

CITI Technical Report 01-7

Scalable Linux Scheduling

Stephen P. Molloy, Peter Honeyman
{ smol l oy, honey} @ci t i . umi ch. edu

ABSTRACT

For most of its existence, Linux has been used primarily as a personal desktop
operating system. Yet, in recent times, its use as a cost-efficient alternative to
commercial operating systems for network servers, distributed workstations and
other large-scale systems has been increasing. Despite its remarkable rise in
popularity, Linux exhibits many undesirable performance traits.

Concerned about the scalability of multithreaded network servers powered by
Linux, we investigate improvements to the Linux scheduler. We focus on pre-
calculating base priorities and sorting the run queue for efficient task selection.
We propose an improved scheduler design and compare our implementation in
terms of scalability and performance to the existing Linux scheduler. Our
analysis shows that improvements can be made to the existing scheduler without
introducing overhead, thus improving the scalability and robustness of the Linux
operating system.

1 May 2001

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

Scalable L inux Scheduling

Stephen Molloy, Peter Honeyman

{ smol l oy, honey} @ci t i . umi ch. edu

1. Introduction

Linux, a strong and steadily increasing presence on
the Internet today [4], commonly provides cost-
effective and load-tolerant solutions for network
services. Its familiarity to UNIX users, source code
availability, and ability to run on many different
architectures explain Linux’s rapid increase in
popularity. Many software companies, including
AOL, Netscape and IBM [6, 8], offer Linux products.
Several organizations use Linux on routers, print and
file servers, firewalls and, of course, web application
servers [10].

At the same time as Linux’s popularity has increased,
the use of Java for web applications has grown
immensely. Java technology is a key component in
building scalable application servers. However,
communications-intensive Java applications often
create large numbers of threads and Linux does not
handle such stress gracefully.

Concerned about the scalability of multithreaded
network servers powered by Linux, we investigate
improvements to the Linux scheduler. Experiments
by IBM indicate that as much as 30% of the total CPU
time in the system is spent in the scheduler when the
number of running threads is high [2]. Our analysis
shows the current scheduler uses an expensive and
redundant algorithm for task selection. Our goal is to
improve the scalability of the Linux scheduler to adapt
it to enterprise-scale server workloads. Our analysis
shows that our new scheduler implementation
achieves these goals.

The rest of this paper is organized as follows. Section
2 gives some background information on our project
and provides some insight as to why we chose to
tackle the scheduler rather than the Linux threading
model. Section 3 describes Linux’s current approach
to scheduling. Section 4 explains the problems with
it. Section 5 outlines our approach to solving the
problem and Section 6 describes its performance
relative to the current Linux scheduler. All kernel
modifications, experiments, and descriptions are
against a 2.3.99-pre4 Linux kernel and, when used,
Java version 1.1.7 of IBM’s JDK.

2. Background

Because Linux grew from a desktop operating system,
many issues prevent it from being a dominant force in
the enterprise server market. The design and
implementation of Linux has traditionally focused on
simplicity and versatility rather than small
performance gains and scalability. The
implementation of the Linux thread model and
scheduler illustrate this approach.

The Linux thread model is a one-to-one model,
meaning that every user-level thread is mapped onto
its own kernel thread. While this model makes
programming in the kernel less complicated, it
sometimes forces programs to generate more kernel
threads than is necessary. Forcing the kernel’s default
scheduler to accommodate too many threads can
adversely affect a server’s performance.

Many established operating systems support many-to-
one or many-to-many thread models in which each
kernel thread has many user level threads mapped to
it. In these models, a secondary scheduler chooses
which of the mapped user level threads to run. The
multi-tier scheduling approach of these models assures
that the scheduler at each level will be faced with a
more manageable number of threads.

The Linux scheduler, like its thread model, is also an
exercise in simplicity. The heart of the scheduler is
concisely coded in just a few lines that evaluate
runnable threads and then picks the best. The price
for this simplicity though, is a linear time algorithm
that repeats many of the same calculations that were
performed on its last invocation.

In this project, we address the shortcomings of the
scheduler rather than those of the threading model.
The reasons for this decision are simple. We saw the
redundant calculation and O(n) loop in the current
scheduler and knew we could improve it. We also
know that the Linux kernel community has been very
protective of its threading model in the past and we
wanted to avoid upsetting any contributors. Finally,
the original timeline for the project called for a
working design and implementation within the time
frame of one semester. Developing a new threading

vol at i l e l ong s t at e

unsi gned l ong pol i cy

l ong count er

l ong pr i or i t y

st r uct mm_st r uct * mm

st r uct l i s t _head r un_l i st

i nt has_cpu

i nt pr ocessor

Table 1: This table shows the fields of the task
structure that are most relevant to Linux scheduling.

model for Linux would almost certainly require more
time than we had available.

Other groups have spent considerable time designing
alternative schedulers for Linux [1, 5, 9]. Linux
discussion groups provide evidence that the scheduler
has been and continues to be an interesting topic for
the developer community. However, most alternative
scheduler designs focus on reducing latency for real-
time processes rather than improving the overall
scalability of the default scheduler.

While it is our goal to improve scalability and
performance of the scheduler when faced with a large
number of runnable threads, it is not our intent to
change the criteria it uses for thread selection. We
feel that the current criteria are carefully chosen and
sufficient to make good decisions with a minimum
amount of calculation. Our primary concern is simply
that these criteria are not being used in an optimal
algorithm by the scheduler.

In the remainder of this paper, because Linux uses a
one-to-one threading model, we do not distinguish
between a user thread and a kernel thread. Also, to
match the terminology used in the kernel source code,
we refer to any thread in the system as a task.

3. Current Scheduler

To understand why the current Linux scheduler scales
poorly with the number of runnable threads in the
system, it is necessary to be familiar with its data
structures, algorithms, and conventions. This section
outlines the existing scheduler to clarify our
observations and design decisions.

3.1 Task Structure

The basic execution context in Linux is referred to as
a task. The task structure is responsible for
maintaining a task’s address space information,
whether that address space is shared with other tasks,

and other state information about the task and its
registers. It also tracks task statistics for memory
management and resource control, privileges, file
descriptors, signal handlers and other task specific
information. The various fields of the task structure
used in the scheduler are illustrated in Table 1.

The task’s st at e field can be set to one of six values,
each representing a different state that in which a task
might find itself (such as blocking or sleeping.)
TASK_RUNNI NG is the value of st at e when a task is
runnable.

The pol i cy field is set either to SCHED_FI FO,
SCHED_RR (round robin) or SCHED_OTHER to
determine the scheduling policy for the task. The first
two options are for real-time tasks, while the third is
for all other tasks. Real time tasks are always run
before regular tasks if they are runnable. The pol i cy
field is also used to track yielded tasks. When a non-
real-time task gives up its processor via the
sys_sched_yi el d() system call, a bit
(SCHED_YI ELD) in the task’s pol i cy field is set so
this information can be passed on to the scheduler.

The field has_cpu is set to 1 while a task is executing
on a processor and 0 otherwise. Upon setting
has_cpu, the field pr ocessor is set to the processor
ID on which the task will execute. The task structure
also contains pointers that identify the memory map in
which it runs and its place on the run queue.

The two most important factors in determining which
task executes next are represented by the pr i or i t y
and count er fields. Pr i or i t y is an integer between
1 and 40. Higher numbers represent higher priority.
Twenty is the default value for all tasks. (Real-time
tasks also use a priority value, but it ranges from 0 to
99 and is stored in a separate field called
r t _pr i or i t y .) Count er is a value that indicates the
time remaining in the task’s current quantum.
Count er , measured in 10ms ticks, can range from
zero to twice the task’s pr i or i t y . Linux uses this
field to enforce a fairness policy.

It is worth noting that all tasks, whether they are
lightweight threads or full-fledged processes, are
treated the same by a Linux system. All processes and
threads are visible in various system status commands
such as ps and top. Consequently, the default
scheduler, which is responsible for accommodating all
tasks in the system, can be placed under considerable
stress when running multithreaded applications.

3.2 Run Queue

The run queue in Linux is a circular, doubly linked list
containing all tasks in the TASK_RUNNI NG state. The

scheduler traverses this list when it looks for a task to
run. The list is not maintained in sorted order. When
the scheduler finds two equivalent tasks, the one
closer to the front of the list is chosen. Newly created
or awakened tasks are placed at the beginning of the
run queue. The list is doubly linked and circular, so
tasks can also be added to the end of the run queue.

3.3 Schedule()

The Linux kernel function schedul e() , as in other
operating systems, is called from over 500 places
within the kernel, underscoring its significance to
overall system performance. The schedul e()
function is called by a task when it yields the
processor, blocks for I/O, expires its quantum, or is
preempted by another (higher priority) task.
Schedul e() uses the execution context of the task
that called it (referred to as the previous task in the
scheduler). Schedul e() is charged with finding the
best task to take the previous task’s place on the
processor. In doing so, it makes use of a heuristic
computed by the function goodness() .

3.3.1 Goodness Calculation

The scheduler uses the goodness() function to
determine the utility of running a given task. A high
goodness value means it would be a sound decision to
run the given task next. For tasks that are marked
SCHED_FI FO or SCHED_RR, goodness() returns
1000 plus the value stored in the tasks r t _pr i or i t y
field. For other tasks, however, goodness() returns
a much lower number and shows more discretion in its
evaluation.

For SCHED_OTHER tasks, four factors are taken into
consideration. The first factor is a task’s count er
value. If a task has a count er value of zero, then
goodness() returns a utility of zero. This lets the
scheduler know a runnable task was found but its time
slice is used up. If a task’s count er value is not zero,
then its goodness value is set to the sum of its
count er and pr i or i t y values.

The third and fourth factors are bonuses for processor
affinity and sharing an address space with the previous
task. A small, one point advantage is given to tasks
that share memory maps, because of the reduced
overhead for the context switch. A somewhat larger
(15 point) bonus is given to tasks whose last run was
on the current processor, to try to take advantage of
memory lines that may still reside in the processor’s
cache. These bonuses are added to the previously
calculated goodness value to determine the task’s final
goodness value.

3.3.2 Scheduling Algor ithm

The scheduler begins by executing all outstanding
bottom-halves (delayed functions that were too
substantial to run during an interrupt.) After some
additional administrative work, the scheduler enters
the heart of its code: an examination of all runnable
tasks. The previous task is the first task looked at by
the scheduler. If the SCHED_YI ELD bit is set for the
previous task, then the scheduler clears the bit and
uses zero as the task’s goodness value. Otherwise, it
calls goodness() to determine this value.

Next, the scheduler walks through the run queue,
evaluating the goodness of each task not currently
running on another processor. After all runnable tasks
have been examined, the task with the greatest
goodness value is chosen to run on the processor. If
no task has a goodness greater than zero1, then the
scheduler jumps to a piece of code responsible for
recalculating the count er values of all tasks in the
system (runnable or otherwise) and returns to search
the run queue again.

While the goodness() function by itself is very
simple, executes quickly and considers the most
appropriate factors in making intelligent scheduling
decisions, it is expensive to recalculate goodness()
for every task on every invocation of the scheduler.

4. Problem

Efficient handling of multiple threads is crucial for
enterprise servers to make best use of system
resources, communicate with many parties at the same
time, and reduce the average time that service requests
spend waiting for an available server. Multiplexing
I/O system calls (such as sel ect) can help in some
situations, but they are not always available. The
popular Java programming language is a prime
example.

Threads are an essential element in the Java language:
because the Java language lacks an interface for non-
blocking and multiplexing I/O, threads are especially
important in constructing communications intensive
applications. Typically, one or more Java threads are
constructed for each communications stream used by a
Java program. Therefore, a natively threaded Java
Virtual Machine (such as IBM’s JVM [7]) can put a
strain on the Linux scheduler, which, as we have seen,
examines the goodness function for every thread in the
run queue. This can be an exhausting process.

1 The run queue must contain at least one task for this condition to
count. An empty run queue will schedule the idle task rather than
trigger the recalculation.

(a) Run Queue for Current Linux Scheduler

(b) Run Queue for ELSC Scheduler

Figure 1: Illustration of run queue structures for both
schedulers. The squares represent list heads and the circles
represent tasks. The labels on the tasks indicate the static goodness
of that particular task.

Experiments at IBM show the impact of the Linux
scheduler on the performance of a multithreaded
network application written in Java [2]. VolanoMark
is a benchmark written to measure the performance of
VolanoChat, a Java implementation of a chat room
server. Because its results have been widely
published in magazines such as JavaWorld [3],
VolanoMark is an important benchmark for
comparing the performance of different
implementations of the Java Virtual Machine.

The VolanoMark benchmark establishes a socket
connection to a chat server for each simulated chat
room user. Because Java does not provide non-
blocking read and write, VolanoMark uses a pair of
threads on each end of each socket connection (4
threads per connection) to simulate non-blocking I/O.
For a 5 to 25-room simulation, the kernel must
potentially deal with 400 to 2,000 threads in the run
queue. The key measure of performance reported by
VolanoMark is message throughput, i.e., the number
of messages per second (over all connections) the
server is able to handle during a benchmark run. The
measurements for IBM’s report were taken while
running VolanoMark over a loopback interface,
eliminating any network overhead involved; the heap
size for the test was large enough for the overhead of
Java garbage collection to be less than 5% of the total
elapsed time throughout the experiments.

The results of the VolanoMark experiments show that
25-room throughput decreased by 24% from 5-room
throughput due to the additional threads in the system.

A profile of the kernel taken during the VolanoMark
runs showed that between 37 (5-room) and 55 (25-
room) percent of total time spent in the kernel during
the test is spent in the scheduler.

5. ELSC Scheduler

To reduce the amount of time spent in the scheduler
we developed a new scheduling solution, called the
ELSC scheduler. Our goals in implementing this
scheduler are as follows:

1) Keep changes local to the scheduler. Do not
change current interfaces to the scheduler.

2) Keep the concept and implementation simple.
3) Behave like the current scheduler as much as

possible.2
4) Maintain existing performance for light

loads. Scale gracefully under heavy loads.

The ELSC scheduler is a table-based scheduler that
keeps the run queue in a sorted order, making
scheduling decisions easier and faster. We chose a
table based design because it relieves us of the
overhead of sorting lists. It also avoids complexity
when inserting or removing tasks, unlike, say, a heap.

The foundation of the ELSC scheduler is its ability to
keep tasks in an order that makes choosing one fast.
The key to this sorted order is in how a task’s
goodness() value is calculated in the current
scheduler. The goodness() calculation consists of a
static and a dynamic part. The static part consists of a
task’s pr i or i t y and count er values. While a task
is on the run queue but not running on a processor, its
count er value does not change. Likewise, its
pr i or i t y almost never changes, though when it
does, the ELSC scheduler adapts accordingly. We
refer to the combination of these two values as a task’s
static goodness. A task’s dynamic goodness consists
of memory map and processor affinity. Despite the
fact that they don’ t change while a task is on the run
queue, they depend on which task and processor are
calling schedul e() . The ELSC scheduler uses static
goodness to sort tasks on the run queue.

5.1 Implementation

The ELSC scheduler uses a new structure for the run
queue. Previously, the run queue was a simple doubly
linked list of nodes that each point to a task as shown

2 By behave, we mean that if the current scheduler always selects a
real-time task over a SCHED_OTHER task, even if it has a zero
counter, then the ELSC scheduler should do the same. Aside from a
few optimizations, the ELSC scheduler does adhere to the same
quirky rules as the current Linux scheduler.

22
l i s t
head

l i st
head

l i st
head

l i st
head

l i st
head

40 33 23

40

33

22 23

in Figure 1a. To make scheduling decisions fast, we
need to keep the run queue sorted, while at the same
time keeping insertion and deletion times small. The
ELSC scheduler does this with an array of 30 doubly
linked lists. Each list in the array is used to hold tasks
in a certain static goodness range, as demonstrated in
Figure 1b. Lists at one end of the table hold tasks
with the highest static goodness values while the other
end hold tasks with the lowest. A t op pointer is used
to indicate the highest priority list that contains a
runnable task.

To change the structure of the run queue from a single
list to a table of lists, we need to change four run
queue manipulation functions as well:
add_t o_r unqueue() , del _f r om_r unqueue() ,
move_f i r st _r unqueue() and
move_l ast _r unqueue() . The first of the two
functions puts tasks on and removes them from the
run queue when appropriate. The next two tasks give
a task an advantage/disadvantage in the selection
process when another task has the same goodness()
value. Only schedul e() manipulates the run queue
directly.

The function add_t o_r unqueue() is modified
slightly to deal with the new table structure. Like the
current scheduler, it adds tasks to the front of a list.
The particular list depends on the task. If the task is
real-time, it uses one of the ten highest lists,
determined by dividing the rt_priority field by 10. If
the task is a SCHED_OTHER task, then the list is
determined by adding count er to pr i or i t y and
dividing by four. Once the list is chosen, the task is
added to the front of that list and the t op pointer is
updated if necessary.

When all tasks in the run queue exhaust their time
quantum, their count er s are all zero. At this time,
the current scheduler resets all count er s in the
system. The ELSC scheduler does the same.
However, to avoid re-indexing every task in the run
queue when their count er is reset, we modified
add_t o_r unqueue() as follows. If the task being
inserted has a non-zero count er value, the task is
inserted as described above. Otherwise,
add_t o_r unqueue() uses a predicted count er
value for the task, based on its knowledge of how the
scheduler resets them. Using the predicted count er
value and its current pr i or i t y , the task is indexed
into the run queue and added to the end of its list.
This way, all zero count er tasks reside at the end of
the list, behind all tasks with a non-zero count er
value. The zero count er tasks are out of the way of
the scheduler, but are in position once all other tasks
in the run queue exhaust their quanta. A next _t op

pointer is used to keep track of the highest priority list
containing a runnable task after count er s are reset
and is set at this time.

In the current scheduler, the del _f r om_r unqueue()
function removes a task from the list it is on by simply
pointing the two nodes on either side of it in the list at
each other. Then it sets its own run queue node’s
next pointer to NULL, indicating that it is no longer
on the run queue. The ELSC scheduler follows
exactly the same process. Afterwards, it updates both
the top and next _t op pointer if the removal of the
task caused either one of them to change. In the
ELSC scheduler, it is possible for a task to be
considered on the run queue but not actually be in one
of the lists in the table.3 Because a node’s next
pointer indicates presence on the run queue by the
current scheduler, the ELSC scheduler also sets the
pr ev pointer to NULL to indicate that the task is not
actually on any list, thus leaving the next pointer
alone if the task is considered “on the run queue”
without being on the run queue.

The f unct i ons move_f i r st _r unqueue() and
move_l ast _r unqueue() were meant to bias
decisions in the case of a goodness() tie.
Consequently, we need only to move tasks within
their current lists in the table. A task is moved within
its current list to the beginning or end of its section of
the list. Recall that lists can contain tasks with both
zero and non-zero count er values. These functions
behave appropriately when faced with mixed-counter
lists.

In addition to the modification of these four functions,
code was added to initialize the run queue table
structure when booting. We also wrote two test
routines that determine whether a list contains tasks
with zero or non-zero count er values.

5.2 ELSC Scheduling Algor ithm

Like the current scheduler, the actual ELSC
implementation of schedul e() begins by executing
all outstanding bottom-halves and then performing
some additional administrative work. It then deviates
from the current scheduler as follows.

If the previous task was still running when it called
schedul e() , i.e., it exhausted its quantum, was
preempted, or yielded the processor, then the ELSC
scheduler inserts the task into the run queue. This step
is important because tasks are removed from their run

3 The reason for this is because we actually remove tasks from the
run queue while they are running, but the rest of the Linux system
would like to think that they are still on the run queue. This gives
us a way to tell precisely if a task is on a list.

queue lists when they are executing and need to be put
back on the run queue. Even if the task has yielded, it
will be treated properly in the search loop. So we
insert the task in the table now lest we lose track of it.
Also, by re-inserting the previous task here, we do not
need to treat it as a special case when evaluating the
goodness of tasks. Next, just as the current scheduler,
ELSC moves exhausted SCHED_RR tasks to the ends
of their lists.

The next step determines whether we need to
recalculate count er s. If the top pointer is zero, then
there are no runnable tasks in the table with a non-zero
count er value; either they all have zero count er
values or there are no tasks in the run queue. If the
next _t op pointer is non-zero, then there are runnable
tasks in the table with zero count er values, so the
scheduler recalculates the count er values for every
task in the system. If, however, the next _t op pointer
is zero, then the table is completely empty and there
are no tasks to run, so we schedule the idle task and
skip the rest of the decision process.

If the top_pointer is non-zero, the list pointed to by it
is guaranteed to have at least one non-zero count er
task in it, so we start our search at the top list. The
ELSC search loop attempts to emulate the
goodness() calculation used by the current
scheduler. Starting with the first task in the list, ELSC
checks to see if the task is still running on another
CPU. If so, we shouldn’ t schedule it. If all tasks in
the list are eliminated by this check, then we consider
the next populated list and try again.4 Next, we check
to see if the task has a zero count er value. If we find
such a task, then the rest of the list is either empty or
unusable, so we break out of the search loop. If,
however, the task we are considering has a non-zero
count er value, then we evaluate its goodness. The
process of selecting a task from the highest list is
described below.

If the task has just yielded its processor, we will run it
only if we cannot find another task on the list. This
policy is slightly different than the current scheduler,
which considers a yielded task to have a goodness
value of zero. From this point, the task’s utility is
evaluated just like goodness() . Bonuses are given
for having the same memory map or running on the
same processor. In the uni-processor case, if a
search loop and run the task right away because we
won’ t find another task with a greater bonus.

When we finish examining a task, we mark it to be
scheduled next if it has the highest utility seen so far.
Then we select the next task in the list and repeat the

4 This can only happen on SMP systems.

Recalculate Frequency

10

100

1000

10000

100000

1000000

UP 1P 2P 4P

E
nt

rie
s

elsc

reg

Figure 2: The number of times (on a log scale) that each
scheduler enters the recalculate loop during a typical run of the
VolanoMark benchmark.

process. In the worst case, every task in the run queue
is placed in the same priority list (and ELSC
performance can be no better than the current
scheduler). So we limit the number of tasks examined
in each list to a number, currently set to be half the
number of processors in the system plus five, which is
intended to be large enough to find tasks with
adequate bonuses on SMP systems, yet still limit the
search to a reasonable number of tasks. Not
considering the rest of the list shouldn’ t be a problem,
as all tasks in the list have about the same static
goodness.

For real-time tasks, the search is actually much
simpler. Again, we examine only the first few tasks
and don’ t look at those currently running on other
processors. But instead of worrying about yielded
processes and bonuses, we simply run the task with
the highest rt_priority value.

After deciding which task to run next, the ELSC
scheduler manually removes the task from its list (i.e.,
doesn’ t use del _f r om_r unqueue()) and sets run
queue node’s pr ev pointer to NULL. This
indicates that the task is “on the run queue” , even
though it is not currently in a list. Finally, if the
previous task had yielded the processor, then the
ELSC scheduler clears the SCHED_YI ELD bit to give
the task a better chance in future calls to
schedul e() .

We mentioned before that one of our design goals was
to make the ELSC scheduler behave as much like the
current scheduler as possible. At this point, we
describe how the ELSC scheduler behaves differently.
First, the ELSC scheduler tries to limit its search to
one list in its table. Therefore, it may choose a task in
its highest priority list that doesn’ t receive any
bonuses for processor affinity or memory map. In this
case, it is possible that a task residing in the second

Scheduler Time to Complete Compilation

Current - UP 6:41.41

ELSC - UP 6:38.68

Current - 2P 3:40.38

ELSC - 2P 3:40.36

Table 2: Average time taken to complete a full compile of the
Linux kernel.

highest priority list, which would receive these
bonuses and have had a higher goodness() value
than the chosen task, is not run. We decided this
behavioral difference is acceptable because the
difference between the goodness() values of the two
tasks is small enough to ignore.

The other difference in behavior is one that avoids an
undesirable characteristic of the current scheduler.
Currently, if a task enters the scheduler because it is
yielding the processor and no other tasks can be
scheduled, then the scheduler enters a loop to
recalculate the count er value for all tasks in the
system. In this situation, the ELSC scheduler runs the
previous task again if it does not have a zero count er
value. Figure 2 illustrates how many times each
scheduler recalculates during a typical VolanoMark
run on uni-processor and one, two and four processor
SMP machines.

6. Exper iments

The ELSC scheduler meets the first three of our four
design goals. The design changes are kept local, the
solution is simple, and it behaves very much like the
current scheduler. The final goal of this project is to
make the ELSC scheduler perform as well as the
current scheduler in lighter desktop situations while
scaling gracefully under heavy loads. We used two
tests to determine whether we reached this goal. The
first is a simple test that measures the time it takes to
compile the Linux kernel. This test is meant to
compare scheduler performance for light loads. The
second test is the VolanoMark benchmark, described
earlier. While VolanoMark may not be representative
of a typical workload, it does simulate the behavior of
a commercially available application. We use it in
this analysis as a stress test for the two schedulers.

We compiled the Linux kernel three times on each of
the schedulers, configured to run as uni-processor5 and
two-processor kernels. We ran the test on an IBM
Netfinity 5500 with dual Pentium II processors. The
kernel version was 2.3.99-pre4 with our ELSC
modifications. To run the test, we set up a shell script
that would first build a kernel and then run “make
clean” . This step was intended to reduce the variance
in measurement due to file system performance by
pulling as much information as possible into the L1
and L2 caches. Then we use the bash “ time”
command to run the “make -j4 bzImage” command.
Table 2 shows the average results given by the time
command.

Our confidence in these measurements is very high as
the test was run multiple times and results never
deviated from the mean by more than 4 hundredths of
a second. For all practical purposes, the hundredths of
a second reported in Table 2 are insignificant. In the
two-processor case the ELSC scheduler barely edges
the current scheduler by an insignificant couple
hundredths of a second. In the uni-processor case the
ELSC scheduler has a distinct advantage. We believe
this is due to the shortcut in the ELSC search loop for
the uni-processor scheduler, which ends the search as
soon as a memory map match is found.

The VolanoMark benchmark test is more complicated.
We ran VolanoMark in loopback mode, which
simulates both the clients and servers for the Java chat
rooms on the same machine. In loopback mode,
communication between clients and servers does not
travel across a network. In the exchange of messages
between clients and servers, each must have time on
the CPU to send and receive it’s messages in order to
let the other do the same. This type of message
exchanging application forces many entries into the
scheduler. As suggested by the VolanoMark run
rules, we ran the benchmark 11 times for each system
configuration and discarded the first run due to its
variant startup costs.

We ran VolanoMark with both schedulers configured
as uni-processor, one, two and four processor SMP
kernels. For each of these configurations,
VolanoMark was configured to simulate 5, 10, 15 and
20 rooms, each with 20 simulated users exchanging
100 messages. Each simulated user creates two
threads, so each room creates a total of 80 threads. It
is easy to see that even at 5 rooms the VolanoMark
benchmark puts considerable stress on a system.
While running VolanoMark, we also collected

5 In these experiments, uni-processor kernels are compiled without
SMP enabled, eliminating its overhead. One-processor kernels are
compiled with SMP enabled but use only one processor.

UP and 1P Message Throughput

3000

3400

3800

4200

4600

5 10 15 20
Number of Rooms

elsc-up

reg-up

elsc-1p

reg-1p

4 Processor Message Throughput

1700
2200
2700
3200
3700

4200
4700
5200
5700
6200

5 10 15 20
Number of Rooms

elsc

reg

Figure 3: Throughput in messages per second for
VolanoMark runs on 6 different scheduler configurations. The Y-
scale is adjusted on the second graph to fit all data points.

statistics about what the scheduler was doing and
exposed them through the proc file system. The
overhead of collecting these statistics exists in both
schedulers and in both cases is negligible. The
machine used for the VolanoMark runs was an IBM
Netfinity 7000 with 4 Pentium II xeon processors.

The metric reported by VolanoMark is message
throughput, which we can use as a measure of both
performance and scalability. Using the bare results
from the VolanoMark runs, we can compare how each
of the two schedulers behaves in different
configurations. Figure 3 illustrates the performance
gains given by the ELSC scheduler.

Figure 4 gives a different interpretation of the same
data. To obtain some measure of how well each
scheduler scales when faced with a large number of
tasks, we can use the 5-room trials as a base
measurement and see how performance is altered
when the number of threads is increased in the 20-
room trials. The number charted in Figure 4 is simply
the message throughput achieved in the 20-room trials
divided by the throughput achieved in the 5-room

Scaling w ith Room s

0

0.2

0.4

0.6

0.8

1

1.2

UP 1P 2P 4P

elsc

reg

Figure 4: Shows how each scheduler scales from 5 rooms to 20
rooms on various processor configurations. The height of the bar
represents the scaling factor (20-room-throughput / 5-room-
throughput).

trials. As the figure indicates, the ELSC scheduler
clearly scales to more threads better than the current
scheduler.

But these numbers do not paint the whole picture. We
want to understand why the ELSC scheduler scales so
much better than the current scheduler and verify that
these results are not a fluke. So we collected
additional statistics on the schedulers while we ran the
VolanoMark tests.

The first statistic that jumps out is the number of
cycles spent per entry into the scheduler. For the
ELSC scheduler, this number is significantly lower
than the current scheduler, proving the ELSC
scheduler really does spend less time in the scheduler.
The explanation is that because ELSC with its table-
based approach to scheduling examines far fewer
tasks on each entry into the scheduler, as
demonstrated by Figure 5.

The ELSC scheduler is not without fault. Although
most of the statistics we collected indicate that the
ELSC scheduler is faster and better, two of them show
the opposite. One of the adverse affects of a table-
based scheme is an increase in the number of calls to
schedul e() when running on a machine with more
than one processor. As demonstrated by Figure 6,
there is a strong correlation with how many times a
task is selected without having the processor affinity
bonus. These measurements suggest the ELSC
scheduler is not choosing the absolute best task in
multiprocessor machines. We suspect that this is
related to the fact that the ELSC scheduler finds the
most suitable task in the highest populated class of
static priorities. Thus, some tasks that might have
higher goodness() values when the processor
affinity bonus is added, but reside in lower static
classes, may not be considered.

Cycles per Schedule()

0

5000

10000

15000

20000

25000

UP 1P 2P 4P

elsc

reg

Tas k s Exam ined

0
5

10
15
20
25
30
35
40

UP 1P 2P 4P

elsc

reg

Figure 5: The first chart shows the number of cycles that are
spent each time the system enters the scheduler. The second chart
shows how many tasks are examined by the scheduler each time it is
called.

Although the VolanoMark benchmark creates many
threads with the same memory map, we do not believe
this fact significantly influences the behavior of either
scheduler. The only possible difference between the
two schedulers would be similar to the passing over of
lower classes of static priorities that happens when
running on multiple CPU’s. Of course, if a task is
inserted into a lower priority list, then adding the one
point bonus for sharing a memory map with the
previous task cannot raise it’s goodness value enough
to be greater than any of the tasks in the highest class.

7. Evaluation

An increasing number of organizations continue to
evaluate, test, and use the Linux operating system.
Although Linux does many things well, we have
shown the current scheduler has shortcomings in its
design and implementation. When confronted with a
large number of tasks, overall system performance
declines rapidly. This behavior is unacceptable for
large-scale enterprise environments.

We set out to improve the Linux scheduler’s
scalability, preferring modifications that do not
change desktop performance and maintain existing
scheduler abstractions, yet scale well when presented
with a large number of tasks. We have shown that it’s

Calls to Schedule()

1700

2200

2700

3200

3700

4200

UP 1P 2P 4P

elsc -
sched

reg -
sched

Tas k s Scheduled on New Proces s or

0

200

400

600

800

1000

UP 1P 2P 4P

elsc -
cpu
reg -
cpu

Figure 6: The first chart shows how many times (in thousands)
the system enters the schedule() function call in an average 10-room
VolanoMark simulation. The second chart shows how many times
the scheduler chooses a task to run on a different processor than it
ran before.

possible to improve the Linux scheduler without
introducing a lot of overhead. Though the ELSC
scheduler does not always select the best task
available on machines with more than one processor,
we have demonstrated that the ELSC scheduler
satisfies our goals for both a small and large number
of ready tasks and offers a viable alternative to the
current Linux scheduler.

The ELSC scheduler is an open source contribution
and is freely available for use and modification. The
current version of the ELSC patch can be downloaded
from www. ci t i . umi ch. edu/ pr oj ect s/ l i nux-
scal abi l i t y / pat ches/

8. Future Work

In the future, we would like to see how the ELSC
scheduler performs in other multithreaded
environments. One such example is a web server
running Apache. Would we see the same performance
gains we saw while running VolanoMark, or does
something other than the scheduler cause primary
bottlenecks in these systems? Would the ELSC
scheduler be more effective in increasing throughput
or decreasing the latency of an Apache web server?

The focus of the ELSC design is to reduce the time
spent looking for a task to schedule. We would also
like to find ways to allow the scheduler to make
greater use of multiple CPUs and examine the effects
of modifying the goodness metric. Is Linux
considering everything it ought in its scheduling
decisions? Do we care about processor affinity after
many other tasks have run on the given processor?
Can we construct a scheduler that spends less time
waiting for spin locks and more time scheduling
tasks?

We are also interested in exploring alternative
scheduler designs. The table-based design of the
ELSC scheduler is one approach; many other
possibilities exist, such as sorting tasks by static
goodness within heaps for each processor and address
space. One could choose the absolute best task
available simply by examining the top of each heap.
Or perhaps a multi-priority-queue solution would be
more beneficial to help the scheduler scale to multiple
processors well.

9. Acknowledgments

We thank Ray Bryant and Bill Hartner of IBM, Chuck
Lever of Network Appliance and Brian Noble of the
University of Michigan for their guidance and
assistance; Dr. Charles Antonelli and Professor Gary
Tyson for providing hardware used in development at
the University of Michigan; the Linux Technology
Center at IBM for allowing the use of equipment at
IBM for development and testing; and Chris King,
Scott Lathrop and Paul Moore of the University of
Michigan for their contributions to the initial
development of the ELSC scheduler.

We thank the anonymous reviewers for their helpful
comments, and our shepherd, Ted Faber, whose
insight and suggestions were particularly valuable.

This work was partially supported by Dell, Intel, and
the Sun-Netscape Alliance.

We also thank all the past, present, and future
developers of Linux for their skilled and selfless
contributions.

10. References

[1] Atlas, A. “Design and implementation of
statistical rate monotonic scheduling in KURT
Linux.” Proceedings 20th IEEE Real-Time
Systems Symposium. Phoenix, AZ, December
1999.

[2] Bryant, Ray and Hartner, Bill. “Java, Threads,
and Scheduling in Linux.” IBM Linux
Technology Center, IBM Software Group.
ht t p: / / www- 4. i bm. com/ sof t war e/ devel oper /
l i br ar y/ j ava2

[3] Carr, John. “AS/400 Leads the league in Java
performance.” JavaWorld, 11 August 2000.

[4] Daggett, Dawn and Gillen, Al and Kusnetzky,
Dan. “Linux Overtakes NetWare for the
Market’s Number 2 Position.” International
Data corporation – Press Release, 24 July
2000.
ht t p: / / www. i dc. com/ sof t war e/ pr ess/ PR/
SW072400PR. st m

[5] Gooch, Richard. “Linux Scheduler Benchmark
Results.” 30 September 1998. ht t p: / / www.
at nf . csi r o. au/ ~r gooch/ benchmar ks/ l i nux-
schedul er . ht ml
f t p: / / f t p. at nf . csi r o. au/ pub/ peopl e/ r gooc
h / l i nux/ ker nel - pat ches/ v2. 2/ r t queue-
pat ch- cur r ent . gz

[6] Lohr, Steve. “ IBM goes counterculteral with
Linux.” The New York Times On The Web, 20
March 2000. ht t p: / / ww10. nyt i mes. com/
l i br ar y/ t ech/ 00/ 03/ bi zt ech/ ar t i c l es/
20sof t . ht ml

[7] Neffenger, John. “The Volano Report.”
Volano LLC, 24 March 2000.
ht t p: / / www. vol ano. com/ r epor t 000324. ht ml

[8] Shankland, Stephen. “AOL releases open-
source software.” Cnet News, 9 July 1999.
ht t p: / / www. canada. cnet . com/ news/ 0- 1005-
200- 344644. ht ml

 [9] Wang, Y.C. “ Implementing a general real-time
scheduling framework in the RED-Linux real-
time kernel.” Proceedings 20th IEEE Real-
Time Systems Symposium. Los Alamitos, CA,
1999. 246-55

[10] Woodard, B. “Building an enterprise printing
system.” Proceedings of the Twelfth Systems
Administration Conference (LISA XII).
USENIX Association, Berkeley, CA. 1998,
219-28.

