
 

 
 
 
 
 
 
 
 
 

CITI Technical Report 01-7 
 
 
 

Scalable Linux Scheduling 
 
 

Stephen P. Molloy, Peter Honeyman 
{ smol l oy, honey} @ci t i . umi ch. edu 

 
 
 
 
 
 
 

ABSTRACT 
 

For most of its existence, Linux has been used primarily as a personal desktop 
operating system.  Yet, in recent times, its use as a cost-efficient alternative to 
commercial operating systems for network servers, distributed workstations and 
other large-scale systems has been increasing.  Despite its remarkable rise in 
popularity, Linux exhibits many undesirable performance traits. 

Concerned about the scalability of multithreaded network servers powered by 
Linux, we investigate improvements to the Linux scheduler.  We focus on pre-
calculating base priorities and sorting the run queue for efficient task selection.  
We propose an improved scheduler design and compare our implementation in 
terms of scalability and performance to the existing Linux scheduler.  Our 
analysis shows that improvements can be made to the existing scheduler without 
introducing overhead, thus improving the scalability and robustness of the Linux 
operating system. 
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1.  Introduction 

Linux, a strong and steadily increasing presence on 
the Internet today [4], commonly provides cost-
effective and load-tolerant solutions for network 
services.  Its familiarity to UNIX users, source code 
availability, and ability to run on many different 
architectures explain Linux’s rapid increase in 
popularity.  Many software companies, including 
AOL, Netscape and IBM [6, 8], offer Linux products.  
Several organizations use Linux on routers, print and 
file servers, firewalls and, of course, web application 
servers [10]. 

At the same time as Linux’s popularity has increased, 
the use of Java for web applications has grown 
immensely.  Java technology is a key component in 
building scalable application servers.  However, 
communications-intensive Java applications often 
create large numbers of threads and Linux does not 
handle such stress gracefully. 

Concerned about the scalability of multithreaded 
network servers powered by Linux, we investigate 
improvements to the Linux scheduler.  Experiments 
by IBM indicate that as much as 30% of the total CPU 
time in the system is spent in the scheduler when the 
number of running threads is high [2].  Our analysis 
shows the current scheduler uses an expensive and 
redundant algorithm for task selection.  Our goal is to 
improve the scalability of the Linux scheduler to adapt 
it to enterprise-scale server workloads.  Our analysis 
shows that our new scheduler implementation 
achieves these goals. 

The rest of this paper is organized as follows.  Section 
2 gives some background information on our project 
and provides some insight as to why we chose to 
tackle the scheduler rather than the Linux threading 
model.  Section 3 describes Linux’s current approach 
to scheduling.  Section 4 explains the problems with 
it.  Section 5 outlines our approach to solving the 
problem and Section 6 describes its performance 
relative to the current Linux scheduler.  All kernel 
modifications, experiments, and descriptions are 
against a 2.3.99-pre4 Linux kernel and, when used, 
Java version 1.1.7 of IBM’s JDK. 

2.  Background 

Because Linux grew from a desktop operating system, 
many issues prevent it from being a dominant force in 
the enterprise server market.  The design and 
implementation of Linux has traditionally focused on 
simplicity and versatility rather than small 
performance gains and scalability.  The 
implementation of the Linux thread model and 
scheduler illustrate this approach. 

The Linux thread model is a one-to-one model, 
meaning that every user-level thread is mapped onto 
its own kernel thread.  While this model makes 
programming in the kernel less complicated, it 
sometimes forces programs to generate more kernel 
threads than is necessary.  Forcing the kernel’s default 
scheduler to accommodate too many threads can 
adversely affect a server’s performance. 

Many established operating systems support many-to-
one or many-to-many thread models in which each 
kernel thread has many user level threads mapped to 
it.  In these models, a secondary scheduler chooses 
which of the mapped user level threads to run.  The 
multi-tier scheduling approach of these models assures 
that the scheduler at each level will be faced with a 
more manageable number of threads. 

The Linux scheduler, like its thread model, is also an 
exercise in simplicity.  The heart of the scheduler is 
concisely coded in just a few lines that evaluate 
runnable threads and then picks the best.  The price 
for this simplicity though, is a linear time algorithm 
that repeats many of the same calculations that were 
performed on its last invocation. 

In this project, we address the shortcomings of the 
scheduler rather than those of the threading model. 
The reasons for this decision are simple.  We saw the 
redundant calculation and O(n) loop in the current 
scheduler and knew we could improve it.  We also 
know that the Linux kernel community has been very 
protective of its threading model in the past and we 
wanted to avoid upsetting any contributors.  Finally, 
the original timeline for the project called for a 
working design and implementation within the time 
frame of one semester.  Developing a new threading  
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i nt                 pr ocessor  

Table 1:  This table shows the fields of the task 
structure that are most relevant to Linux scheduling. 

 

model for Linux would almost certainly require more 
time than we had available. 

Other groups have spent considerable time designing 
alternative schedulers for Linux [1, 5, 9].  Linux 
discussion groups provide evidence that the scheduler 
has been and continues to be an interesting topic for 
the developer community.  However, most alternative 
scheduler  designs  focus on reducing  latency for real-
time processes rather than improving the overall 
scalability of the default scheduler. 

While it is our goal to improve scalability and 
performance of the scheduler when faced with a large 
number of runnable threads, it is not our intent to 
change the criteria it uses for thread selection.  We 
feel that the current criteria are carefully chosen and 
sufficient to make good decisions with a minimum 
amount of calculation.  Our primary concern is simply 
that these criteria are not being used in an optimal 
algorithm by the scheduler. 

In the remainder of this paper, because Linux uses a 
one-to-one threading model, we do not distinguish 
between a user thread and a kernel thread.  Also, to 
match the terminology used in the kernel source code, 
we refer to any thread in the system as a task. 

3.  Current Scheduler  

To understand why the current Linux scheduler scales 
poorly with the number of runnable threads in the 
system, it is necessary to be familiar with its data 
structures, algorithms, and conventions.  This section 
outlines the existing scheduler to clarify our 
observations and design decisions. 

3.1  Task Structure 

The basic execution context in Linux is referred to as 
a task.  The task structure is responsible for 
maintaining a task’s address space information, 
whether that address space is shared with other tasks, 

and other state information about the task and its 
registers.  It also tracks task statistics for memory 
management and resource control, privileges, file 
descriptors, signal handlers and other task specific 
information.  The various fields of the task structure 
used in the scheduler are illustrated in Table 1. 

The task’s st at e field can be set to one of six values, 
each representing a different state that in which a task 
might find itself (such as blocking or sleeping.)  
TASK_RUNNI NG is the value of st at e when a task is 
runnable. 

The pol i cy  field is set either to SCHED_FI FO, 
SCHED_RR (round robin) or SCHED_OTHER to 
determine the scheduling policy for the task.  The first 
two options are for real-time tasks, while the third is 
for all other tasks.  Real time tasks are always run 
before regular tasks if they are runnable.  The pol i cy  
field is also used to track yielded tasks.  When a non-
real-time task gives up its processor via the 
sys_sched_yi el d( )  system call, a bit 
(SCHED_YI ELD) in the task’s pol i cy  field is set so 
this information can be passed on to the scheduler. 

The field has_cpu is set to 1 while a task is executing 
on a processor and 0 otherwise.  Upon setting 
has_cpu, the field pr ocessor  is set to the processor 
ID on which the task will execute.  The task structure 
also contains pointers that identify the memory map in 
which it runs and its place on the run queue. 

The two most important factors in determining which 
task executes next are represented by the pr i or i t y  
and count er  fields.  Pr i or i t y  is an integer between 
1 and 40.  Higher numbers represent higher priority. 
Twenty is the default value for all tasks.  (Real-time 
tasks also use a priority value, but it ranges from 0 to 
99 and is stored in a separate field called 
r t _pr i or i t y .)  Count er  is a value that indicates the 
time remaining in the task’s current quantum.  
Count er ,  measured in 10ms ticks, can range from 
zero to twice the task’s pr i or i t y .  Linux uses this 
field to enforce a fairness policy. 

It is worth noting that all tasks, whether they are 
lightweight threads or full-fledged processes, are 
treated the same by a Linux system.  All processes and 
threads are visible in various system status commands 
such as ps and top.  Consequently, the default 
scheduler, which is responsible for accommodating all 
tasks in the system, can be placed under considerable 
stress when running multithreaded applications. 

3.2  Run Queue 

The run queue in Linux is a circular, doubly linked list 
containing all tasks in the TASK_RUNNI NG state.  The 



 

 

scheduler traverses this list when it looks for a task to 
run.  The list is not maintained in sorted order.  When 
the scheduler finds two equivalent tasks, the one 
closer to the front of the list is chosen.  Newly created 
or awakened tasks are placed at the beginning of the 
run queue.  The list is doubly linked and circular, so 
tasks can also be added to the end of the run queue. 

3.3  Schedule() 

The Linux kernel function schedul e( ) , as in other 
operating systems, is called from over 500 places 
within the kernel, underscoring its significance to 
overall system performance.  The schedul e( )  
function is called by a task when it yields the 
processor, blocks for I/O, expires its quantum, or is 
preempted by another (higher priority) task.  
Schedul e( )  uses the execution context of the task 
that called it (referred to as the previous task in the 
scheduler).  Schedul e( )  is charged with finding the 
best task to take the previous task’s place on the 
processor.  In doing so, it makes use of a heuristic 
computed by the function goodness( ) . 

3.3.1 Goodness Calculation 

The scheduler uses the goodness( )  function to 
determine the utility of running a given task.  A high 
goodness value means it would be a sound decision to 
run the given task next.  For tasks that are marked 
SCHED_FI FO or SCHED_RR, goodness( )  returns 
1000 plus the value stored in the tasks r t _pr i or i t y  
field.  For other tasks, however, goodness( )  returns 
a much lower number and shows more discretion in its 
evaluation. 

For SCHED_OTHER tasks, four factors are taken into 
consideration.  The first factor is a task’s count er  
value.  If a task has a count er  value of zero, then 
goodness( )  returns a utility of zero.  This lets the 
scheduler know a runnable task was found but its time 
slice is used up.  If a task’s count er  value is not zero, 
then its goodness value is set to the sum of its 
count er  and pr i or i t y  values. 

The third and fourth factors are bonuses for processor 
affinity and sharing an address space with the previous 
task.  A small, one point advantage is given to tasks 
that share memory maps, because of the reduced 
overhead for the context switch.  A somewhat larger 
(15 point) bonus is given to tasks whose last run was 
on the current processor, to try to take advantage of 
memory lines that may still reside in the processor’s 
cache.  These bonuses are added to the previously 
calculated goodness value to determine the task’s final 
goodness value. 

3.3.2 Scheduling Algor ithm 

The scheduler begins by executing all outstanding 
bottom-halves (delayed functions that were too 
substantial to run during an interrupt.)  After some 
additional administrative work, the scheduler enters 
the heart of its code:  an examination of all runnable 
tasks.  The previous task is the first task looked at by 
the scheduler.  If the SCHED_YI ELD bit is set for the 
previous task, then the scheduler clears the bit and 
uses zero as the task’s goodness value.  Otherwise, it 
calls goodness( )  to determine this value. 

Next, the scheduler walks through the run queue, 
evaluating the goodness of each task not currently 
running on another processor.  After all runnable tasks 
have been examined, the task with the greatest 
goodness value is chosen to run on the processor.  If 
no task has a goodness greater than zero1, then the 
scheduler jumps to a piece of code responsible for 
recalculating the count er  values of all tasks in the 
system (runnable or otherwise) and returns to search 
the run queue again. 

While the goodness( )  function by itself is very 
simple, executes quickly and considers the most 
appropriate factors in making intelligent scheduling 
decisions, it is expensive to recalculate goodness( )  
for every task on every invocation of the scheduler. 

4.  Problem 

Efficient handling of multiple threads is crucial for 
enterprise servers to make best use of system 
resources, communicate with many parties at the same 
time, and reduce the average time that service requests 
spend waiting for an available server.  Multiplexing 
I/O system calls (such as sel ect ) can help in some 
situations, but they are not always available.  The 
popular Java programming language is a prime 
example. 

Threads are an essential element in the Java language:  
because the Java language lacks an interface for non-
blocking and multiplexing I/O, threads are especially 
important in constructing communications intensive 
applications.  Typically, one or more Java threads are 
constructed for each communications stream used by a 
Java program.  Therefore, a natively threaded Java 
Virtual Machine (such as IBM’s JVM [7]) can put a 
strain on the Linux scheduler, which, as we have seen, 
examines the goodness function for every thread in the 
run queue.  This can be an exhausting process. 

                                                 
1 The run queue must contain at least one task for this condition to 
count.  An empty run queue will schedule the idle task rather than 
trigger the recalculation. 



 

 

 

 

(a) Run Queue for Current Linux Scheduler 

 

 

 

 

 

 

 

 

(b) Run Queue for ELSC Scheduler 

Figure 1:  Illustration of run queue structures for both 
schedulers.  The squares represent list heads and the circles 
represent tasks.  The labels on the tasks indicate the static goodness 
of that particular task. 

 
Experiments at IBM show the impact of the Linux 
scheduler on the performance of a multithreaded 
network application written in Java [2].  VolanoMark 
is a benchmark written to measure the performance of 
VolanoChat, a Java implementation of a chat room 
server.  Because its results have been widely 
published in magazines such as JavaWorld [3], 
VolanoMark is an important benchmark for 
comparing the performance of different 
implementations of the Java Virtual Machine. 

The VolanoMark benchmark establishes a socket 
connection to a chat server for each simulated chat 
room user.  Because Java does not provide non-
blocking read and write, VolanoMark uses a pair of 
threads on each end of each socket connection (4 
threads per connection) to simulate non-blocking I/O.  
For a 5 to 25-room simulation, the kernel must 
potentially deal with 400 to 2,000 threads in the run 
queue.  The key measure of performance reported by 
VolanoMark is message throughput, i.e., the number 
of messages per second (over all connections) the 
server is able to handle during a benchmark run.  The 
measurements for IBM’s report were taken while 
running VolanoMark over a loopback interface, 
eliminating any network overhead involved; the heap 
size for the test was large enough for the overhead of 
Java garbage collection to be less than 5% of the total 
elapsed time throughout the experiments. 

The results of the VolanoMark experiments show that 
25-room throughput decreased by 24% from 5-room 
throughput due to the additional threads in the system.  

A profile of the kernel taken during the VolanoMark 
runs showed that between 37 (5-room) and 55 (25-
room) percent of total time spent in the kernel during 
the test is spent in the scheduler. 

5.  ELSC Scheduler  

To reduce the amount of time spent in the scheduler 
we developed a new scheduling solution, called the 
ELSC scheduler.  Our goals in implementing this 
scheduler are as follows: 

1) Keep changes local to the scheduler.  Do not 
change current interfaces to the scheduler. 

2) Keep the concept and implementation simple. 
3) Behave like the current scheduler as much as 

possible.2 
4) Maintain existing performance for light 

loads.  Scale gracefully under heavy loads. 
 

The ELSC scheduler is a table-based scheduler that 
keeps the run queue in a sorted order, making 
scheduling decisions easier and faster.  We chose a 
table based design because it relieves us of the 
overhead of sorting lists.  It also avoids complexity 
when inserting or removing tasks, unlike, say, a heap. 

The foundation of the ELSC scheduler is its ability to 
keep tasks in an order that makes choosing one fast.  
The key to this sorted order is in how a task’s 
goodness( )  value is calculated in the current 
scheduler.  The goodness( )  calculation consists of a 
static and a dynamic part.  The static part consists of a 
task’s pr i or i t y  and count er  values.  While a task 
is on the run queue but not running on a processor, its 
count er  value does not change.  Likewise, its 
pr i or i t y  almost never changes, though when it 
does, the ELSC scheduler adapts accordingly.  We 
refer to the combination of these two values as a task’s 
static goodness.  A task’s dynamic goodness consists 
of memory map and processor affinity.  Despite the 
fact that they don’ t change while a task is on the run 
queue, they depend on which task and processor are 
calling schedul e( ) .  The ELSC scheduler uses static 
goodness to sort tasks on the run queue. 

5.1  Implementation 

The ELSC scheduler uses a new structure for the run 
queue.  Previously, the run queue was a simple doubly 
linked list of nodes that each point to a task as shown 

                                                 
2 By behave, we mean that if the current scheduler always selects a 
real-time task over a SCHED_OTHER task, even if it has a zero 
counter, then the ELSC scheduler should do the same.  Aside from a 
few optimizations, the ELSC scheduler does adhere to the same 
quirky rules as the current Linux scheduler. 
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in Figure 1a.  To make scheduling decisions fast, we 
need to keep the run queue sorted, while at the same 
time keeping insertion and deletion times small.  The 
ELSC scheduler does this with an array of 30 doubly 
linked lists.  Each list in the array is used to hold tasks 
in a certain static goodness range, as demonstrated in 
Figure 1b.  Lists at one end of the table hold tasks 
with the highest static goodness values while the other 
end hold tasks with the lowest.  A t op pointer is used 
to indicate the highest priority list that contains a 
runnable task. 

To change the structure of the run queue from a single 
list to a table of lists, we need to change four run 
queue manipulation functions as well:  
add_t o_r unqueue( ) , del _f r om_r unqueue( ) , 
move_f i r st _r unqueue( )  and 
move_l ast _r unqueue( ) .  The first of the two 
functions puts tasks on and removes them from the 
run queue when appropriate.  The next two tasks give 
a task an advantage/disadvantage in the selection 
process when another task has the same goodness( )  
value.  Only schedul e( )  manipulates the run queue 
directly. 

The function add_t o_r unqueue( )  is modified 
slightly to deal with the new table structure.  Like the 
current scheduler, it adds tasks to the front of a list.  
The particular list depends on the task.  If the task is 
real-time, it uses one of the ten highest lists, 
determined by dividing the rt_priority field by 10.  If 
the task is a SCHED_OTHER task, then the list is 
determined by adding count er  to pr i or i t y  and 
dividing by four.  Once the list is chosen, the task is 
added to the front of that list and the t op pointer is 
updated if necessary. 

When all tasks in the run queue exhaust their time 
quantum, their count er s  are all zero.  At this time, 
the current scheduler resets all count er s  in the 
system.  The ELSC scheduler does the same.  
However, to avoid re-indexing every task in the run 
queue when their count er  is reset, we modified 
add_t o_r unqueue( )  as follows.  If the task being 
inserted has a non-zero count er  value, the task is 
inserted as described above.  Otherwise, 
add_t o_r unqueue( )  uses a predicted count er  
value for the task, based on its knowledge of how the 
scheduler resets them.  Using the predicted count er  
value and its current pr i or i t y , the task is indexed 
into the run queue and added to the end of its list.  
This way, all zero count er  tasks reside at the end of 
the list, behind all tasks with a non-zero count er  
value.  The zero count er  tasks are out of the way of 
the scheduler, but are in position once all other tasks 
in the run queue exhaust their quanta.  A next _t op 

pointer is used to keep track of the highest priority list 
containing a runnable task after count er s  are reset 
and is set at this time. 

In the current scheduler, the del _f r om_r unqueue( )  
function removes a task from the list it is on by simply 
pointing the two nodes on either side of it in the list at 
each other.  Then it sets its own run queue node’s 
next  pointer to NULL, indicating that it is no longer 
on the run queue.  The ELSC scheduler follows 
exactly the same process.  Afterwards, it updates both 
the top and next _t op pointer if the removal of the 
task caused either one of them to change.  In the 
ELSC scheduler, it is possible for a task to be 
considered on the run queue but not actually be in one 
of the lists in the table.3  Because a node’s next  
pointer indicates presence on the run queue by the 
current scheduler, the ELSC scheduler also sets the 
pr ev pointer to NULL to indicate that the task is not 
actually on any list, thus leaving the next  pointer 
alone if the task is considered “on the run queue”  
without being on the run queue. 

The f unct i ons move_f i r st _r unqueue( )  and 
move_l ast _r unqueue( )  were meant to bias 
decisions in the case of a goodness( )  tie.  
Consequently, we need only to move tasks within 
their current lists in the table.  A task is moved within 
its current list to the beginning or end of its section of 
the list.  Recall that lists can contain tasks with both 
zero and non-zero count er  values.  These functions 
behave appropriately when faced with mixed-counter 
lists. 

In addition to the modification of these four functions, 
code was added to initialize the run queue table 
structure when booting.  We also wrote two test 
routines that determine whether a list contains tasks 
with zero or non-zero count er  values. 

5.2  ELSC Scheduling Algor ithm 

Like the current scheduler, the actual ELSC 
implementation of schedul e( )  begins by executing 
all outstanding bottom-halves and then performing 
some additional administrative work.  It then deviates 
from the current scheduler as follows. 

If the previous task was still running when it called 
schedul e( ) , i.e., it exhausted its quantum, was 
preempted, or yielded the processor, then the ELSC 
scheduler inserts the task into the run queue.  This step 
is important because tasks are removed from their run 

                                                 
3 The reason for this is because we actually remove tasks from the 
run queue while they are running, but the rest of the Linux system 
would like to think that they are still on the run queue.  This gives 
us a way to tell precisely if a task is on a list. 



 

 

queue lists when they are executing and need to be put 
back on the run queue.  Even if the task has yielded, it 
will be treated properly in the search loop.  So we 
insert the task in the table now lest we lose track of it.  
Also, by re-inserting the previous task here, we do not 
need to treat it as a special case when evaluating the 
goodness of tasks.  Next, just as the current scheduler, 
ELSC moves exhausted SCHED_RR tasks to the ends 
of their lists. 

The next step determines whether we need to 
recalculate count er s.  If the top pointer is zero, then 
there are no runnable tasks in the table with a non-zero 
count er  value; either they all have zero count er  
values or there are no tasks in the run queue.  If the 
next _t op pointer is non-zero, then there are runnable 
tasks in the table with zero count er  values, so the 
scheduler recalculates the count er  values for every 
task in the system.  If, however, the next _t op pointer 
is zero, then the table is completely empty and there 
are no tasks to run, so we schedule the idle task and 
skip the rest of the decision process. 

If the top_pointer is non-zero, the list pointed to by it 
is guaranteed to have at least one non-zero count er  
task in it, so we start our search at the top list.  The 
ELSC search loop attempts to emulate the 
goodness( )  calculation used by the current 
scheduler.  Starting with the first task in the list, ELSC 
checks to see if the task is still running on another 
CPU.  If so, we shouldn’ t schedule it.  If all tasks in 
the list are eliminated by this check, then we consider 
the next populated list and try again.4  Next, we check 
to see if the task has a zero count er  value.  If we find 
such a task, then the rest of the list is either empty or 
unusable, so we break out of the search loop.  If, 
however, the task we are considering has a non-zero 
count er  value, then we evaluate its goodness.  The 
process of selecting a task from the highest list is 
described below. 

If the task has just yielded its processor, we will run it 
only if we cannot find another task on the list.  This 
policy is slightly different than the current scheduler, 
which considers a yielded task to have a goodness 
value of zero.  From this point, the task’s utility is 
evaluated just like goodness( ) .  Bonuses are given 
for having the same memory map or running on the 
same   processor.    In   the   uni-processor  case,   if  a 
search loop and run the task right away because we 
won’ t find another task with a greater bonus. 

When we finish examining a task, we mark it to be 
scheduled next if it has the highest utility seen so far.  
Then  we select the  next task in  the list and repeat the  

                                                 
4 This can only happen on SMP systems. 
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Figure 2:  The number of times (on a log scale) that each 
scheduler enters the recalculate loop during a typical run of the 
VolanoMark benchmark. 

 

process.  In the worst case, every task in the run queue 
is placed in the same priority list (and ELSC 
performance can be no better than the current 
scheduler).  So we limit the number of tasks examined 
in each list to a number, currently set to be half the 
number of processors in the system plus five, which is 
intended to be large enough to find tasks with 
adequate bonuses on SMP systems, yet still limit the 
search to a reasonable number of tasks.  Not 
considering the rest of the list shouldn’ t be a problem, 
as all tasks in the list have about the same static 
goodness. 

For real-time tasks, the search is actually much 
simpler.  Again, we examine only the first few tasks 
and don’ t look at those currently running on other 
processors.  But instead of worrying about yielded 
processes and bonuses, we simply run the task with 
the highest rt_priority value. 

After deciding which task to run next, the ELSC 
scheduler manually removes the task from its list (i.e., 
doesn’ t use del _f r om_r unqueue( ) ) and sets run 
queue  node’s  pr ev  pointer to  NULL.  This 
indicates that the task is “on the run queue” , even 
though it is not currently in a list.  Finally, if the 
previous task had yielded the processor, then the 
ELSC scheduler clears the SCHED_YI ELD bit to give 
the task a better chance in future calls to 
schedul e( ) . 

We mentioned before that one of our design goals was 
to make the ELSC scheduler behave as much like the 
current scheduler as possible.  At this point, we 
describe how the ELSC scheduler behaves differently.  
First, the ELSC scheduler tries to limit its search to 
one list in its table.  Therefore, it may choose a task in 
its highest priority list that doesn’ t receive any 
bonuses for processor affinity or memory map.  In this 
case, it is possible that a task residing in the second  



 

 

Scheduler  Time to Complete Compilation 

Current - UP 6:41.41 

ELSC - UP 6:38.68 

Current - 2P 3:40.38 

ELSC - 2P 3:40.36 

Table 2:  Average time taken to complete a full compile of the 
Linux kernel. 

 

highest priority list, which would receive these 
bonuses and have had a higher goodness( )  value 
than the chosen task, is not run.  We decided this 
behavioral difference is acceptable because the 
difference between the goodness( )  values of the two 
tasks is small enough to ignore. 

The other difference in behavior is one that avoids an 
undesirable characteristic of the current scheduler.  
Currently, if a task enters the scheduler because it is 
yielding the processor and no other tasks can be 
scheduled, then the scheduler enters a loop to 
recalculate the count er  value for all tasks in the 
system.  In this situation, the ELSC scheduler runs the 
previous task again if it does not have a zero count er  
value.  Figure 2 illustrates how many  times each 
scheduler recalculates during a typical VolanoMark 
run on uni-processor and one, two and four processor 
SMP machines. 

6.  Exper iments 

The ELSC scheduler meets the first three of our four 
design goals.  The design changes are kept local, the 
solution is simple, and it behaves very much like the 
current scheduler.  The final goal of this project is to 
make the ELSC scheduler perform as well as the 
current scheduler in lighter desktop situations while 
scaling gracefully under heavy loads.  We used two 
tests to determine whether we reached this goal.  The 
first is a simple test that measures the time it takes to 
compile the Linux kernel.  This test is meant to 
compare scheduler performance for light loads.  The 
second test is the VolanoMark benchmark, described 
earlier.  While VolanoMark may not be representative 
of a typical workload, it does simulate the behavior of 
a commercially available application.  We use it in 
this analysis as a stress test for the two schedulers. 

We compiled the Linux kernel three times on each of 
the schedulers, configured to run as uni-processor5 and 
two-processor kernels.  We ran the test on an IBM 
Netfinity 5500 with dual Pentium II processors.  The 
kernel version was 2.3.99-pre4 with our ELSC 
modifications.  To run the test, we set up a shell script 
that would first build a kernel and then run “make 
clean” .  This step was intended to reduce the variance 
in measurement due to file system performance by 
pulling as much information as possible  into the  L1 
and L2 caches.   Then we use the  bash “ time”  
command to run the “make -j4 bzImage”  command.  
Table 2 shows the average results given by the time 
command. 

Our confidence in these measurements is very high as 
the test was run multiple times and results never 
deviated from the mean by more than 4 hundredths of 
a second.  For all practical purposes, the hundredths of 
a second reported in Table 2 are insignificant.  In the 
two-processor case the ELSC scheduler barely edges 
the current scheduler by an insignificant couple 
hundredths of a second.  In the uni-processor case the 
ELSC scheduler has a distinct advantage.  We believe 
this is due to the shortcut in the ELSC search loop for 
the uni-processor scheduler, which ends the search as 
soon as a memory map match is found. 

The VolanoMark benchmark test is more complicated.  
We ran VolanoMark in loopback mode, which 
simulates both the clients and servers for the Java chat 
rooms on the same machine.  In loopback mode, 
communication between clients and servers does not 
travel across a network.  In the exchange of messages 
between clients and servers, each must have time on 
the CPU to send and receive it’s messages in order to 
let the other do the same.  This type of message 
exchanging application forces many entries into the 
scheduler.  As suggested by the VolanoMark run 
rules, we ran the benchmark 11 times for each system 
configuration and discarded the first run due to its 
variant startup costs. 

We ran VolanoMark with both schedulers configured 
as uni-processor, one, two and four processor SMP 
kernels.  For each of these configurations, 
VolanoMark was configured to simulate 5, 10, 15 and 
20 rooms, each with 20 simulated users exchanging 
100 messages.  Each simulated user creates two 
threads, so each room creates a total of 80 threads.  It 
is easy to see that even at 5 rooms the VolanoMark 
benchmark puts considerable stress on a system.  
While running VolanoMark, we also collected 

                                                 
5 In these experiments, uni-processor kernels are compiled without 
SMP enabled, eliminating its overhead.  One-processor kernels are 
compiled with SMP enabled but use only one processor. 
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Figure 3:  Throughput in messages per second for 
VolanoMark runs on 6 different scheduler configurations.  The Y-
scale is adjusted on the second graph to fit all data points. 
 
 

statistics about what the scheduler was doing and 
exposed them through the proc file system.  The 
overhead of collecting these statistics exists in both 
schedulers and in both cases is negligible.  The 
machine used for the VolanoMark runs was an IBM 
Netfinity 7000 with 4 Pentium II xeon processors. 

The metric reported by VolanoMark is message 
throughput, which we can use as a measure of both 
performance and scalability.  Using the bare results 
from the VolanoMark runs, we can compare how each 
of the two schedulers behaves in different 
configurations.  Figure 3 illustrates the performance 
gains given by the ELSC scheduler. 

Figure 4 gives a different interpretation of the same 
data.  To obtain some measure of how well each 
scheduler scales when faced with a large number of 
tasks, we can use the 5-room trials as a base 
measurement and see how performance is altered 
when the number of threads is increased in the 20-
room trials.  The number charted in Figure 4 is simply 
the message throughput achieved in the 20-room trials 
divided by the throughput achieved in the 5-room 
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Figure 4:  Shows how each scheduler scales from 5 rooms to 20 
rooms on various processor configurations.  The height of the bar 
represents the scaling factor (20-room-throughput / 5-room-
throughput). 

 

trials.  As the figure indicates, the ELSC scheduler 
clearly scales to more threads better than the current 
scheduler. 

But these numbers do not paint the whole picture.  We 
want to understand why the ELSC scheduler scales so 
much better than the current scheduler and verify that 
these results are not a fluke.  So we collected 
additional statistics on the schedulers while we ran the 
VolanoMark tests. 

The first statistic that jumps out is the number of 
cycles spent per entry into the scheduler.  For the 
ELSC scheduler, this number is significantly lower 
than the current scheduler, proving the ELSC 
scheduler really does spend less time in the scheduler.  
The explanation is that because ELSC with its table-
based approach to scheduling examines far fewer 
tasks on each entry into the scheduler, as 
demonstrated by Figure 5. 

The ELSC scheduler is not without fault.  Although 
most of the statistics we collected indicate that the 
ELSC scheduler is faster and better, two of them show 
the opposite.  One of the adverse affects of a table-
based scheme is an increase in the number of calls to 
schedul e( )  when running on a machine with more 
than one processor.  As demonstrated by Figure 6, 
there is a strong correlation with how many times a 
task is selected without having the processor affinity 
bonus.  These measurements suggest the ELSC 
scheduler is not choosing the absolute best task in 
multiprocessor machines.  We suspect that this is 
related to the fact that the ELSC scheduler finds the 
most suitable task in the highest populated class of 
static priorities.  Thus, some tasks that might have 
higher goodness( )  values when the processor 
affinity bonus is added, but reside in lower static 
classes, may not be considered. 
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Figure 5:  The first chart shows the number of cycles that are 
spent each time the system enters the scheduler.  The second chart 
shows how many tasks are examined by the scheduler each time it is 
called. 

 

Although the VolanoMark benchmark creates many 
threads with the same memory map, we do not believe 
this fact significantly influences the behavior of either 
scheduler.  The only possible difference between the 
two schedulers would be similar to the passing over of  
lower classes of static priorities that happens when 
running on multiple CPU’s.  Of course, if a task is 
inserted into a lower priority list, then adding the one 
point bonus for sharing a memory map with the 
previous task cannot raise it’s goodness value enough 
to be greater than any of the tasks in the highest class. 

7.  Evaluation 

An increasing number of organizations continue to 
evaluate, test, and use the Linux operating system.  
Although Linux does many things well, we have 
shown the current scheduler has shortcomings in its 
design and implementation.  When confronted with a 
large number of tasks, overall system performance 
declines rapidly.  This behavior is unacceptable for 
large-scale enterprise environments. 

We set out to improve the Linux scheduler’s 
scalability, preferring modifications that do not 
change desktop performance and maintain existing 
scheduler abstractions, yet scale well when presented 
with a large number of tasks.  We have shown that it’s 
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Figure 6:  The first chart shows how many times (in thousands) 
the system enters the schedule() function call in an average 10-room 
VolanoMark simulation.  The second chart shows how many times 
the scheduler chooses a task to run on a different processor than it 
ran before. 

 
possible to improve the Linux scheduler without 
introducing a lot of overhead.  Though the ELSC 
scheduler does not always select the best task 
available on machines with more than one processor, 
we have demonstrated that the ELSC scheduler 
satisfies our goals for both a small and large number 
of ready tasks and offers a viable alternative to the 
current Linux scheduler. 

The ELSC scheduler is an open source contribution 
and is freely available for use and modification.  The 
current version of the ELSC patch can be downloaded 
from www. ci t i . umi ch. edu/ pr oj ect s/ l i nux-
scal abi l i t y / pat ches/  



 

 

8.  Future Work 

In the future, we would like to see how the ELSC 
scheduler performs in other multithreaded 
environments.  One such example is a web server 
running Apache.  Would we see the same performance 
gains we saw while running VolanoMark, or does 
something other than the scheduler cause primary 
bottlenecks in these systems?  Would the ELSC 
scheduler be more effective in increasing throughput 
or decreasing the latency of an Apache web server? 

The focus of the ELSC design is to reduce the time 
spent looking for a task to schedule.  We would also 
like to find ways to allow the scheduler to make 
greater use of multiple CPUs and examine the effects 
of modifying the goodness metric.  Is Linux 
considering everything it ought in its scheduling 
decisions?  Do we care about processor affinity after 
many other tasks have run on the given processor?  
Can we construct a scheduler that spends less time 
waiting for spin locks and more time scheduling 
tasks? 

We are also interested in exploring alternative 
scheduler designs.  The table-based design of the 
ELSC scheduler is one approach; many other 
possibilities exist, such as sorting tasks by static 
goodness within heaps for each processor and address 
space.  One could choose the absolute best task 
available simply by examining the top of each heap.  
Or perhaps a multi-priority-queue solution would be 
more beneficial to help the scheduler scale to multiple 
processors well. 
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