]

Figure 5 shows how Alice can send a message to
the Group, which in this example includes Bob and
Charlie, according to this protocol.

In step 1, Alice authenticates to her local KDC and
requests a ticket for the multicast group, denoted
Group in the Figure 5. Alice presents her Kerberos
credentials: TGT and authenticator.

In step 2, Alice’s KDC creates a group key, K, and
a group ticket, {Alice@A, Group, Kgi}k,... Kmk
represents a key shared between the KDCs. KDC A
also generates other multicast group keys, Kpeip for
Alice. KDC A, as well as other KDCs, need to know
membership information. One solution could be for
Alice to include the information in the request. Then
this membership information would be included in
the group ticket; thus, other KDCs would have access

to the membership list and be able to generate the
necessary multicast keys for other members.

In step 3, Alice retrieves the group key from the
reply and creates the authenticator using that key.
She multicasts the message to the group. The mes-
sage includes the group ticket and the corresponding
authenticator.

In step 4, each of the members contacts their local
KDGCs as in the fake ticket protocol in order to vali-
date and interpret the group ticket. All the requests
are Kerberos authenticated. Each of the KDCs gen-
erates other multicast group keys from the group
key if needed and converts fake tickets into regu-
lar tickets, by reencrypting the information with the
appropriate keys.

In the last step, each of the participants receives
the needed multicast keys and is assured that the
message came from Alice.

Note that the protocol works regardless of whether
the group members belong to the same realm as Al-
ice or multiple realms, as in the example shown in
Figure 5.

7.2 Integration with original crossrealm

The original crossrealm protocol fails to provide the
same efficiency when used to secure group commu-
nication. Figure 6 shows how Alice can send a mes-
sage to the Group according to this protocol. As in
the previous example, the group consists of Bob and
Charlie.

In step 1, Alice authenticates to her local KDC
and request a ticket for the multicast group, sim-
ply named Group in the Figure. Alice presents her
Kerberos credentials: TGT and authenticator. The
request could include the membership list or Alice
could include it in the request. From this list, the
KDC infers which of the remote KDC are involved.

In step 2, KDC A first generates a group key, Kgy.
Then it issues to Alice needed RTGTs. In our exam-
ple, Alice receives remote ticket granting tickets for
KDC B and KDC C. Each of the remote ticket grant-
ing tickets would need to include a newly created
session key. Additionally, KDC A generates all other

group keys required (which depend on the particular
multicast encryption scheme used).

In step 3, Alice performs crossrealm authentication
to all the remote KDCs. In each remote authenti-
cation request, Alice requests a ticket for a mem-
ber of the group that belongs to the realm. Each
of the remote KDCs authenticates Alice by check-
ing the RTGT and the corresponding authenticator.
Each of the KDCs retrieves a group key from the
RTGT and creates the requested ticket with that
group key. For example a ticket to Bob would be
{Alice@A, Bob@B, Kgi}k,. Also, for each mem-
ber Kpeip multicast group keys are generated and
included in the ticket.

In step 4, Alice awaits the replies from the remote
KDCs. She checks the authenticators by validating
the timestamps of the replies.

In step 5, Alice prepares the message to the group.
The message includes all the tickets she received
in the last step. Alice creates the authenticator,
{T}k,,- She needs only one authenticator for all
the tickets because the secret key inside each of the
tickets is the same, namely K . Each of the recip-
ients can validate the ticket and the authenticator,
then retrieve the group key from the ticket.

7.3 Discussion

Integration with the original crossrealm authentica-
tion protocol requires the client to contact all of the
remote KDCs involved; i.e., 2-m message, where m is
the number of KDCs. Furthermore, a join message
multicast by Alice to all members is linear in size
because it includes a ticket for each of the members.
The use of fake tickets allows us to multicast a mes-
sage with only a single ticket. Alice is not required
to make any (potentially time consuming) requests.
In terms of network delay, in the first protocol we
have to account for 2 - n Intranet messages. Due to
the network latency of Internet message we assume
that n - a < m - 3, where « is the network delay
within an Intranet and (3 is the network delay on
the Internet, while m < n.

Y

Alice
5 5
multicast

(G-

>(Bob)

1. Alice - KDC A:
2. KDC A — Alice:

Alice, Group, TGT = {Alice, Ko, kpcAYKxpoar 1T} Ka xpea
RTGT1 = {Alice@Aa K!Jk7 KAqKDCB}KKDCA,KDCB7

{KA,KDCB}YKA xpca>
RTGT2 = {Ahce@A, ng; KA,KDCC}KKDCA,KDCC’

{KA,KDCC}KA,KDCA » {nga Kffelp’ T}KA,KDCA

Alice - KDC B:
Alice - KDC C:
KDC B — Alice
KDC C — Alice
Alice = Group:

OU s

Alice@A, Bob@B, RTGT1, {T}k, xpes

Alice@A, Charlie@C, RTGT2, {T}k, xpee

TKT1 = {Alice@A, Bob@B, K gk, Kpy Yk, {T} K a xpos
TKT2 = {Alice@A, Charlie@C, Ky, nglp}Kc, {T}ksxpcc
“Hi, P'm Alice”, TKT1, TKT2 {T}x,,

Figure 6: Crossrealm multicast encryption protocol

8 Conclusion

In this paper we propose an efficient protocol for se-
cure group communication via multicast, using Ker-
beros. We consider a practical distributed setting
where users reside in different Intranets (realms)
connected through the Internet. This setting is suf-
ficiently general as almost any type of network can
be characterized as described, and, yet, offers useful
structure especially the presence of a trusted server
inside every Intranet. We considered an extension
to the original Kerberos protocol that enables cross-
realm operations, identified its inefficiencies, and
proposed a new paradigm for crossrealm Kerberos
authentication that significantly decreases slow com-
munications over the Internet, makes most opera-
tions local, and reduces the workload of the involved
components. Furthermore, the paper describes new
extensions of multicast encryption schemes to the
case of multiple centers. Finally, we combine the
new crossrealm protocol with those for the multi-
server multicast encryption.

9 Acknowledgments

We thank the anonymous reviewers for their helpful
comments. We also thank Peter Honeyman for his
valuable comments.

References

[1] K. Becker and U. Wille. Communication com-
plexity of group key distribution. In Proceedings
of the 5th ACM Conference on Computer and
Communication Security, pages 1-6, San Fran-
cisco, CA, November 1998.

[2] R. Canetti, J. Garay, G. Itkis, D. Miccianco,

M. Naor, and B. Pinkas. Multicast security: A

taxonomy and efficient authentication. In IEEFE

INFOCOMM, 1999.

R. Canetti, T. Malkin, and K. Nissim. Efficient
communication storage tradeoffs for multicast
encryption. In Proceedings of ”Advances in
Cryptology — EUROCRYPT’99”, Lecture Notes
in Computer Science, Springer Verlag, 1999.

[3]

W. Diffie and M. Hellman. New directions in
cryptography. IEEE Transaction on Informa-
tion Theory, 22:644—654, November 1976.

[4]

[5] M. Hur, B. Tung, T. Ryutov, C. Neuman,
A. Medvinsky, G. Tsudik, and B. Sommer-
feld. Public key cryptography for cross-realm
authentication in kerberos, May 2001. Internet
draft.

[6] Y. Kim, A. Perrig, and G. Tsudik. Simple
and fault-tolerant key agreement for dynamic

collaborative groups. In Proceedings of the

[7]

[9]

[10]

[11]

[12]

[13]

7th ACM Conference on Computer and Com-
munication Security, CCS’00, pages 235244,
November 2000.

F. MacWilliams and N. Sloane. The theory of
error-correcting codes. Elsevier Science, 1977.

R. Needham and M. Shroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993 — 999, December 1978.

C. Neuman and T. Ts’o. Kerberos: an authen-
tication service for computer networks. IEEFE
Communications, 32(9):33-38, September 1994.

A. Perrig. Efficient collaborative key manage-
ment protocols for secure autonomous group
communication. In CryptTEC, 1999.

M. Steiner, G. Tsudik, and M. Waidner. Diffie-
hellman key distribution extended to groups.
In Proceedings of the 3rd ACM Conference
on Computer and Communications in Security,
CCS’96, pages 31-37, March 1996.

D. Wallner, E. Harder, and R. Agee. Key man-
agement for multicast: Issues and architectures,
June 1999. RFC 2627.

C. Wong, M. Gouda, and S. Lam. Secure group
communication using key graphs. In Proceed-
ings of the ACM SIGCOMM’98, pages 68-79,
September 1998.

