CITI Technical Report 01-6
SC-CFS: Smartcard Secured Cryptographic File System

Naomaru Itoi

Center for Information Technology Integration
http://www.citi.umich.edu/

Abstract

Although storing information securely is one of the most important roles expected for
computer systems, it is difficult to achieve with current commodity computers. The
computers may yield secrets through physical breach, software bug exploitation, or
password guessing attack. Even file systems that provide strong security, such as the
cryptographic file system, are not perfect against these attacks. We have developed
SC-CFS, afile system that encrypts files and takes advantage of a smartcard for per-file
key generation. SC-CFS counters password guessing attack, and minimizes the damage
caused by physical attack and bug exploitation.

January 16, 2001

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

SC-CFS: Smartcard Secured Cryptographic File System

Naomaru Itoi

1 Introduction

Storing information securely has been one of
the most important applications of computer
systems since their introduction. As informa-
tion technology is being integrated into society
rapidly, secure storage is now demanded more
strongly, and by more people, than ever. For
example, consider the recent incident in which
a laptop computer was stolen from the State
Department of the United States in January
2000 [4]. Not only the people who deal with
highly classified information, but also ordinary
people are threatened by hackers, as they store
their private data on computers today, e.g.,
e-mail, financial information, Internet activity
history, and medical history.

For the purpose of this paper, we define se-
cure storage as “a storage system that protects
the secrecy, authenticity, and integrity of the
information it stores”.! Unfortunately, mod-
ern commodity computers cannot provide se-
cure storage because of the three prevalent,
but inaccurate, assumptions about computer
systems. First, modern commodity comput-
ers tend to overlook physical security, and lack
physical protection; read and write access to
computational and storage devices is typically
possible by simply opening the cover of a com-
puter. For example, a hard disk drive is eas-
ily removed, giving full access to an adversary.
Second, bugs in design and implementation of
software are unavoidable [7], and can be ex-
ploited to give away secrets. Exploitable bugs
are found in all ranges of software, and some of
them are so serious that they lead to adminis-
trative rights (root) compromise [10]. Third,
passwords are often the weakest link in secu-
rity systems. Once passwords are stolen, no
matter how securely the system is designed and
implemented, it becomes vulnerable to imper-

sonation. Passwords can be stolen from mem-
ory, from virtual memory backing store [19], in
transit through networks [21], or can be guessed
with dictionary attack [15].

An obvious countermeasure to theft of se-
crets is to encrypt the secrets with an encryp-
tion key, and protect the key. Matt Blaze has
realized this with a Cryptographic File System
for UNIX (CFS) 2%, which transparently en-
crypts files in a file system [2]. Although CFS
adds significant security to current systems, it
still suffers from the the problems introduced
above. First, CFS relies on user chosen pass-
words to provide encryption keys, making dic-
tionary attack possible. An adversary can ob-
tain ciphertext through physical attack or bug
exploitation, and can run an off-line dictionary
attack. Second, the number of passwords a user
can remember is limited. To lower the burden
of the user, CFS uses one key to encrypt all
the files in a directory tree, which is not as de-
sirable as using one key for each file. If the
key is stolen, physically or through exploita-
tion, the files encrypted under the key are re-
vealed. Therefore, the fewer files are encrypted
under a single key, the better.

We attack this problem by storing a ran-
domly generated user key on a smartcard, and
generating a file key that is used to encrypt
only one file. We have implemented such a sys-
tem called SC-CFS, based on CFS. Instead of
a password, SC-CFS uses the random key on a
smartcard to generate file keys, thus thwarting
dictionary attack. On host compromise, SC-
CFS reveals only the keys of the files that are
currently used (and these files are already in
memory in the clear, anyway), thus minimizing
damage. The design, security considerations,
implementation, performance evaluation, and
future direction are discussed in this paper.

!Denning defines the desired properties of a communication channel similarly [5].
2Throughout this document, we refer to CFS version 1.3.3 by “CFS”.

2 Design

2.1 Cryptographic File System Re-
view

As SC-CFS is based on CFS, it is important to
understand how CFS works. CFS consists of
a CFS daemon, or cfsd, and application pro-
grams. cfsd is a Network File System [17)
server daemon (i.e., it provides a file system
that can be mounted and be accessed through
the NFS protocol) that stores data encrypted.
Application programs include cmkdir, which
creates a CFS protected directory, cattach,
which prepares a CFS directory for use, and
cdetach, which reverses cattach’s operation.

Readers interested in details of CFS are ad-
vised to consult Blaze’s paper [2].

2.2 Key Management

The goals of key management are as follows:

e A file key is derived from a master key in
a smartcard.

Only the owner of the smartcard should
be able to use the file system. There-
fore, a file key, which is used to encrypt
and decrypt a file, should be derived from
the master key in a smartcard. On the
other hand, the master key should NOT
be derivable from the file key.

e A unique file key is used to encrypt each
file.

A file key is used to encrypt only one file
to minimize the damage if it is revealed
through host compromise. This property
is discussed more in Section 3.

o A file key changes with the associated file.

When a file is written, its associated file
key changes to protect the new file con-
tent; this provides forward secrecy. Con-
sider the following scenario: a file key

is stolen through host compromise. The
file content is revealed to the adversary.
Later, the file content is updated by a
user. If the file key does not change, the
new content is also available to the ad-
versary. To avoid this, the file key should
change on every update.

To achieve these goals, we designed the fol-
lowing key management scheme.

e A randomly generated master key is stored
in a smartcard.

e cfsd uses a file’s inode number and a
time-stamp of last modification as a seed
of the file. Each entry is 4 bytes long, so
the seed is 8 bytes long. ({inode#, times-
tamp})

e cfsd sends the seed to the smartcard.
The card replies with the SHA1 hash re-
sult of the seed concatenated with the
master key. (SHA1{inode#, timestamp,
Kuyser}). This is 20 bytes long.

e cfsd further hashes the result into an 56-
bit DES key, and uses it to encrypt and
decrypt the file.

2.3 Awuthentication

SC-CFS employs the same authentication mech-
anism as CFS. A “signature”, which is a 4 byte
predefined string concatenated with 4 byte ran-
dom string, encrypted in a way described in the
previous key management section, is stored in
each CFS directory. When a user starts access-
ing the directory, cattach tries to decrypt the
signature. If cattach recovers the predefined
string correctly, the user has entered the right
password (in CFS) or used the right smartcard
(in SC-CFS), so he is allowed to enter the di-
rectory.

In SC-CFS, before a smartcard is used, the
correct Personal Identification Number (or PIN)
must be typed. The PIN is a 3 - 8 digit number,

which protects the information in the smart-
card when it is lost or is stolen. The adversary
who owns the smartcard cannot use it without
knowing the PIN, as the smartcard blocks after
some fixed number, say three, wrong PINs are
entered.

2.4 Caching

CF'S employs partial encryption of a file to min-
imize the performance overhead introduced by
encryption. When a block (8 byte) in a file
is updated, it is first XOR’ed with a precom-
puted string, encrypted with a sub key, and
then XOR’ed with another precomputed string.
The two precomputed strings and the sub key
are pseudorandomly generated, based on the
directory key 3. The advantage of this ap-
proach over a chaining mode encryption, such
as DES-CBC, is that a file can be partially up-
dated. Chaining mode encryption requires the
entire file to be encrypted at once.

As one of our goals is to change a key with
every update of the associated file, we do not
use this partial encryption approach. Instead,
every write re-encrypts the whole file, . There-
fore, DES-CBC is used.* This introduces po-
tentially prohibitive performance overhead be-
cause of paging. In most UNIX systems, a file
consists of several 4096 byte pages. A write
operation to a long file is split into multiple
4096 byte writes. For example, to write a 1
Mbyte file, 256 write operations are necessary.
We cannot afford to change a file key and en-
crypt the entire file 256 times. To counter this,
a single file cache is introduced.

The cache loads a file when it is first ac-
cessed, and decrypts it. When the file is closed,
it is encrypted under an updated file key and
written back to the backing store. Because
NFS does not have a close operation (NFS
server is stateless), writeback happens in one
of the following events:

3A directory key is a key used to encrypt files in a
directory. This is entered by a user.

4We still could have used partial encryption to
achieve partial reads. The decision to use DES-CBC
may be reconsidered in the future.

e Another file enters the cache.
e Once a minute.

e CFS directory is detached.

3 Security Consideration

We discuss the security of our approach here,
mainly in comparison with CFS. Another cryp-
tographic file system, Transparent Cryptographic
File System (or TCFS), has a key management
system similar to CFS [3]. Discussion of CFS
in this section also applies to TCFS.

3.1 Model

We start with constructing a model of our sys-
tem. The model consists of the following par-
ticipants:

Alice (A) A user who uses CFS or SC-CFS.

Host A host computer that runs CFS or SC-
CFS.

Smartcard A smartcard that plays the key
generation role in SC-CFS.

Backing Store A backing store for CFS or
SC-CFS. This may be any file system,
e.g., a local file system or a network file
system.

Mallory (M) An adversary.

3.2 Threats
We make the following assumptions in our model.

1. Mallory can compromise a host.

Mallory can exploit security holes of the
host, or physically access the host and
overwrite the system administrator’s pass-
word. Mallory can read and modify any
information on the host.

2. Mallory cannot substantially change the
behavior of the host.

By Assumption 1, Mallory is able to in-
stall a Trojan horse in the host, which,
for example, steals decrypted files. How-
ever, we assume this attack is impossible
because:

e Maintaining Trojan horses is hard,
as Alice can find them by looking at
change of file contents and logs.

e It becomes much harder if Alice uses
application integrity checker, such as
Tripwire [14].

e It becomes even harder if Alice uses
hardware based integrity checker, such
as AEGIS [1] and sAEGIS [12].

3. Mallory cannot compromise the smart-
card.

Mallory can neither read nor modify any
information in a smartcard. She cannot
influence the behavior of a smartcard.

4. Cryptographic operations are strong.

Our principal cipher is DES, which is as-
sumed impossible to compromise in rea-
sonable amount of time. This may not be
a good assumption any more in the age
of fast DES crackers [6]. DES should be
replaced with triple-DES in the future.

Also, our principal hash function, SHA1,
is assumed to be collision free.

3.3 Attack

Key Theft

If a host is compromised (possible by Assump-
tion 1), keys can be stolen in CFS and SC-CFS:

In CFS, the key that encrypts the current
working directory is stolen. As a result, all the
files in the directory are revealed. Unless the
key is explicitly changed, all the files will be
accessible by the adversary.

In SC-CFS, the key that encrypts the file
currently in the SC-CFS cache is stolen. The
rest of the files in the file system are safe. The
master key is safe because it is in a smartcard
(Assumption 3). When the file is updated, it is
encrypted under a different key, so it becomes
safe again.

SC-CFS is more secure than CFS because
when a key is stolen, only one file can be de-
crypted by the key. This file is being used by an
application, so it resides in the clear in memory,
and is revealed on host compromise, anyway. In
contrast, when a directory key is stolen in CFS,
all the files in the directory tree, including the
ones that are not opened, are revealed.

CFS takes this “key per directory tree” ap-
proach to avoid forcing a user to remember
many passwords. In SC-CFS, a smartcard re-
members a randomly generated master key, and
generates file keys, eliminating this problem.

Storage Theft

Storage theft is sometimes more easily accom-
plished than host compromise, thus requires
special attention.

In CFS, the keys are derived by user pass-
words, and are vulnerable to dictionary attack.
An adversary who steals a hard disk can run
off-line dictionary attack as follows:

e Pick a password.

e Generate a sub key and random strings,
as CFS does.

e Apply reversed CFS encryption operation
to an encrypted file.

e If this recovers a readable text, this is the
right key. If it does not, pick another
password and try again.

Many sophisticated password crackers are
published (e.g., John the Ripper [18]), and can
be used to implement such an attack.

In SC-CFS, the master key is a random
number, so it is not vulnerable to dictionary
attack. By Assumption 4, brute force attack
on the master key is also impossible.

On-Line Attack

In both CFS and SC-CFS, user authentication
is performed by cattach, with a password in
CFS and with a PIN in SC-CFS. As a conse-
quence, if Mallory compromises the host (possi-
ble by Assumption 1) while Alice is using CFS
or SC-CFS, she is able to impersonate Alice.

This causes more serious damage to CFS
than to SC-CFS because with CFS, Alice has
no way knowing Mallory is accessing her files.
With SC-CFS, one can take advantage of phys-
ical isolation of a smartcard to counter this
problem. For example, if a LED box that in-
dicates data transmission via a serial port is
installed on Alice’s computer, she knows when
Mallory is accessing her files. Furthermore, a
display on the smartcard reader that displays
the name of the accessed file and a pad on the
reader that asks for a PIN on accessing files are
useful.

The problem of on-line attack is a potent
threat to almost all smartcard based systems
because current smartcards do not have a se-
cure I/O path with users. This is an important
problem, but is out of this paper’s scope.

Virtual Memory Compromise

Niels Provos has pointed out that virtual mem-
ory backing store may contain critical secrets
even though application programs delete them
[19]. By reading a hard disk which is used as
the backing store, Mallory is able to recover
secrets.

In CFS, the user master key and the direc-
tory keys may be in virtual memory. In SC-
CFS, the user master key is in a smartcard, so
only the file keys are vulnerable.

4 Implementation

Host-side implementation was tested on Linux-
2.2.12 and OpenBSD-2.7. NFS is a standard
protocol, so this should run on almost any UNIX.

Smartcard-side implementation is specific to Schlum-

berger Cyberflex Access smartcard. Because
Cyberflex Access is a Java card, we refer to the
smartcard-side program as “SC-CFS applet”.

SC-CFS has been implemented as extension
to CFS. The implementation is divided into the
following parts: modification to cfsd, cattach,
cmkdir, and implementation of the SC-CFS ap-
plet. Here we discuss each part.

o Modification to cfsd

In CFS, cfsd stores {inode#, creation
time} in a file called .pvect_encrypted-
filename. 5 First, cfsd is modified to
store a modification time instead of a cre-
ation time, as the modification time is
used as a seed of a file key in SC-CFS.

Then, the single-file cache described in
Section 2.4 is implemented. Finally, read
and write operations are modified to ac-
cess data through the cache.

e Modification to cattach

When cattachis invoked with -p port-number

option, it asks for a PIN instead of a pass-
word and then sends it to cfsd. cfsd ini-
tializes the smartcard, sends the PIN to
the smartcard, and then carries out the
card authentication described in Section
2.3.

e Modification to cdetach

When cdetach is invoked, cfsd cleans up
the cache and terminates the connection
with the smartcard.

o Modification to cmkdir

When cmkdir is invoked with -S option,
it creates a signature described in Section

5CFS does this instead of using information in the
vnode structure, as the information changes on unde-
sirable occasions, e.g., when a file is backed up and is
resumed, or its modification time is changed by touch.

2.3 in the newly created SC-CFS direc-
tory.

e Implementation of SC-CFS applet

The master key is stored in a file in a
smartcard called ¢ ‘ke’’, or 0x6b65. This
file is configured so that it cannot be ac-
cessed without going through the applet.
The applet reads this file only after the
correct PIN is presented. Key genera-
tion is simple: the applet concatenates
the 8 byte seed to the 16 byte master key,
hashes it with SHA1, and returns the re-
sult to cfsd.

5 Performance Evaluation

We have evaluated the performance of SC-CFS
in comparison with CFS and a local file sys-
tem (EXT2). First, the result of the Andrew
Benchmark Test [9] is reported to show user
response time. Then, we look into the details
of SC-CFS’s most expensive operation: smart-
card access.

The result shows that SC-CFS is signifi-
cantly slower than CFS when it accesses a smart-
card to generates keys. Most of this penalty is
due to the slow speed of a smartcard.

All the measurements have been carried out
on Linux-2.2 with 400 MHz AMD K6 and on
Cyberflex Access smartcard. All the numbers
reported are in seconds, and are average of 5
trials.

5.1 Round Trip Time

The Andrew Benchmark (ABM), a standard
file system benchmark test, is used to measure
the overhead of SC-CFS. ABM has five phases:
MakeDir (mkdir), Copy (cp), ScanDir (1s -1),
ReadAll (grep), and Make (cc). Source code of
C programs used in the Make phase is slightly
modified from the original Andrew Benchmark

to make the test runnable on Linux-2.2 . The
results are shown below.

Local(s) CFS(s) SC-CFS(s)
MakeDir | 0 0.2 0.2
Copy 0.6 1.0 21.8
ScanDir | 1.2 1.6 1.0
ReadAll | 2.0 3.0 22.6
Make 5.0 7.8 29.6

SC-CFS works as efficiently as Local and
CFS when it does not need to access a smart-
card (MakeDir and ScanDir 7). However, in the
other cases (Copy, ReadAll, Make), SC-CFS is
much slower.

This performance impact is clearly due to
the slow speed of a smartcard. Key generation,
the only service the smartcard provides, takes
0.31 second. The following table shows: (1) the
number of accesses to a smartcard, (2) (1) x
the average smartcard access time (0.31), and
(3) the difference between the round trip time
of SC-CFS and CFS. The second column and
the third are very close, showing that the most
of the performance overhead is for smartcard.

SC-CFS—CFS(s)

#acc Facce x0.31(s)
MakeDir | 0 0 0
Copy 00 217 20.8
ScanDir | 0 0 -0.6
ReadAll | 70 21.7 19.6
Make 75 23.3 21.8

5.2 Detailed Look

As smartcard access is seen to be the bottle-
neck of SC-CFS, this part deserves special at-
tention. Detailed performance evaluation was
carried out on Cyberflex Access, which commu-
nicates at 57.6 Kbps with the host.

SC-CFS’s smartcard operation involves two
APDUs 2: One is generate key, which sends

SWe added five global variables, removed two
getchar()s, and changed options to ar. None of them
should alter performance significantly.

"File attributes retrieved by stat() are not en-
crypted.

8An APDU is a command sent to a smartcard from

an 8 byte seed to the smartcard and invokes
the key generation method inside the smart-
card. The other is get_response, which asks
the smartcard to return the result of key gen-
eration. A smartcard standard ISO 7816-4 [11]
defines the T=0 communication protocol, which
Cyberflex Access adopts, to be uni-directional,
i.e., a smartcard can either send or receive data

via our smartcard communication tool called
pay [20]. Automated tools to do this should be
provided.

6.2 Performance Improvement

in one APDU. Therefore, in addition to generate_keyClearly, performance overhead is a large obsta-

APDU, get_response APDU is necessary. These
two APDUs are sent to the smartcard consec-
utively.

The following table shows the breakdown of
the two APDUs. “generate key APDU over-
head” is time spent for sending a seed to smart-
card, invoking the method, and preparing a
buffer for returned data. Because this cannot
be broken down further, it is shown as one op-
eration.

operation

time (s)

Hash (SHA1) 24 byte into 20 byte 0.15
generate key APDU overhead 0.10

Select root in file system 0.01
Select key file “ke” in file system 0.01
Read 16 byte from key file 0.01
get_response APDU (20 byte) 0.01
total 0.29

The cost boils down to two dominating op-
erations: SHA1 hash function and generate key
APDU overhead. These two are necessary op-
erations, and we cannot improve the perfor-
mance of them without modifying the smart-
card. This points out the necessity of smart-

cards that execute cryptographic operations faster,

with lighter method invocation overhead.

6 Future Direction

6.1 Administration Tools

With the current SC-CFS prototype, a user has
to manually update his master key and PIN

a host. Readers interested in smartcard concepts are
advised to consult a reference text [8].

cle against wide deployment of SC-CFS. 300
millisecond overhead per file is acceptable for
some applications, for example, word process-
ing, but is not for others, such as scanning a
large number of e-mail messages for a string, or
a query operation on a large database. There-
fore, performance improvement is essential.

Unfortunately, as shown in Section 5.2, the
overhead is dominated by individual operations
in a smartcard, which we, as application de-
velopers, cannot change. We hope new smart-
cards or other similar devices will achieve much
higher performance in the near future.

To improve the performance of SC-CFS with
current smartcard technology, it is possible to
compromise between “key per directory tree”
approach (CFS) and “key per file” approach
(SC-CFS). The former is more efficient, but the
latter is more secure. Depending on the secu-
rity and performance requirements of an envi-
ronment, middle ground implementation may
be useful, e.g., “key per n files” approach, or
caching file keys.

6.3 Kerberized Cryptographic File
System

We observe that Kerberos [16] can provide a
similar functionality with a smartcard in CFS,
using a Kerberos service for key generation.
The following is a rough design of this system
(K-CFS):

e Create a new Kerberos service, a CFS key
server.

e The key server stores a user’s master key
(Kuser)-

e A user establishes an encrypted channel
with the key server through Kerberos au-
thentication service and ticket granting
service.

e A user requests a file key to the key server
by sending {inode#, timestamp} to the
server.

e The server returns the file key: {inode#,
timestamp } Kuser-

K-CFS has similar security properties with
SC-CFS:

e FEach file is encrypted under a unique key.
e Host compromise yields only opened files.

e Storage theft does not reveal files, as the
user master key is not vulnerable to dic-
tionary attack.

The difference between SC-CFS and K-CFS
is the trust model. In SC-CFS, a user trusts her
personal belonging, a smartcard. In K-CFS,
she trusts the Kerberos server administrators
and the Kerberos client software.

An advantage of K-CFS over SC-CFS is that
a smartcard access infrastructure is not neces-
sary, and it performs better. The disadvantage
is that it is vulnerable if the Kerberos infras-
tructure is compromised. By compromising a
client host or a server host, an adversary can
obtain a ticket and a session key, making imper-
sonation possible. In addition, K-CFS requires
network connection, making it hard to use on
laptops.

Depending on infrastructure and assump-
tions users have, K-CFS may be useful as well.

7 Conclusion

We have developed SC-CFS, which improves
the security of CFS by integrating a smartcard
as a personal secure storage of a key.

The following three aspects highlight the
value of this work.

Improvement to important software.

As introduced in Section 1, the increasing threat
of physical attack demands a way to protect se-
crets in a computer. CFS (and all the other file
systems that protect files through encryption)
is a secure and seamless solution to this prob-
lem. This work improves CFS in two important
properties: security and convenience. SC-CFS
is more secure than CFS because (1) the master
key is a random number instead of a password,
(2) the user master key is not exposed to the
host, and (3) a stolen file key can reveal only
one file. It is also more convenient than CFS
because all a user has to remember is a short
PIN, rather than multiple long passwords.

Important application for smartcards.

We believe that widespread deployment of se-
cure hardware is essential to the security of
computer systems. Systems are as secure as
the weakest link, and reliance on user pass-
words is often the weakest link. Granted, pass-
words can be made stronger by choosing good
ones and by changing them often. However,
widespread deployment of security-critical In-
ternet services requires a human to maintain
many passwords: computer login, file system

authentication, newspaper homepages, e-commerce

homepages, online banks, web portals, and so
on. Realistically speaking, it is impossible for
a human to maintain so many good (therefore
hard to remember) passwords. She will end up
using the same password for many services, or
will write the passwords down somewhere. Be-
sides, she does not want to type passwords all
the time. Smartcards solve this problem nicely
by securely storing keys. Therefore, we wish
to contribute to the widespread deployment of
smartcards, and this work is an important step
toward the goal, as secure storage is an impor-
tant and suitable application of a smartcard
(authentication being another [13]).

Remark on smartcard performance

Performance evaluation in Section 5 shows how
important a fast smartcard is. In recent years,
smartcards have matured in terms of function-
ality and reliability. However, we have not seen

significant performance improvement, even though

microprocessors have sped up by 5 to 10 times.

8

Acknowledgement

We thank Niels Provos for suggesting a high
speed key generation method. Peter Honey-
man and Jim Rees have advised us through this
project, and suggested a file caching idea.

This work was partially supported by a re-

search grant from Schlumberger, Inc.

References

[1]

[2]

[4]

William A. Arbaugh, David J. Farber, and
Jonathan M. Smith. A secure and reli-
able bootstrap architecture. In 1997 IEEE
Symposium on Security and Privacy, Oak-
land, CA, May 1997.

Matt Blaze. A cryptographic file
system for UNIX. In Proceedings
of 1st ACM Conference on Com-
puter and Communications Security,
pages 9-16, Fairfax, Virginia, Novem-
ber 1993. ftp:/ /ftp.research.att.com/
dist/mab/cfs.ps.

G. Cattaneo, G. Persiano, A. Del
Sorbo, A. Celentano, A. Cozzolino,
E. Mauriello, and R. Pisapia. Design
and implementation of a transparent
cryptographic file system for UNIX.
Unpublished Technical Report. Dip.
Informatica ed Appl, Universita di
Salerno. Available via ftp in ftp://edugw.
dia.unisa.it /pub/tcfs/docs/tcfs.ps.gz.,
July 1997.

Cnet news.com, 2000. http://news.com/.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Dorothy Denning. Cryptography and Data
Security. Addison-Wesley, 1983.

Electronic Frontier Foundation. Crack-
ing DES - Secrets of Encryption Research,
Wiretap Politics € Chip Design. O’Reilly
& Associates, Inc., 1 edition, 1998.

Jr. Frederick P. Brooks. The Mythical
Man-Month : FEssays on Software Engi-
neering. Addison-Wesley, 2 edition, July
1995.

Scott B. Guthery and Timothy M. Ju-
rgensen. Smart Card Developer’s Kit.
MacMillan Technical Publishing, Indi-
anapolis, Indiana, December 1997.

J.H. Howard, M.L. Kazar, S.G. Menees,
D.A. Nichols, M. Satyanarayanan, R.N.
Sidebotham, and M.J. West. Scale and
performance in a distributed file system.
ACM Transactions on Computer Systems,
6(1):51 — 81, Feb. 1988.
John D. Howard.

Security inci-

dents on the internet. In Proceed-
ings of INET 98. Internet Society,
1998. http://www.comms.uab.es/

inet99/inet98/ 2d/2d-3.htm.

The International Organization for Stan-
dardization and The International Elec-
trotechnical Commission. ISO/IEC 7816-
4 : Information technology - Identification
cards - Integrated circuit(s) cards with con-
tacts, 9 1995.

Naomaru Itoi, William A Arbaugh,
Samuela J Pollack, and Daniel M Reeves.
Personal secure booting. Technical re-
port, Center for Information Technology
Integration, 2000. To appear in ACISP
2001, Australia. Technical Report at
http://www.citi.umich.edu/ techreports/.

Naomaru Itoi and Peter Honeyman.
Smartcard integration with Kerberos V5.
In Proceedings of USENIX Workshop
on Smartcard Technology, Chicago, May
1999.

Gene H. Kim and Eugene H. Spafford. The
design and implementation of tripwire: A

[15]

[16]

[17]

[18]

[19]

[20]

[21]

file system integrity checker. Technical re-
port, Purdue University, 1995. CSD-TR-
93-071.

Daniel V. Klein. Foiling the cracker: A
survey of, and improvements to, password
security. In UNIX Security Workshop II,
pages 5 — 14. USENIX Association, 1990.

John T. Kohl, B. Clifford Neuman, and
Theodore Y. T’so. Distributed Open Sys-
tems, chapter The Evolution of the Ker-
beros Authentication System, pages 78—
94. IEEE Computer Society Press, 1994.

Sun Microsystems. Network filesystem
specification. Network Working Group,
Request For Comments 1094, March 1989.

Open Wall Project. John the ripper.
http://www.openwall.com/john/.

Niels Provos. Encrypting virtual mem-
ory. In Proceedings of 9th USENIX Se-
curity Symposium, August 2000.

Jim Rees. Iso 7816 library, 1997.
http://www.citi.umich.edu / projects /
sinciti / smartcard / sc7816.html.

Dug Song. dsniff.
http://www.monkey.org/ dug-
song/dsniff/.

10

