CITI Technical Report 01-5

Kerberized Credential Translation:
A Solution to Web Access Control

Olga Kornievskaia, Peter Honeyman, Bill Doster, Kevin Coffman
{aglo,honey,billdo,kwc}@citi.umich.edu

Abstract

Kerberos, a widely used network authentication mechanism, is integrated into numerous applications,
UNIX and Windows 2000 login, AFS, Telnet, and SSH to name a few. Yet, Web applications rely on SSL
to achieve authenticated and secure connections. SSL provides strong authentication by using certificates
and public key challenge response authentication. The expansion of the Internet requires each system to
leverage the strength of the other, which suggests the necessity of interoperability between them.

This paper describes the design, implementation and performance of a system that provides controlled
access to Kerberized services through a browser. This system provides a single sign-on through Kerberos,
which produces both Kerberos and public key credentials. The Web server uses a plugin that translates
user’s public key credentials to Kerberos credentials. The Web server’s subsequent authenticated actions
taken on a user’s behalf are limited in time and scope. Performance measurements show how the overhead
introduced by credential translation is amortized over the login session.

February 12, 2001

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Kerberized Credential Translation:
A Solution to Web Access Control

Olga Kornievskaia, Peter Honeyman, Bill Doster, Kevin Coffman
{aglo,honey,billdo,kwc}@citi.umich.edu

1 Introduction

Access control for Web space has often been viewed
in terms of gating access to Web pages and the job
of the Web server was limited to simple file reads.
With the expansion of the Internet many services
are becoming accessible from the Web, increasing
the Web server’s importance. In addition to file
access, a Web server frequently may serve informa-
tion stored in backend databases. The functional-
ity provided by Web servers has considerably grown
making it into one of the most popular technologies
used on the Internet. New features like generation
of active server pages and CGI scripts require com-
puting and processing power at the server side. A
Web interface to backend services is considered to
be more user-friendly and accessible to compared to
predominant text-based interfaces.

The possibilities opened by the use of Web server
to access a variety of backend services poses new
questions on how to retain access control of back-
end services. In this paper, we provide a practical
mechanism for controlling access to resources pro-
vided by Kerberized services like file servers, direc-
tory servers, and mail servers across web bound-
aries.

Our solution preserves authorization mechanisms al-
ready in place at the backend servers. This obvi-
ates constructing and maintaining consistent repli-
cas of authorization policies across authentication
domains.

In practice, an authorization mechanism is tied to
authentication mechanism. A mismatch in authen-
tication mechanisms prevents a Web server from us-
ing authorization mechanisms provided by backend
servers. While Web servers support SSL authentica-
tion with certificates, this does not provide creden-
tials for access to AFS file servers, LDAP directory
servers, and KPOP/IMAP mail servers, which use

Kerberos for client authentication.
Consider the following scenario:

Alice attends the University of Michigan, where she en-
joys a wvariety of computing services available to her.
One of the most commonly used services is AF'S file ser-
vice which is protected by Kerberos. Alice, being a very
private person, doesn’t want others to have access to her
files. Through the access control mechanisms provided
by AFS, she limits access to specific users. But if these
users prefer to access Alice’s files through the Web the
flezibility of AFS access controls disappear.

Web presence for other Kerberized services also suffers.
For example, Alice would like to change her umich.edu
X.500 directory entry from a browser. The directory is
stored in an LDAP directory that uses Kerberos for user
authentication to control read and write access. Alice
would also like to read mail form a browser. This too
requires that the Web server authenticates as Alice to
the Kerberized mail server.

A practical solution is needed that works with ex-
isting software and is easy to deploy, administer,
and maintain. The process should demand mini-
mal interaction with a user, providing transparent
access to the resources. To limit misuse of user’s
credentials, the Web server must be constrained in
its actions. Furthermore, a central, easily adminis-
tered location for enforcing security policies control-
ling Web server’s actions is required.

If an AFS client is running on the machine, a simple
solution presents itself. Instead of making an HTTP
request, a user can access AFS file space directly by
typing file://localhost/afs/.... But it is fair to
say that most machines do not run AFS. Also, the
solution fails to provide a general mechanism for
accessing services from the Web: browsers can not
anticipate all possible service access types.

A frequently used solution is to send a Kerberos

identity and password through SSL, but this gives
unlimited power to the Web server to impersonate
users, a significant risk. It is also hazardous to ex-
pect users to know when it is safe to pass her pass-
word to a Web server.

This paper describes the design, implementation
and performance of a system that provides con-
trolled access to Kerberized services through a
browser. The system provides a single sign-on
through Kerberos authentication: users authenti-
cate once and are given Kerberos and PK creden-
tials. The latter are used for Web authentication.
Our system includes a Web server plugin that trans-
lates user’s PK credentials to Kerberos credentials.
Our design assures that Web server actions taken
on a user’s behalf are limited in time and scope.

The remainder of this paper is organized as fol-
lows. Section 2 provides background material and
discusses related work. Section 3 presents an ar-
chitecture for access to Kerberized services through
a browser. Section 4 gives implementation de-
tails. Section 5 describes performance. Section 6
summarizes, poses some unanswered questions, and
presents directions for future work.

2 Background

First, we review Kerberos, a popular network au-
thentication system based on symmetric key cryp-
tography. Its success stories come from environ-
ments with well defined administrative boundaries.
We then provide an overview of SSL, a security
protocol based on public key cryptography that is
widely used on the Web. The Internet spans many
Kerberized realms and requires security solutions
that do not have centralized management. SSL pro-
vides authenticated and secure connections between
any two nodes in the Internet.

We conclude the section with an overview of related
work.

2.1 Overview of Kerberos

Kerberos [11] is a network authentication system
based on the Needham-Schroeder protocol [10].
Kerberos authentication is illustrated in Figure 1.

Authentication is achieved when one party proves
knowledge of a shared secret to another. To avoid
quadratic explosion of key agreement, Kerberos re-
lies on a trusted third party, referred to as a Key
Distribution Center (KDC). Alice, a Kerberos prin-
cipal, and Bob, a Kerberized service, each establish
a shared secret with the KDC.

At login, Alice receives a ticket granting ticket,
TGT, from the KDC. She uses her password to re-
trieve a session key encrypted in the reply. TGT
allows Alice to obtain tickets from a Ticket Grant-
ing Service for other Kerberized services. To access
a Kerberized service, Alice presents her TGT and
receives a service ticket, { Alice, Bob, Ka,B}k,- To
authenticate to Bob, Alice constructs an authenti-
cator, {T}k, 5, proving to Bob that she knows the
session key inside of the service ticket.

2.2 Overview of SSL/TLS

Secure Socket Layer ! [7, 8] is a protocol that pro-
vides secure connections, addressing the need for
entity authentication, confidentiality, and integrity
of messages on the Internet. SSL uses public key
cryptography, in particular certificates, to accom-
plish authentication and secret key cryptography to
provide confidentiality and integrity of the commu-
nication channel. Support for SSL is nearly univer-
sal among Web browsers and servers.

SSL consists of two sub-protocols: the SSL record
protocol and the SSL handshake protocol. The SSL
record protocol defines the format used to transmit
data. The SSL handshake protocol uses the record
protocol to negotiate a security context for a ses-
sion. SSL supports numerous encryption and digest
mechanisms that the client and the server negotiate
during the SSL handshake.

Figure 2 shows the exchange of messages in the
handshake, details of which are discussed in Sec-
tion 3.2. Authentication is based on a public key
challenge/response protocol and X.509 [5] identity
certificates. SSL supports mutual authentication.
First, a user authenticates the server. The user has
the responsibility to make sure it can trust the cer-
tificate it received in CERTIFICATE message from
the server. That responsibility includes verifying
the certificate signatures, validity times, and revo-

1SSL is renamed by IETF as Transport Layer Security,
TLS [2],

LOGIN PHASE: ONCE PER SESSION

1. Alice - KDC: “Hi, I'm Alice”

2. KDC — Alice: TGT = {Alice, TGS, KA,TGS}KTGS) {T}KA; {KA,KC’T}KA
ACCESSING SERVICES: EVERY TIME BEFORE TALKING TO A SERVICE

3. Alice » TGS: Alice, Bob, TGT, {T}k, ras

4. KCT — Alice: TKT = {Alice, BOb7 KA,B}KBJ {T}KA,TGS]7 {KA,B}KA,TGS
5. Alice — Bob: “Hi, ’'m Alice”, TKT, {T}k, »

Figure 1: Kerberos authentication. Two phases are shown: initial authentication and service ticket acquisition.
KDC'is the Kerberos Key Distribution Center. T'GS is the Ticket Granting Service. Most implementations combine
these services. Krgs is a key shared between a TGS and KDC. K4 is a key shared between Alice and KDC, derived
from Alice’s password. Ka,rgs is a session key for Alice and T'GS. K4, p is a session key for Alice and Bob. T is a
timestamp used to prevent replay attacks. Kerberos assumes synchronized clocks.

\J

ClientHello

ServerHello
Certificate
CertificateRequest

ServerHelloDone

Certificate
ClientkeyExchange
CertificateVerify
Finished

A

\J

A

Finished

Application Data ~+——— > Application Data

Figure 2: SSL handshake protocol. CLIENT HELLO carries a version, timestamp, and session id, which allows a
user to resume a previous session. SERVER HELLO confirms the version and session id. Server sends its CERTIFICATE
and requests user’s in CERTIFICATE REQUEST. SERVER HELLO DONE specifies the end of a negotiation phase.
Client sends her public key certificate in CERTIFICATE message. Client sends session information (encrypted with
the server’s public key) in a CLIENTKEYEXCHANGE message. Client sends a CERTIFICATE VERIFY message, which
signs important information about the session using the client’s private key. the server uses the public key from the
client’s certificate to verify the client’s identity. FINISHED messages serve to end the negotiation process. Secured
APPLICATION DATA messages follow. Optional SSL messages are omitted.

cation status. Then, the user sends her public key
certificate. The user must also prove that she pos-
sesses the private key corresponding to the certifi-
cate’s public key. For the proof, the user creates
a message that contains a digitally signed crypto-
graphic hash of information available to both the
user and the server. The server then verifies the
signature to be sure that the user possesses the ap-
propriate private key.

The SSL protocol supports renegotiation of the secu-
rity context after a handshake is done. A client ini-
tiates a new handshake by sending a CLIENT HELLO
message. If the server wishes to initiate a hand-
shake, it sends an empty SERVER HELLO message to
the client and the client responds to it with a new
CLIENT HELLO.

Establishing an SSL session requires sophisticated
cryptographic calculations and a significant num-
ber of protocol messages. To minimize the over-
head of these calculations and messages, SSL pro-
vides a mechanism by which two parties can reuse
previously negotiated SSL parameters. With this
method, the parties do not repeat the cryptographic
operations, they simply resume an earlier session.
The user proposes to resume a previous session
by including that session’s SessionID value in the
CLIENT HELLO. It is up to the server to decide
whether to allow the reuse of the session. To refer
to this mechanism, we say that the user and server
engage in a partial SSL handshake.

2.3 Related Work

Issuing and maintaining millions of user’s certifi-
cates is hard. One way to accomplish client authen-
tication on the Web without certificates is to make
use of the extension to TLS cipher suites that in-
cludes Kerberos as an authentication mechanism[9].
It is also possible to delegate credentials through
Kerberized TLS. However, the authors accurately
point out that “there is a risk that the client may be
tricked into requesting a ticket for a rogue server...”
and “... the client must apply its local policy to de-
termine whether or not to forward its credentials”.

None of the browsers support Kerberized TLS.
There is an implementation of Kerberized TLS [17]
that relies on a local proxy. But browsers are of-
ten limited to a single proxy, complicating system
management.

There is a simple alternative solution to enable the
Web server to act on a user’s behalf. A user can
send his password (securely, of course) to the Web
server. The solution has been implemented as an
Apache module [6, 15, 16]. Similarly, there have
been proposals to delegate a TGT to the Web server.
In both cases, the Web server is given an unlimited
power to impersonate users, a significant security
compromise. Other mechanisms that delegate Ker-
beros credentials have been implemented in Mino-
taur [4] and SideCar [12].

PKINIT [19] allows a user to use a digital certifi-
cate in the initial Kerberos authentication. Public
key distributed authentication (PKDA) [14] goes a
step further and proposes for Kerberized services to
support PK authentication mechanisms. For both
PKINIT and PKDA, it is assumed that the user is
in direct communication with the server without an
interposed Web server.

Systems like Akenti [18], Keynote [1], and GAA
API [13] provide ways for applications to specify
and interpret security policies. These access control
mechanisms are based on public key authentication
mechanisms and certificates. Applications that lack
an authorization mechanism of their own can greatly
benefit from these mechanisms. However, our goal is
to make use of already existing authorization mech-
anisms at the backend services.

3 Design

Our goal is to design, implement, and deploy a sys-
tem that allows users to access Kerberized services
through a Web server while making use of existing
infrastructures and security policies.

The following considerations guide our design.

e The system must use off the shelf software
whenever possible: conventional Web browsers
and servers, Kerberos authentication mecha-
nism, unmodified backend services.

e The solution must not introduce a large bur-
den on system administrators. Administration
and management of software is difficult and fre-
quently results in security compromise of the
very systems that administrators are trying to
protect.

e The solution must not introduce a large burden
on the user. The system must be easy to use.
Added features should not require user interac-
tion. For example, uses should not be forced to
obtain additional credentials.

e The Web server is vulnerable to attacks, so it
must be constrained in the actions it is allowed
to take on a user’s behalf.

e The system must provide a central, easily ad-
ministered location for policy decisions regard-
ing Web server’s actions.

We make the following security assumptions.

e The Web server has adequate physical security.

e The Kerberized Credential Translator, de-
scribed in Section 3.3, has physical security
comparable to the KDC.

e In the simplest case, all participants trust a
common certification authority. We assume the
existence of a workable Public Key Infrastruc-
ture.

Our system consists of components that we de-
scribe in details in the sections below. Section
3.1 describes KX.509, a single sign-on mechanism
that produces both Kerberos and PK credentials.
KX.509 create a binding between user’s Kerberos
and PK identities. Section 3.2 discusses client au-
thentication and the Web server’s responsibilities in
meeting user requests. Section 3.3 introduces our
Kerberized Credential Translator, an extension to
TGS that converts PK credentials to Kerberos tick-
ets.

3.1 KX.509

In this section, we briefly describe KX.509, a Ker-
berized service that creates a short-lived X.509 cer-
tificate. Doster et al. describe details of the protocol

[3]-

The exchange of messages and other details of the
protocol are shown in Figure 3. As in Kerberos, Al-
ice gets a TGT from the KDC. To acquire an X.509
certificate, she first requests a service ticket for a
Kerberized Certification Authority, KCA. At the

same time, Alice generates a public/private key pair
and prepares a message for the KCA. Along with
the public key, she sends the KCA service ticket,
{Alice, KCA, Ka,kc A} kxo 4, and an authenticator,
{T}K 4 xca- To ensure that the public key has not
been tampered with, the HMAC of the key is sent
in the same message. The session key, K4 k¢4, is
used to compute the HMAC of the key.

KCA authenticates Alice by checking the validity
of the ticket and the authenticator. It verifies that
the public key has not been modified. KCA then
generates an X.509 certificate and sends it back to
Alice. The certificate is sent in the clear, but to
prevent tampering, HMAC of the reply is attached.
The lifetime of the certificate is set to the lifetime of
the user’s Kerberos credentials. The user’s Kerberos
identity is included inside of the certificate, creating
the needed binding.

3.2 Web Server

This section describes the Web server’s role in pro-
cessing a request for a Kerberized service. Our goal
is to provide the Web server with a means to access
resources on a user’s behalf. We built a Web server
plugin that engages in proxy authentication by per-
forming the following actions: (i) authenticate the
user, (i) request Kerberos credentials from a cre-
dential translator, and (iii) fulfill the user’s request
by accessing a Kerberized service.

In the first step, client authentication takes place
in the SSL handshake. We assume Alice possesses
a certificate verifiable by the Web server. The cer-
tificate must be issued by a certification authority
trusted by the Web server. The client authentica-
tion step in SSL requires the user to sign a digest of
the all the handshake message prior to this one with
his private key. SSLv3 uses a keyed digest, HMAC,
with the SSL session key. The signature is included
in CLIENT VERIFY message of the SSL handshake.

In the second step, The Web server records a tran-
script of the handshake, details of which are shown
in Figure 4. Then, the Web server presents the cap-
tured transcript and the SSL session key to a Ker-
berized Credential Translator (described in details
in Section 3.3) for verification.

In the third step the Web server uses received cre-
dentials to access a Kerberized service. Revealing

KCA

1-4 Kerberos login

5. Alice - KCA: TKT = {Alice, KCA, KA,KCA}KKcAa {T}KA,KCA7
Public Key, HMACk, ., (Public Key)
6. KCA — Alice: X.509 certificate, HMAC, .., (X.509 certificate)

Figure 3: KX.509 protocol. Steps 1-4 from Kerberos are not shown. Steps 5 and 6 give the details of messages
in the KX.509. Alice sends a service ticket, an authenticator, a public key, and its HMAC. A keyed digest is based
on the session key, K4 xca and prevents modifications of the data.

SSL transcript

1. Client — Server: CLIENT HELLO:
Version = VC, Timestamp = TC, Session ID = IDC
2. Server — Client: SERVER HELLO:
Version = VS, Timestamp = TS, Session ID = IDS
3. Server — Client: SERVER CERTIFICATE:
X.509 certificate = SCert
4. Server — Client: SERVER CERTIFICATE REQ:
Cert Type = CT, CA chain = CAC
5. Client — Server: CLIENT CERTIFICATE:
X.509 certificate = CCert
6. Client — Server: CLIENT KEY EXCHANGE:
[Key material] gy, o px
6. Client — Server: CLIENT VERIFY (SSLv3):
[HMACk,, (VC, TC, IDC, VS, CT, CAC, TS, IDS, SCert, CCert)]

Kprivate

Figure 4: SSL transcript. The messages listed constitute an SSL transcript. CLIENT HELLO carries a version,
timestamp, and session id, which allows a user to resume a previous session. SERVER HELLO confirms the version
and session id. Server sends its CERTIFICATE and requests user’s in CERTIFICATE REQUEST. SERVER HELLO DONE
specifies the end of a negotiation phase. Client sends her public key certificate in CERTIFICATE message. Client
sends session information (encrypted with the server’s public key, Kwspk) in a CLIENTKEYEXCHANGE message.
Client sends a CERTIFICATE VERIFY message, which signs important information about the session using the client’s
private key. The server uses the public key from the client’s certificate to verify the client’s identity. Karx is the
negotiated SSL session key. Kprivate is the user’s private key. A timestamp in CLIENT HELLO message is used to
check freshness of the handshake.

the SSL session key in the previous step gives the
credential translator the power to eavesdrop, so we
force the Web server to request renegotiation to es-
tablish a new session key, one that is not known to
the KCT.

User’s Kerberos credentials are cached by the Web
server to improve performance. The lifetime of
the service ticket issued by the credential translator
should be short, minimizing potential misuse of cre-
dential. At the same time, the service ticket should
have a long enough lifetime so that multiple requests
from a user do not incur the cost of getting a service
ticket each time.

3.3 Kerberized Credential Translator

We define a Credential Translator (CT) as a service
that converts one type of credential into another.
KCA is a credential translator that translates Ker-
beros credentials to PK credentials. In this section,
we introduce a new Kerberized credential transla-
tor service called KCT. The role of this service is to
convert a user’s PK credentials to Kerberos creden-
tials.

Figure 5 shows the KCT protocol. First, the Web
server authenticates to the KCT by presenting a ser-
vice ticket, {Web Server, KCT, Kws kcrtkgor
and the corresponding authenticator, {T} ks xor-
Along with its Kerberos credentials, the Web server
sends the SSL transcript, the name of the service
ticket being requested, and the SSL session key. Af-
ter validating the Web server’s credentials, KCT
does the following:

e Verifies that the SSL transcript records a valid
handshake.

e Validates user and server certificates and checks
that each was signed by a trusted KCA.

e Verifies client’s signature in the CLIENT VERIFY
by recomputing the hash of the handshake mes-
sages up to the CLIENT VERIFY message and
comparing it to the corresponding part of the
SSL handshake.

e Verifies that the identity inside of the server’s
certificate matches the Kerberos identity. This
step is needed to ensure that the Web server
participated in the SSL handshake.

e Assures the freshness of the transcript by either
checking the freshness of timestamps present
in the hello messages or for a valid nonce. In
case of latter, the Web server acquires a nonce
apriori from the KCT and includes it in the
SERVER HELLO message.

e Generates a service ticket for the user.

e Encrypts the session key included in the service
ticket under the Web server’s key, Kws kcT-

e Sends the ticket, authenticator, and encrypted
session key back to the Web server.

e Logs the transaction for auditing purposes.

We see that the KCT needs access to the database
of keys maintained by the KDC. Consequently, the
KCT requires the same physical security as the
KDC. In practice, we run KCT on the same machine
as the KDC, which achieves the physical security
requirement and avoids the challenge of consistent
replication of the Kerberos database.

4 WebAFS Prototype

We have implemented a prototype that allows a user
to submit requests to a Web server that accesses a
Kerberized AFS file server on the user’s behalf. An
overview of the system is shown in Figure 6. In the
remainder of this section, we provide details about
implementation of each of the components involved
in the system.

4.1 KX.509

We implemented KX.509 protocol to work for
both Netscape Navigator (on UNIX, Windows, and
MacOS) and Internet Explorer (on Windows). The
kx509 client and the KCA server are the two basic
components involved in issuing users certificates.
No browser modifications is required for Internet
Explorer. To support the use of our certificates in
Netscape Navigator we require the user to add a
cryptographic module to the browser.

The Netscape browser has a special storage space
for certificates, but the implementation of the cer-
tificate cache is platform dependent, undocumented,

KCT

1-4

Original Kerberos done once per lifetime a session

5. Web Server —» KCT:

6. KCT — Web Server:

TKT = {Web Server, KCT, Kws,kcr}kxers 1T kws.xors
SSL transcript, {MK, Service} kv s xor
TKT = {Alice, Service, Kws,Service } Kgerice

{KWS,Service}Kws,KCT s {T}KWS,KCT

Figure 5: Credential translation protocol. Steps 1-4 are original Kerberos authentication of the Web server.
It is done once per the lifetime of a service ticket for the KCT service. Steps 5 and 6 show the conversation with
the KCT. Service is the requested backend service. Depending on the version of SSL, a master secret key, MK is

included in the request to the KCT.

Figure 6: WebAFS architecture. We show details of architectural components present in the implementation
of the proposed system. The new components are: kpkcsll, kx509, KCA, kct_module, and KCT. The first three

components are part of credential translation from Kerberos to PK credentials. The last two are parts of translation
in the other direction.

Web browser
kpkecs11
kinit kx509

Ticket
cache

-

SSL
handshake

Web server
kct_module

Token
cache

KCT

and version dependent. Thus, we chose to save cer-
tificates in user’s Kerberos ticket cache.

Typically, a ticket cache stores a user’s TGT and
service tickets. MIT’s implementation of Kerberos
on UNIX allows for variable size tickets, allowing us
to store any data of size up to 1250 bytes, which
is sufficient to store a certificate and private key.
Figure 7 shows the output of the k1ist command,
which displays current contents of a ticket cache.
The entry cert.x509/umich.edu@umich.edu
is the regular service ticket for the KCA.
cert.kx509/umich.edu@umich.edu contains
the user’s certificate and private key.

Netscape needs help to find our certificates. To
this end, we use the browser’s standard interface
for adding a cryptographic module, one that we call
kpkcs11. The browser invokes our security module
before establishing an SSL connection. The kpkcs11
looks up a certificate in the ticket cache and gives it
to Netscape when client authentication is required.

Storing certificates in a ticket cache has the advan-
tage that when a user logs out from the computer
the data stored in the ticket cache is destroyed.
Windows stores certificates is in the registry. There
is no standard mechanism that clears out a certifi-
cate cache.

4.2 Web Server

To enable the server to act on a user’s behalf, we
added a module to the Apache Web server, about
1700 lines of code. The module relies on the modi-
fied version of the OpenSSL library to save the SSL
transcript. The OpenSSL (version 0.9.5) modifica-
tions are minimal (less than 200 lines of code) and
include a new data structure and calls to a function
that saves the incoming and outgoing buffers.

Now, we look more closely at the problems that arise
from differences in the SSL protocol specifications
and implementations, and from harsh browser re-
alities, which made the solution more complex and
introduced delays.

In our prototype, we use timestamps present in SSL
handshake to check the freshness of the handshake.
Unfortunately, SSLv2 does not include timestamps
in the hello messages. Worse yet, Netscape Navi-
gator by default starts the SSL handshake with an

SSLv2 CLIENT HELLO message. Only after receiv-
ing the reply from the Web server suggesting the
use of SSLv3 does the browser switch to the higher
version. The resulting handshake is overall a valid
handshake without an SSLv3 client timestamp. To
get the timestamp, we require the Web server to re-
quest renegotiation. SSL specifications allow rene-
gotiation only after the ongoing handshake is com-
plete. Thus, two full SSL handshakes must take
place. The Opensmall SSL library was also modified
to force immediate renegotiation when the SSLv2
CLIENT HELLO message is received.

One feature of SSL protocol, called a partial hand-
shake required special attentions. When a partial
SSL handshake happens, the Web server checks if
AFS credentials are cached: if so, then the server
proceeds with making an AFS request. Otherwise,
the Web server forces an SSL renegotiation followed
by a full SSL handshake. After creating a transcript,
the Web server, as before, submits a request to the
KCT for an AFS service ticket.

4.3 Kerberized Credential Translator

The responsibilities of the KCT are to verify the
validity of a request and issue an AFS ticket on
the user’s behalf. To fulfill this role, KCT must
have special privileges. It must be able to read the
KDC(C database and get a master key of the AFS file
server. Currently, tickets are issued only for AFS.
In deployment, the Web server will specify the ser-
vice for which it needs a ticket. In this case, KCT
will need a security policy to make authorization
decisions about who can ask for what.

Because Kerberos libraries are not thread safe, KCT
can not be implemented as a multithreaded applica-
tion. To improve performance, we spawn a process
to handle an incoming request. To achieve the re-
quired physical security, we run the KCT on the
same machine as the KDC. Implementation of KCT
is about 1700 lines of code.

5 Performance

In this section we discuss the performance of the
system, examining the cost of making a request to
a Web server which in turn requests a service from

$: Kklist
Ticket cache: FILE:/tmp/krbbcc_500
Default principal: agloQUMICH.EDU

Valid starting Expires Service principal
01/19/01 13:39:56 01/19/01 23:42:15 krbtgt/UMICH.EDUQUMICH.EDU

Kerberos 4 ticket cache: /tmp/tkt500
Principal: aglo@QUMICH.EDU

Issued Expires Principal

01/19/01 13:39:56 01/19/01 23:39:56 krbtgt.UMICH.EDUQUMICH.EDU
01/19/01 13:43:07 01/19/01 23:48:07 cert.x509QUMICH.EDU
01/19/01 13:43:28 01/19/01 13:43:28 cert.kx509QUMICH.EDU

Figure 7: Output of klist. KX.509 certificate and the private key are stored in the Kerberos IV ticket cache under
the service names of cert.x509 and cert.kx509.

% &
7 SL handshake N artial SSL handshake TGS+ request
SSL renegotiation TGT/TKT request AFS request
e e |

SSLv3 SSLv3

= IS I
TLSv1

= 2 g AT A N |

PSSL

= TIMELINE

Figure 8: Timelines of possible requests. We show the components of a user’s request in four scenarios
illustrated as timelines. The legend identifies each of the components involved. We consider all different versions of
an SSL protocol, v2, v3, TLSv1, and a partial handshake. In the first scenario no Kerberos credentials have been
acquired by the Web server. Access to an AFS file server is used as an example.

a backend server on a user’s behalf. The experi-
ments described in this section were performed on
unloaded Intel 133MHz Pentium workstation run-
ning Linux 6.2 kernel version 2.2. All the compo-
nents were executed on the same machine so no net-
work and file access delays are present. Our focus is
on understanding overhead induced by the system.

The software was tested against commodity
browsers, but it is hard to glean detailed mea-
surements from commercial software, so we used
OpenSSL to mimic the browser’s actions. The client
software is a modified version of s_client, an appli-
cation that comes with OpenSSL. All requests were
made for a 1K file. For each of the test cases 30 trials
were measured and averaged results are presented.
Variance was negligible.

We define several terms we use while talking about
different scenarios. We define a browser session
to be the time from launch to termination of the
browser application. We define a server session
to be the time from the first request to a Web
server until the termination of the browser soft-
ware. Within a browser session a user starts multi-
ple server sessions. Requests for different files from
the same Web server fall into a single server ses-
sion. Requests to different Web servers are associ-
ated with different server sessions.

Figure 8 shows the breakdown of a user’s request
into the basic components. Four scenarios are il-
lustrated as timelines. A typical request consists of
some of the following stages:

1. SSLv2 handshake (or a partial SSL handshake)
2. Request renegotiation

3. SSLv3 handshake

4. Refresh Web server’s Kerberos credentials

5. Request Kerberos credentials from KCT

6. Request renegotiation

7. SSLv3 handshake

We divided a user’s request into different compo-
nents, for example an SSL handshake, and measured
each of the components individually. Table 1 shows
the delays associated with the basic components in-
volved in a user’s request.

| Components | Delay(s) |
1 handshake 1.252
2 handshakes 2.495
TGT/KCT_TKT 0.029
KCT request 0.255
Partial SSL 0.022

Table 1: Delays of basic components. The first row
shows SSL handshake latency. The second row shows the
delays seen after two consecutive SSL handshakes with a
request to renegotiate in between. The third row shows
the time for the Web Server to refresh Kerberos creden-
tials. The fourth row shows delays associated with the
KCT request/reply. The last row shows the latency for a
partial SSL handshake. Rows 1,2, and 5 reflect end-to-end
delays seen by the user. Rows 3 and 4 measure network
cost seen by the Web server while talking to the KDC and
KCT.

| End-to-End | Time(s) |
SSLv2 hello no TGT 4.080
SSLv2 hello 1st request 4.040
SSLv2 cached creds 2.500
SSLv3 hello no TGT 2.857
SSLv3 hello request 2.801
SSLv3 cached creds 1.252

Table 2: End-to-end delays. Each of the scenarios
represent a possible user request. We measured end-to-
end latency seen by the user.

Table 2 shows the end-to-end delays seen by the
user for different types of requests. We describe
each of the scenarios in details and point out which
ones are more common. We divide requests into two
groups based on whether or not user’s credentials
are cached at the Web server.

e No cached credentials. First, we consider the
cases where user’s credentials are not cached. This
happens when a user is making the first request to
the Web server or when her credentials have been
evicted from the Web server’s LRU cache.

— Once aday: SSLv2 hello no TGT and SSLv8
hello no TGT. In these two scenarios, the Web
server has stale credentials so the user’s re-
quest gets penalized by the time needed to
get new Kerberos credentials. The lifetime of
our Web server’s TGT is 24 hours.

— Once per server session: SSLv2 hello
1st request. When contacting a Web server
for the first time, the default behavior of
Netscape Navigator is to start with an SSLv2
CLIENT HELLO message. Unless the browser
is restarted, all subsequent requests will start
with an SSLv3 CLIENT HELLO. This scenar-
ios measures the overhead of the three hand-
shakes and a KCT request. The first addi-
tional handshake is to get a valid timestamp
in the CLIENT HELLO message. The second ad-
ditional handshake renegotiates the SSL ses-
sion key which was revealed to the KCT.

— Most common request: SSLv3 hello re-
quest. Internet Explorer starts with an
SSLv3 CLIENT HELLO. Any requests from this
browser either fall into this category or the
partial handshake.

e Cached credentials. Now, we review the sce-
narios where user’s credentials are cached at the
Web server. Caching is important because it saves
the overhead of getting Kerberos credentials. Fur-
thermore, no SSL renegotiation plus handshake is
needed at the end. The only overhead the system
imposes is that associated with token management.

— Frequent: Partial handshake cached creden-
tials The lifetime of the session key negoti-
ated in the full handshake is configurable by
the web server. If more than one request is
made within five minutes of a full handshake,
a partial handshake takes place. Five minutes
is a default value used by Apache Web servers.
We can safely assume that user’s credentials
are already cached at that point. The time
required for a partial handshake is consider-
ably smaller than for a full handshake. The

frequency of these requests depends on user’s
access pattern.

— Common: SSLv3/TLSvl cached credentials.
Once the user contacts a Web server, his cre-
dentials are cached until they get evicted due
to expired lifetime or lack of space. When
requests to the Web server are separated by
more than 5 minutes, a user experiences end-
to-end delay presented in last row of Table
2.

— Unlikely: SSLv2 hello cached credentials.
The browser sends an SSLv2 CLIENT HELLO
message to the Web server if it never con-
tacted it within the current browser session.
However, it is still possible for user’s creden-
tials to be cached at the Web server, if the
user restarted the browser within the lifetime
of the cached credentials.

To summarize, an SSL handshake costs 1.252 s. De-
lays associated with refreshing a TGT and making
KCT requests are small, 0.022s and 0.255s respec-
tively. The overhead is amortized over a browser
session.

In the most common case, credentials are cached
and SSLv3 connections are used, so the system in-
curs negligible overhead. Further testing in more
complex environments is necessary and will be done
in the future. However, these preliminary results
are encouraging.

6 Discussion

In this paper we described a system that provides
users with access to Kerberized services through a
browser. In this section we summarize the func-
tionality of each of the components involved in the
system and discuss open questions.

While many backend services use Kerberos for au-
thentication, Web servers authenticate with public
key cryptography. We address the mismatch of au-
thentication credentials between the Web server and
Kerberized service by introducing a new service that
translates PK credentials to Kerberos tickets. The
Web server engages in proxy authentication. The
process consists of SSL client authentication, request
to a credential translation service, and finally au-
thentication to the Kerberized service on user’s be-
half.

We built a single sign-on mechanism that allows
users to get X.509 certificates in addition to their
Kerberos credentials. Through the KX.509 proto-
col, we create a binding between a user’s Kerberos
and PK identities. The issues surrounding this bind-
ing are quite broad and must be further resolved.

A client uses his certificate to establish an authen-
ticated and secured channel to a Web server. The
Web server logs an SSL transcript and makes an au-
thenticated request to a new service that translates
user’s PK credentials to Kerberos credentials.

The authorization model of the credential translator
is primitive and is the focus of our future work. The
current model supports generic access control lists:
for each Web server there is an entry listing the
Kerberized services for which it can request tickets.
We are looking into integrating Akenti [18] access
control mechanisms into the system.

We built a prototype, WebAFS, that allows users
to access AFS restricted files through browsers. It
requires minor modifications to existing software,
such as a plugin module to the Netscape Naviga-
tor and modifications to the OpenSSL library. We
wrote four components: kx509 and KCA take care
of issuing user’s certificate, an Apache module ser-
vices requests, and a KCT translates between two
types of credentials.

We measured the overhead introduced by our sys-
tem. We showed the delays associated with the
building blocks of a user’s request. The results show
that substantial amount of time is spent in estab-
lishing an SSL connection, but that requesting cre-
dentials for the server is amortized over a browser
session.

Credential translation need not apply only to Web
traffic. It is extensible to any SSL-enabled client
and SSL-enabled server communication. Further-
more, credential translation need not to be limited
to producing Kerberos credentials. Consider a re-
mote login application an SSL-enabled Telnet. As-
suming a user has a certificate on his local computer,
we can eliminate the need to sent his password over
the network. A user can use his certificate, mutually
authenticate with the remove host, and empower it
to act on user’s behalf. We are considering these
and other extensions on our future work.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The keynote trust managment
system version 2, September 1999. RFC2704.

[2] T. Dierks and C. Allen. The TLS protocol ver-
sion 1.0, January 1999. RFC2246.

[3] W. Doster, M. Watts, and D. Hyde. The
KX.509 protocol. CITI Technical Report 01-
2, Februaru 2001.

[4] P. Dousti. Project minotaur: Kerberizing the
web. Software at Carnegie Mellon University.

[5] ITU-T (formerly CCITT) Information technol-
ogy Open Systems Interconnection. Recom-
mendation x.509: The directory authentication
framework, December 1988.

[6] Apache Software Foundation. Apache web

server. http://www.apache.org.

[7] A. Freier, P. Karton, and P. Kocher. Secure
socket layer 3.0, March 1996. Internet draft.

[8] A. Freier, P. Karton, and P. Kocher. The SSL
protocol version 3.0, March 1996. Netscape
Communications Corporation.

[9] M. Hur and A. Medvinsky. Kerberos cipher
suites in transport layer security (TLS), May
2001. Internet draft.

[10] R. Needham and M. Shroeder. Using en-
cryption for authentication in large networks
of computers. Communications of the ACM,
21(12):993 — 999, December 1978.

[11] C. Neuman and T. Ts’o. Kerberos: an au-
thentication service for computer networks.
IEEE Communications, 32(9):33-38, Septem-
ber 1994.

[12] SideCar project. http://www.cit.cornell.edu/
kerberos/sidecar.html.

[13] T.Ryutov and C. Neuman. Representation and
evaluation of security policies for distributed
system services. In Proceedings of the DISCEX,
January 2000.

[14] M. Sirbu and J. Chuang. Distributed authen-
tication in kerberos using public key cryptog-
raphy. In Symposium On Network and Dis-
tributed System Security, 1997.

[15] Stone Cold Software. Apache kerberos module.
http:/ /stonecold.unity.ncsu.edu/software.

[16] D. Song. Kerberized WWW access. http://
www.monkey.org/ dugsong/krb-www.

[17] V. Staats. Kerberized TLS, June 2000. Private
communications.

[18] M. Thompson, W. Johnson, S. Mudumbai,
G. Hoo, K. Jackson, and A. Essiari. Certifi-
cate based access control for widely distributed
resources. In Proceedings of the 8th USENIX
Security Symposium, August 1999.

[19] B. Tung, C. Neuman, and J. Wray. Public key
cryptography for initial authentication in ker-
beros, April 2000. Internet draft.

