CITI Technical Report 01-8

Personal Secure Booting

Naomaru Itoi
Center for Information Technology Integration
http://www.citi.umich.edu/
William A. Arbaugh
waa@cs.umd.edu
Department of Computer Science
University of Maryland, College Park
Samuela J. Pollack, Daniel M. Reeves
pollack@engin.umich.edu, dreeves@eecs.umich.edu
Electrical Engineering and Computer Science Department
University of Michigan

Abstract

With the majority of security breaches coming from inside of organizations, and with the
number of public computing sites, where users do not know the system administrators,
increasing, it is dangerous to blindly trust system administrators to manage computers
appropriately. However, most current security systems are vulnerable to malicious soft-
ware modification by administrators. To solve this problem, we have developed a system
called SAEGIS, which embraces a smartcard as personal secure storage for computer com-
ponent hashes, and uses the hashes in a secure booting process to ensure the integrity of
the computer components.

May 14, 2001

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

1 Introduction

With the rapid integration of information tech-
nology into society, the demand for computer
system security is soaring. Despite decades
of extensive research on information security,
computer systems remain vulnerable to mali-
cious modifications. This trend reflects preva-
lent, but inaccurate, assumptions about com-
puter systems: that they are trustworthy. For
the purpose of this paper, we define a trusted
computer as “a computer system that behaves
as its users intend, without damaging or leaking
the resource or information”.! A major prob-
lem today is that modern commodity comput-
ers are not trustworthy because (1) they tend to
overlook or ignore physical security issues, and
(2) they are vulnerable to the exploitation of
software bugs. Once an adversary compromises
a computer by one of the above two methods,
he can install a malicious modification that de-
feats any security mechanism on the computer.
For example, consider a Kerberos client that
steals a user’s password [4], an SSL client that
leaks plain text packets [5, 16], or a loadable
kernel module that redirects system calls to fool
a system integrity checker [1, 10].

Conventionally, the problem of trusted com-
puting has been tackled by approaches such as
access control mechanisms [6], layered architec-
ture [17], sandboxing [9, 23], and application-
level integrity checking [12]. However, all of
these approaches trust the underlying hardware
and operating system kernels, and are of lit-
tle use if any of these components are compro-
mised. Furthermore, many of the approaches
require custom operating systems, which in-
creases management and operational problems.

To counter this problem, Arbaugh et al. have
developed a high assurance bootstrap process
called AEGIS [2, 3]. AEGIS ensures that a
valid and authorized operating system kernel
is started by verifying the integrity and au-

!This definition is narrower than the one used in
the US Trusted Computer Security FEwvaluation Crite-
ria [19], in which the word “trusted” includes access
control, covert channel analysis, etc. Our definition is
closer to the ones used by Neumann [18], Brewer et al.
[5], Goldberg et al. [9], and Loscocco et al. [16]

thorization of every component that comprises
the bootstrap process through the use of digital
signatures and authenticity certificates. When
it boots an operating system, AEGIS guaran-
tees that the boot process takes a valid path
(in terms of integrity and authorization) from
the initial power-on event to the login prompt
through an inductive process [2].

Although AEGIS significantly improves the
security of personal computers, it has draw-
backs. First, users must trust their system
administrator to authorize, i.e., digitally sign,
the trusted operating systems and applications.
However, because (1) security threats often
come from inside of organizations, and (2) in
public computing sites, such as Internet cafes
and libraries, system administrators are un-
known, the user may choose not to trust the
administrators. Second, AEGIS is inflexible: it
is difficult to change the hardware configura-
tion of a host, and it can boot only FreeBSD.

To solve these problems, we have developed
sAEGIS, which integrates a smartcard into the
bootstrap process. In sSAEGIS, we use a smart-
card to store the set of component hashes that
the holder of the smartcard authorizes, push-
ing control over the selection of approved com-
ponents from the system administrator to the
user. We also have ported AEGIS to sup-
port GRUB [8], a free and flexible boot loader,
which supports a larger set of operating sys-
tems.

The remainder of the paper is structured as
follows. First, we provide a brief review of
AEGIS. Next, we present the design of SAEGIS
and analyze its security. Then, we describe
the implementation and provide performance
benchmarks for sAEGIS. Finally, we conclude
the paper and provide details of our future
work.

2 Background: AEGIS Se-
cure Bootstrap Process

Here we review AEGIS to provide background
for understanding sAEGIS.

AEGIS is a secure bootstrap process, whose
goal is to provide a trusted foundation on a
computer system. As described in Section 1,
a modern computer system cannot usually be
trusted because of the lack of physical security,
and an untrusted initialization process. One
way of addressing this problem is to ensure
the integrity of a computer system. A system
is said to possess integrity if no unauthorized
modification has been made to it. Denning de-
fines integrity similarly for communication [7].
AEGIS assures integrity of a personal computer
at boot time, through a process called chaining
layered integrity checks, which uses induction
and digital certificates.

AEGIS works as follows:

1. A system administrator, or other autho-
rized party generates a hash, H, of a boot-
strap component, and creates a certifi-
cate, C, which includes a unique compo-
nent identifier, an expiration date, and H.

2. The authorized party signs C with her pri-
vate key.

3. C'is then stored in the component if possi-
ble, and, if not, then in a data block of the
flash memory device on the host’s mother-
board.

4. Execution control is passed to the compo-
nent if and only if:
(a) The certificate, C, has not expired.
(b) The signature of C'is valid, and

(c) The hash value stored in the certifi-
cate matches the computed value of
the component under consideration.

It is important to note that AEGIS provides
integrity guarantees only for starting a system.

Once a system is running, AEGIS does not pro-
vide any guarantees that the integrity of the OS
remains valid.

As described in Section 1, AEGIS has two
problems. First, the user is forced to trust the
system administrator because the certificates
are stored in the component or the BIOS, both
of which are controlled by the administrator.
The administrator can create and install mali-
cious software by simply creating and signing
a component certificate. AEGIS cannot detect
the malicious software because the component
passes all of the validity tests described ear-
lier. The second problem is the lack of flex-
ibility. The bootloader used in AEGIS can
boot only FreeBSD. Furthermore, hardware re-
configuration on AEGIS requires the creation
and installation of new device certificates. Be-
cause of its size limitation, BIOS (which is in
a flash memory chip) cannot store file system
drivers, and is unable to access data on the hard
disk.

Readers interested in the further details of
AEGIS are advised to refer to articles [2, 3].

3 Design

3.1 Design Goals

The goal of SAEGIS is as follows:

e Personalization

In AEGIS, it is a system administrator’s
responsibility to manage certificates and
MACs. By embracing a smartcard as a
personal storage of MACs, sSAEGIS hands
the control to the users.

e Authentication

In AEGIS, a user who attempts to boot
a computer is not authenticated. That is,
anyone who can invoke the boot process,
for example, by hitting the reset button,
may boot it. SAEGIS boots an operating

system only if a correct smartcard and as-
sociated PIN are presented by a user. This
two-factor authentication (what-you-have
and what-you-know) makes theft of a mo-
bile computer less threatening, as the thief
cannot use the computer.

e QOperating System Flexibility

The only operating system the AEGIS pro-
totype is able to boot is FreeBSD. In con-
trast, SAEGIS employs a free, flexible boot
loader called GRUB [8] to boot several op-
erating systems, namely, Linux, FreeBSD,
NetBSD, OpenBSD, Windows 9*, NT, and
2000.

e Hardware Configuration Flexibility

In AEGIS, the certificates are stored in a
flash memory chip, which is hard to con-
figure. In SAEGIS, because the smartcard
access library is small enough to fit into
the flash chip, the hardware configuration
information, certificates, and MACs can
be moved to the smartcard, which is more
easily configured than the flash chip.

In the above four goals, the first three were
achieved in our sAEGIS prototype. The reason
why the last goal was not achieved is discussed
in Section 7.

3.2 Design Overview

In a nutshell, sSAEGIS = AEGIS + GRUB +
smartcard + verify. That is, (1) sAEGIS
relies on AEGIS to boot GRUB securely, (2)
GRUB boots an operating system kernel se-
curely using a smartcard for verification, and
(3) the kernel checks the integrity of daemons
with an application called verify.

The basic idea behind sAEGIS is as fol-
lows: if a lower layer verifies the integrity of
all higher layers before booting them, the sys-
tem integrity is ensured. Therefore, to com-
prehend the design of SAEGIS, it is essential
to understand which component verifies and

boots which, and how. The bootstrap pro-
cess of SAEGIS is summarized in the following
events, in chronological order.

1. Power on Self Test (POST). The processor
checks itself.

POST is invoked by either applying power
to the computer, hardware reset, warm
boot (ctrl-alt-del under DOS), or jump to
the processor reset vector invoked by soft-
ware. This starts the bootstrap process.

2. BIOS section 1 verifies itself and BIOS sec-
tion 2, and boots section 2.

In sAEGIS, BIOS is divided into two
parts, section 1 and section 2. The for-
mer contains the bare essentials needed
for integrity verification, such as a crypto-
graphic hash function (MD5 and SHA1), a
public key function (RSA), and the public
key certificate of a trusted third party. The
integrity of this part is assumed, i.e., it is
assumed to never be modified. Discussion
about this assumption is in Section 4.3.

BIOS section 1 reads the certificate of itself
from the flash chip, and verifies itself.

BIOS section 1 reads the binary and cer-
tificate of BIOS section 2 from the flash
chip, and verifies the binary. If the check
goes through, it boots section 2.

3. BIOS section 2 verifies the ROM of exten-
sion cards, and executes them.

BIOS section 2 reads the programs stored
in the ROM of extension cards, reads the
associated certificates from the flash chip,
and verifies the programs. If the check
goes though, it executes them.

4. BIOS section 2 verifies GRUB stage 1, and
boots it.

GRUB is divided into two parts, stage 1
and stage 2, because an Intel-compatible
personal computer requires a primary boot
loader to be no more than 512 bytes long.
Stage 1 is booted by BIOS section 2; and
stage 2 is booted by stage 1.

BIOS section 2 reads the binary of GRUB
stage 1 from a floppy disk, reads the certifi-

cate from the flash chip, verifies the binary,
and boots it.

5. GRUB stage 1 verifies GRUB stage 2, and
boots it.

GRUB stage 1 reads the binary and certifi-
cate of GRUB stage 2 from a floppy disk,
verifies the binary, and boots it.

6. GRUB stage 2 verifies the kernel and the
verification tools, and boots the kernel.

GRUB stage 2 mounts the file system (typ-
ically on a hard disk) that stores a ker-
nel, verify, and a shell script that invokes
verify (e.g.,

/etc/rc.d/init.d/inet on UNIX). It
reads these files from the file system, reads
the MACs from a smartcard, and verifies
the files. If the check goes through, it
boots the kernel.

7. The kernel uses the verify application to
verify the important files, and starts the
system daemons that pass the check.

verify is invoked by the kernel at boot
to check important files. If the check fails,
the kernel does not start the related dae-
mons. The important files are system dae-
mons (e.g., login, logind, ssh, and sshd
should be verified on UNIX to detect a
password sniffer), configuration files (e.g.,
SYSTEM.INI should be verified on Win-
dows to detect a Trojan horse), and shared
libraries (e.g., GINA.DLL should be verified
on Windows NT / 2000 to detect a pass-
word sniffer).

The bootstrap process is depicted in Figure
1.

3.3 Smartcard Communication
Protocol

In step 6 of the list presented above, a work-
station and a smartcard carry out a protocol
to (1) authenticate the smartcard and (2) ver-
ify the hash presented by the workstation. The
protocol is shown in Figure 2, and is described
as follows.

—>» Boot
-==» Check MAC
Ref er

""""

Smar t card

MACs of kernel,
apps

CGRUB Stage 2
|Cert of GRUB Stage 2 |

BI OS Section 2

Certs of BIOSl, BIOS2,
Ext ensi on Cards,
GRUB St agel

A

BI OS Section 1

Figure 1: Bootstrap Process

Workstation:

e obtain PIN from the user

e compute the hash of the kernel : m =
SHA1{kernel}

e generate a random challenge : 7

e encrypt {m,r} with public key
{m7r}Kpub

e send {m, T}Kpub to the smartcard, along
with the PIN

Smartcard:

e check PIN; if the PIN does not match, set
ANSWER to ERR

o decrypt {m,r} with private key

e compare m to the stored hash, and set AN-
SWER to OK or ERR

{m r}Kpub

Wor kst ati on
{OK .1, mKprv, or Smartcard
{Err,r, ntKprv

m SHA1{ ker nel }

r: random nunber
{}Kpub: RSA encryption
{}Kprv: RSA decryption

Figure 2: Smartcard - Workstation Communication Protocol

e sign {ANSWER,r,m} with Kprv tected, i.e., a secret number must be pre-

sented before it is used. It blocks itself

{ANSWER, r, m}KprV

e send it to the workstation

Workstation:
e encrypt {ANSWER,r,m}Kpry with
Kpub

e make sure it is signed by the smartcard.

e if (ANSWER == OK and r == original r
and m == original m) continue with boot,
otherwise, halt the boot process

4 Security Consideration

In this section, we discuss the security of our
design.

4.1 Model

We start with constructing a model of the sys-
tem. The model consists of the following par-
ticipants:

Alice (A) A legitimate user who wants to
boot and use a personal computer. She
owns a smartcard.

Smartcard Alice’s smartcard. It stores a pri-
vate key, Kprv, and MACs. It is PIN pro-

if a wrong PIN is typed for n consecutive
times.

Mallory (M) An adversary.

Personal Computer (PC) An Intel-
compatible personal computer to be
verified and booted. It consists of BIOS
section 1 and 2, extension cards, GRUB
boot loader stage 1 and 2, an operating
system kernel, verify, and the other files.

4.2 Claims

Here we claim the security properties of
sAEGIS.

System integrity after boot

When a PC is booted using sAEGIS,
the integrity of the following components
of the PC are ensured; BIOS, extension
cards, GRUB boot loader, operating sys-
tem, and the other files that are verified.

User authentication

When a PC is booted using sAEGIS, it has
been booted by a legitimate user.

4.3 Assumptions

We make the following assumptions in our
model.

1. BIOS section 1 is integral.

We assume that the BIOS section 1 is not
modified. This guarantees that section 1
starts up the sAEGIS bootstrap process
every time the PC is booted.

The security property of the entire
SAEGIS system relies on this assumption
because BIOS section 1 is the base of the
secure bootstrap. If BIOS section 1 is
modified maliciously, BIOS section 2 may
not be verified correctly, resulting in a
compromised section 2. This leads to a
compromised GRUB stage 1, stage 2, and
finally, a compromised operating system
kernel. This defeats the goal of sSAEGIS.

We believe this assumption is reasonable.
A portion of Intel’s latest generation of
flash ROM can be write-protected by set-
ting one of the PINs (RP#) to high [11].
Although this protection can still be com-
promised by setting one of the jumper
switches on a chip set, this attack can be
countered by storing BIOS in ROM, pro-
hibiting any modification.

. Mallory can read anything in the PC, but
nothing in the smartcard.

Mallory can read any data stored in the
PC. However, she cannot read any data
in the smartcard. This is a reasonable
assumption because it is usually easy to
physically open a PC and access data stor-
age in it. In contrast, a smartcard is
tamper-resistant. While a smartcard suf-
fers from newly developed attacks [13, 14],
we ignore such attacks in this paper be-
cause (1) a smartcard is still much harder
to compromise than a PC, and (2) smart-
card developers are devising countermea-
sures to the new attacks.

. Mallory can write anything in the PC ex-
cept in BIOS section 1. She cannot write
anything in the smartcard.

Similarly to Assumption 2, Mallory can
write anything in the PC except in the pro-
tected region. However, she cannot write
anything in the smartcard.

4. Cryptographic functions are strong.

We assume that cryptographic hash func-
tions (MD5 used in BIOS, and SHA1 used
in GRUB stage 2) are collision-free. We
also assume that the random number gen-
erator used in the protocol given in Section
3.3 is unpredictable. Finally, we assume
that our principal cipher, RSA, is impossi-
ble to compromise in a reasonable amount
of time.

5. Mallory does not know Alice’s private key.

6. Mallory can snoop and modify messages
on the serial port in which the PC and the
smartcard are communicating.

4.4 Attacks

4.4.1 Modification to PC’s components

By Assumption 3, Mallory can modify anything
she wants in the host except the BIOS section 1.
However, if she does, Alice will notice it at the
next boot because sSAEGIS verifies every byte
of code executed during the bootstrap process.
By Assumption 1, a correct bootstrap process
will be invoked every time Alice boots the PC.
By Assumption 4, Mallory cannot forge a cer-
tificate or a MAC without knowing Alice’s pri-
vate key, and this does not happen, by Assump-
tion 5.

4.4.2 Modification to PC’s components
after boot

Being a secure bootstrap system, sAEGIS
makes no attempt to protect the PC after it
is booted. Mallory can modify the system ma-
liciously, e.g., install Trojan horse or a sniffer.
However, Alice can always restore the integrity
the PC by rebooting it.

4.4.3 Unauthorized Boot Attempt

Mallory may steal the PC and try to use it.
This is impossible unless Mallory obtains Al-

ice’s smartcard and PIN, as the authentication
protocol presented in Section 3.3 prevents such
an attempt. Without knowing Alice’s private
key, Kprv (Assumption 2 and 5), Mallory can-
not produce {OK, r, m} Kprv, because the ran-
dom number generator is strong (Assumption
4).

Mallory may try to replay an OK message
{OK, r, m} Kprv, but this does not work either
because of the random nonce, r.

Mallory may try a man-in-the-middle attack,
i.e., modifying the kernel and replacing the
message from the host, {m’, r}Kpub, with {m,
r}Kpub. The smartcard, not knowing the hash
value was altered, sends an OK message. How-
ever, the workstation notices the attack be-
cause the hash values m and m’ do not match.

4.4.4 Serial Cable Wiretapping

By Assumption 6, Mallory can read and write
messages on the serial cable connecting the PC
and the smartcard. However, she cannot pro-
duce {OK, r}Kprv.

4.4.5 PIN Theft

Mallory may obtain Alice’s PIN by breaking
into the PC, or by sniffing the serial cable.
This is a common problem for today’s smart-
card systems because a PIN is entered on the
keyboard of the PC, and is transmitted to the
smartcard through a serial cable. This problem
can be addressed by a smartcard reader with a
built-in PIN pad. For example, SPYRUS pro-
duces such a smartcard reader [22]. Another
approach to this problem is to use a one-time
pad for PINs, thus making replay of a PIN
meaningless.

4.4.6 Mallory as System Administrator

Mallory may be Alice’s malicious system ad-
ministrator, and may try to compromise her

secrets. For example, consider a case in which
Mallory tries to read Alice’s e-mail. Alice may
encrypt her e-mail with a secure mail tool, e.g.,
PGP. However, without a system like sSAEGIS,
Mallory can modify the executable code of
PGP to leak information. sAEGIS prevents
this by detecting such modifications. If the op-
erating system and application software ven-
dors publish the signatures of their software,
Alice can store the signatures in her smartcard,
and can check the system.

It is still unclear whether we can counter all
the possible attacks mounted by system admin-
istrators because security software usually is
written with the assumption that system ad-
ministrators are trustworthy, and attacks by
system administrators have not been well stud-
ied. However, we believe that sAEGIS is the
first step to counter such attacks.

5 Implementation

We describe the sAEGIS prototype, which is
an implementation of the design described in
Section 3. It is implemented on an ASUS
P55T2P4 Pentium motherboard, running a 233
MHz AMD K6 processor.

The prototype is based on the AEGIS proto-
type by Arbaugh et al. We do not go into the
details of the AEGIS implementation. SAEGIS
uses GNU GRUB 0.5.93.1. Interested readers
should consult with GRUB’s website [8] for de-
tails.

5.1 GRUB stage 1

GRUB stage 1 is modified to verify GRUB
stage 2 before jumping to it. Stage 1 tells
AEGIS where stage 2 starts (0x800:0) and
how large it is, and calls the AEGIS interrupt
(0xc2).

5.2 GRUB stage 2

GRUB stage 2 is modified to carry out the pro-
tocol described in Section 3.3.

First, to communicate with a smartcard
through a serial port, the smartcard communi-
cation library is implemented by replacing the
system-dependent part of the sc7816 library
[21] with modified serial console access routines
in OpenBSD-2.4
(/usr/src/sys/dev/ic/com.c).

Then, it needs some cryptographic functions.
SHA1 routines in GRUB are ported from Ker-
beros version 5-1.0.5 distributed by MIT. RSA
routines are taken from PGP 2.6.2.

In this prototype, random number genera-
tion is not implemented. It is replaced with a
constant.

The kernel command in the GRUB user
interface loads a kernel from a file system to
main memory. This command is modified to
invoke the verification protocol before letting
GRUB boot the kernel. Another command,
updatehash, is added to update the SHA1 hash
so that files can be verified in addition to the
kernel.

5.3 verify

verify is a C program that reads a given file,
computes its hash, verifies it with a hash stored
in a file, and returns the result of verification.
An example use of verify is as follows. In
this example, verify makes sure inetd is not
modified before it is started.

/etc/rc.d/init.d/inet:

/boot/verify /usr/sbin/inetd
/boot/hash-table.txt &&
daemon /usr/sbin/inetd

In future implementation, verify should use
hashes stored in a smartcard.

5.4 Smartcard-side Code

The program in the smartcard is implemented
in a Schlumberger Cyberflex Access smartcard
with Java. Cyberflex Access is the only smart-
card we know that offers both programmability
and cryptographic functions (DES, RSA, and
SHA1).

The smartcard reads 128 byte input from
GRUB, decrypts it with the RSA private key.
It then compares the hash value with the one
previously stored in its memory and determines
whether the kernel image is unmodified. It
concatenates its reply (0x8080808080808080 if
OK, 0x4040404040404040 if not) with the ran-
dom key and signs the resulting string with the
RSA private key. Finally, it sends the result to
GRUB.

In this prototype, the kernel hash is not in-
cluded in the message sent from the smartcard
to the host because the necessity for checking
this value was identified after the prototype
was implemented. In addition, a smartcard can
hold only one SHA1 hash value. This should be
improved to allow more flexibility.

6 Performance Evaluation

To evaluate the efficiency of sAEGIS, the boot
process is timed. The following is the amount
of time elapsed from the time that a PC is pow-
ered up until an operating system starts the last
system daemon. In addition, the smartcard ac-
cess time (the time spent in the protocol in Sec-
tion 3.3) is measured, as it is one of the most
expensive components.

Measurement, was carried out on Linux 2.2
(RedHat 6.2) with a 233 MHz AMD K6 proces-
sor. We used the RDTSC instruction to obtain
the number of ticks after the processor powers
up. All the numbers are in seconds, and are
averages of 5 trials each. Variance is small.

time (sec)
boot with sSAEGIS 69.55
boot without sSAEGIS | 57.88
difference 11.67
| time (sec)

smartcard access | 5.54

The result shows that sAEGIS adds 11.67
seconds to the bootstrap process. About half
of the added cost is for accessing the smartcard.
The other half includes the following:

e Code checking, which involves MD5 hash-
ing and RSA operations. More details
about this are available [2].

e Loading GRUB, which is 77KB, from a
floppy disk, takes more time than load-
ing the much smaller (4.5KB) Linux boot
loader, LILO, from a hard disk.

Adding 11.67 seconds to the bootstrap pro-
cess, which already takes 1 minute, is accept-
able in many environments.

7 Discussion

7.1 Key Management

To use sAEGIS effectively, it is essential to
manage the private key in the smartcard ap-
propriately. We describe two ways of managing
private keys.

First, if the computer to be protected is
personal, e.g., a laptop computer, one com-
puter is associated with one owner. Therefore,
the private key should be unique, and should
be known only to the owner of the computer
(i-e., should be only in the owner’s smartcard).
SAEGIS can prevent an adversary from boot-
ing the computer, thus discouraging theft of the
computer. This approach may cause a problem

10

when a smartcard is lost, broken, or stolen be-
cause the associated computer is no longer us-
able. Some kind of key escrow system is needed
to address this problem.

Second, if the computer to be protected is
public, e.g., in a library, or in an Internet cafe,
one computer is associated with many users.
The current sSAEGIS prototype cannot provide
such multi-user authentication because it has
only one key pair between the smartcard and
the computer. To achieve this, some multi-user
authentication mechanism is necessary, e.g., a
certificate-based mechanism with revocation,
or a symmetric key-based mechanism such as
Kerberos. An alternative to this is not to au-
thenticate users at boot time, let anyone boot
the computer, and rely on application level au-
thentication. sAEGIS can achieve this by as-
signing the same private key for multiple users.
The trade-offs between these two approaches
are under discussion.

7.2 Future Direction

7.2.1 Fix Implementation Limitations

Four implementation limitations described in
Section 5 should be fixed, namely, (1) no ran-
dom number generator, (2) verify does not
use a hash in the smartcard, (3) kernel hash,
m, is not included in the message the smartcard
sends to the workstation, and (4) the smartcard
holds only one hash.

7.2.2 Smartcard Access from BIOS

To achieve Goal 4 described in Section 3.1, it is
necessary to move the smartcard access library
into BIOS. The library is 11 KB, so the size
should not be a problem for the 1M flash BIOS.

Unfortunately, one of the authors who was
responsible for smartcard programming did not
have permission to access the BIOS source
code. Instead of working out licensing issues,
we decided to implement a prototype, and to

wait until open-source BIOS projects are ma-
ture enough to be used as the next platform
[15, 20].

8 Conclusion

We have implemented a personal, secure boot-
strap process, SAEGIS, which is an extension
to AEGIS. Advantages of SAEGIS over AEGIS
are: (1) the smartcard lets users control what
they use, (2) the smartcard serves as an au-
thentication token, and (3) it is more flexible
than AEGIS.

The following two aspects highlight the value
of this work.

e Improvement to important software

As attacks that modify an operating sys-
tem itself are becoming more common, se-
cure bootstrap, such as AEGIS, is strongly
demanded. One of the problems of AEGIS
is the lack of flexibility: it can only boot
the FreeBSD kernel, and it requires repro-
gramming of a flash chip when the hard-
ware configuration is changed. We solved
the former problem, and proposed a solu-
tion to the latter.

e Idea of personalization

SAEGIS suggests a system in which the
user does not have to trust system admin-
istrators. We believe it is a huge security
gain because many attacks come from in-
side organizations.

Acknowledgments

We thank Jim Rees at the University of Michi-
gan for directing us about serial communication
in a boot loader. We thank Professor Peter
Honeyman and Professor Brian Noble at the
University of Michigan for their advice.

11

This work was partially supported by a re-
search grant from Schlumberger, Inc.

References

[1] Rootkit homepage.
www.rootkit.com/.

http://

[2] William A. Arbaugh. Chaining Layered
Integrity Checks. PhD thesis, University
of Pennsylvania, 1999.

[3] William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A secure and reli-
able bootstrap architecture. In 1997 IEEE
Symposium on Security and Privacy, Oak-
land, CA, May 1997.

[4] S. M. Bellovin and M. Merritt. Limi-
tations of the Kerberos authentication
system. In Proceedings of the Winter
1991 Usenixz Conference, January 1991.

ftp:/ /research.att.com/dist/internet_security/

kerblimit.usenix.ps.

[5] Eric Brewer, Paul Gauthier, Ian Gold-
berg, and David Wagner. Basic flaws
in internet security and commerce, 1995.
http:// www.ao.net/ netnigga/ endpoint-
security.html.

[6] A. Dearle, R. di, J. Farrow, F. Henskens,
D. Hulse, A. Lindstrm, S. Norris, J. Rosen-
berg, and F. Vaughan. Protection in the
grasshopper operating system, 1994.

[7] Dorothy Denning. Cryptography and Data
Security. Addison-Wesley, 1983.

[8] Free Software Foundation. Gnu grub,
1999. http://www.gnu.org/ software/
grub/ grub.html.

[9] Ian Goldberg, David Wagner, Randi
Thomas, and Eric Brewer. A secure envi-
ronment for untrusted helper applications.
In Proceedings of 6th USENIX Uniz Secu-
rity Symposium, July 1996.

halflife. Bypassing integrity checking sys-
tems. Phrack Magazine, September 1997.
Volume 7, Issue 51, Article 9 of 17.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Peter Hazen. Flash memory boot
block architecture for safe firmware up-
dates. Technical Report AB-57, In-
tel, 1995. http://developer.intel.com/ de-
sign/flcomp/ applnots/292130.htm.

Gene H. Kim and Eugene H. Spafford. The
design and implementation of tripwire: A
file system integrity checker. Technical re-
port, Purdue University, 1995. CSD-TR-
93-071.

Paul Kocher, Joshua Jaffe, and Ben-
jamin Jun. Introduction to differ-
ential power analysis and related at-
tacks. Cryptography Research, 1998.
http://www.cryptography.com / dpa /
technical / index.html.

Oliver Kommerling and Markus G. Kuhn.
Design principles for tamper-resistant
smartcard processors. In Proceedings of
USENIX Workshop on Smartcard Tech-
nology, Chicago, May 1999.

Linux bios. http://www.acl.lanl.gov/ lin-
uxbios/.

Peter A. Loscocco, Stephen D. Smalley,
Patrick A. Muckelbauer, Ruth C. Tay-
lor, S. Jeff Turner, and John F. Far-
rell. The inevitability of failure: The
flawed assumption of security in modern
computing environments. In 21st Na-
tional Information Systems Security Con-
ference, Crystal City, Virginia, October
1998. National Security Agency, NISSC.
http://www.jya.com / paperF1.htm.

H. Nag, R. Gotfried, D. Greenberg,
C. Kim, B. Maccabe, T. Stallcup,
G. Ladd, L. Shuler, S. Wheat, and D. van
Dresser. Prose: Parallel real-time operat-
ing system for secure environments, 1996.

Peter G. Neumann. Architectures and
formal representations for secure systems,
1996. Technical Report SRI-CSL-96-05,
Computer Science Laboratory, SRI Inter-
national.

Department of Defense. Trusted computer
system evaluation criteria, December
1985. http:// www.radium.ncsc.mil/

12

tpep/library/ rainbow/5200.28-

STD.html.

[20] Openbios. http://www.freiburg.linux.de/
OpenBIOS/.

[21] Jim Rees. Iso 7816 library, 1997.
http://www.citi.umich.edu / projects /
sinciti / smartcard / sc7816.html.

[22] Spyrus. http:// www.spyrus.com/.

[23] R. Wahbe, S. Lucco, T. Anderson, and
S. Graham. client software-based fault iso-
lation, 1993.

