
CITI Technical Report 01−3

Improving AFS Performance via Selective Caching and Native ATM AAL5

Charles J. Antonelli, Kevin Coffman, Jim Rees

{cja,kwc,rees}@citi.umich.edu
http://www.citi.umich.edu/

ABSTRACT

We describe two enhancements to the AFS distributed file system intended to improve the perfor-
mance of large file fetches over high-speed networks.Selective caching AFS bypasses the client
local disk when fetching files, which improves the performance of applications such as streaming
video, for which local caching is of little benefit, and gives client processor and cache resources
to applications for which local caching is an advantage.Split-path AFS augments the conven-
tional UDP-based connection between AFS client and server with a "fast path" over native ATM
AAL5 for file data fetches.

These enhancements combine to reduce the elapsed time of large (100 MB) file fetches by 80%
in our laboratory environment.

12 February 2001

Center for Information Technology Integration
The University of Michigan

Ann Arbor, Michigan 48103-4943

Improving AFS Performance via Selective Caching and Native ATM AAL5

Charles J. Antonelli, Kevin Coffman, Jim Rees

{cja,kwc,rees}@citi.umich.edu
http://www.citi.umich.edu/

1. Introduction

We describe two enhancements to the AFS [1] wide-
area distributed file system intended to improve the per-
formance of large file fetches over high-speed networks.

Selective caching AFS bypasses the client local disk
when fetching files. With caching disabled, AFS file
data arriving from a file server are given immediately to
the requesting application, and are never cached on the
client’s local disk. This improves the performance of
continuous media applications (such as streaming video
players) by eliminating disk latencies from the data pro-
cessing pipe. This is especially advantageous when the
network is faster than the local disk. As a secondary
benefit, selective caching frees client processor and
cache resources for use by applications for which local
caching is an advantage.

Split-path AFS augments the conventional UDP-based
connection between AFS client and server with a "fast
path" over native ATM AAL5 for file data fetches.
With split-path AFS enabled, file contents travel
between file server and client over a native ATM AAL5
connection. Taking full advantage of the larger MTU
available and eliminating the UDP network layer, split-
path AFS greatly improves transfer rates compared to
conventional IP-based networks.

These enhancements combine to reduce the elapsed
time of large (100 MB) file fetches by 80% in our labo-
ratory environment.

In the remainder of this paper, we define our goals and
motivations and describe our testbed. Following a short
overview of AFS, we describe our implementation on
the Sun Solaris and SGI IRIX platforms, analyze our
experimental results, and close with a discussion of
future work.

2. Goals and Motivations

It has long been known that AFS is slow [2].

In fact, as processor, disk and network speeds continue
to improve, AFS continues to get slower. When AFS
was dev eloped over ten years ago, a typical client work-
station sported 3 MIPS and 60 MB of fairly slow disk

storage and was connected to a 10 Mbps network [3].
In this environment, AFS is an excellent alternative to
local disk storage: it provides crucial semantics such as
a consistent local view of a global distributed filesys-
tem; it provides good security via strong encryption for
authentication, authorization, and access; it introduces
the powerful concept of volume-based storage aggre-
gation; it makes large amounts of centrally managed
disk storage available to resource-poor workstations;
and it doesn’t run too slowly either.

Today’s commodity platforms contain 750 Mhz proces-
sors, hundreds of GB of local disk capable of transfer-
ring data at better than 20 MBps, and are routinely con-
nected to fast networks of 100 Mbps to 1 Gbps. More-
over, AFS has been ported to high-performance plat-
forms such as the SGI Origin 2000 family, members of
which contain up to 512 R12000 processors each run-
ning at 400 Mhz, support peak system bandwidth of
160 GBps, and in today’s datacenters are connected to
networks exceeding OC-12 (622 Mbps) speeds.

In such environments, AFS is generally perceived to be
miserably slow. Trapped in layers of network code and
filesystem implementation, AFS cannot take advantage
of these higher processor and network speeds to remain
a viable alternative to local disk storage. AFS does
continue to provide access to data stores far larger than
could be accommodated on a local disk, but the perfor-
mance gap is so large that users have substantial incen-
tive to avoid using AFS.

Our work thus reflects the following goals:

• Performance. Our primary goal is to improve
AFS performance in today’s networked environ-
ments such that AFS continues to be a viable
alternative to client local disk.

• Compatibility. Due to the size of the installed
base of AFS-capable machines, it is vital that our
modifications allow an unmodified AFS client to
interoperate with a modified AFS server and
vice-versa.

• Mass Storage. Because truly large collections of
data, such as HDTV images [4] or the Shoah [5]

-2-

and Clementine [6] data sets, are too large to be
stored feasibly on magnetic disks, mass storage
systems combining slower media of higher
capacity with faster media of lower capacity are
popular for such data. It is important that our
modifications apply in this arena, in that they
interoperate with MR-AFS, a multi-resident ver-
sion of AFS designed to work with mass storage
devices by Goldick et al [7].

3. AFS Overview

AFS [1] is a wide-area distributed filesystem that per-
mits transparent access by clients to files stored on
servers. Client programs access these files as though
they were local, using conventional file access calls via
a cache manager running in the kernel, accessing
remote files via a user-levelfile server running on the
server. Client and server platforms are connected by
conventional IP networks.

Some of the innovations introduced by AFS include the
implementation of a single global filesystem indepen-
dent of client configuration; the provision for good
security via strong encryption for authentication, autho-
rization, and access; and the organization of filesystem
data intovolumes, which represent collections of files
that are treated similarly with respect to storage loca-
tion, quota management, and backup.

AFS uses a remote procedure call component called Rx
for communication between file servers and cache man-
agers [8]. Rx is a connection-oriented, streaming RPC
protocol built on top of UDP/IP, on which it depends
for low-level packet addressing and delivery. A client
and server communicate by establishing an Rx connec-
tion between themselves; this connection may be
authenticated and supports data encryption. An RPC is
implemented via Rx calls made over such a connection.
Rx provides reliable communication via packet order-
ing, elimination of duplicates, and selective retransmis-
sion of dropped packets. A windowing protocol per-
mits bulk data to be transmitted efficiently. Data is sent
over an Rx connection inchunks, nominally 64 KB in
size. Some number of Rx packets are usually transmit-
ted as a singlejumbogram packet for better perfor-
mance.

4. CITI Testbed

Our experimental testbed shown in Figure 1 consists of
four systems:br, a 167 Mhz Sun Ultra 1/170 with an
83 Mhz system bus, 64 MB of memory and 2 GB of
disk running Solaris 2.6;hf, a 167 Mhz Sun Ultra
1/170 with an 83 Mhz system bus, 256 MB of memory
and 2 GB of disk running Solaris 2.6;bullrun, an
SGI O2 with a 175 Mhz R10000, 128 MB of memory,

Cisco
5500

br
Solaris 2.6

hf
Solaris 2.6

bullrun
IRIX 6.5

harpersferry
IRIX 6.5offsite

(test)

10 Mbps Ethernet
to campus

OC-3

Figure 1 CITI experimental testbed. One
of the Cisco 5500 ATM ports is connected
to a LANE module, a second provides
connectivity to an offsite test ATM net-
work. br andhf are shown connected to
the remaining two ports.

and 2 GB of disk running IRIX 6.5.6m; and
harpersferry, an SGI O2 with a 180 Mhz R5000,
64 MB of memory, and 2 GB of disk running IRIX
6.5.3f.

Each system is permanently attached to a 10 Mbps Eth-
ernet for Internet connectivity and legacy traffic. ATM
connectivity is provided by a four-port OC-3 ATM card
located in a Cisco 5500 switch; LANE services are pro-
vided by software in the switch. The Sun and SGI
machines are equipped with Fore Systems (now Mar-
coni) SBA-200E and PCA-200E OC-3 ATM cards,
respectively. All machines share two available ATM
ports; this permits us to exchange ATM traffic between
two hosts at a time. The Cisco switch also provides
connectivity (and LANE services) to an offsite test net-
work; it is usually lightly loaded. All of our ATM traf-
fic passes between the two shared ports.

All hosts run an AFS 3.5 cache manager. Bothhf and
harpersferry run an AFS 3.5 file server;hf was
given 4 GB of additional external disk storage for this
purpose.harpersferry also runs an MR-AFS 3.4
server;† both servers access the same AFS partitions,
but may not be run concurrently.

† As of this writing MR-AFS has not been upgraded to version 3.5.

-3-

5. Selective Caching Implementation

We beg an our development work on the Solaris plat-
form as it was more familiar to us and because we had
complete operating system source code. Development
of the IRIX solution was delayed pending completion
of the Solaris prototype.

We added code to implement selective caching (occa-
sionally known as cache bypass in the code) for read
operations. Our requirements do not include imple-
menting selective caching for writes, which simplifies
our implementation and the following analysis some-
what.

5.1. Solaris Overview

Initially, we examined some previous code written at
CITI that implemented a version of selective caching in
the RS/6000 AIX kernel [9]. We learned quickly that
the Solaris and AIX kernels are very different in the
way they treat filesystems and virtual memory; neither
the previous design nor the previous code were viable.

In the Solaris kernel, the virtual memory system and the
filesystem are not independent [10]. Solaris treats
almost all of virtual memory as a filesystem cache, and
a filesystem must be integrated with the virtual memory
system to provide consistency of data when files are
accessed both by memory mapping and by the conven-
tional read/write operations.†

The AFS cache manager interacts with the Solaris ker-
nel as follows. When aread call is made from a user
process to read data from a file in/afs, the AFS
filesystem vnode routine ("vnode op")afs_vmread is
invoked. afs_vmread andafs_vmwrite both call
a common routine afs_nfsrdwr, which calls
afs_VerifyVCache to ensure the file status on the
client reflects the actual status on the server, to verify
that an AFS vnode exists for the file on the client, and
to read the data from the server a page at a time. Within
this read loop,afs_nfsrdwr calls severalsegmap
routines, which are provided by the Solaris kernel to
manage segments of virtual memory for both the kernel
and user processes, as well as the AFS routine responsi-
ble for copying data from kernel to user space,
AFS_UIOMOVE. The latter causes a page fault if the
data are not present,e.g., if this is the first time this
AFS file has been accessed by this client.

To resolve the page fault, Solaris calls thegetpage
vnode op,‡ which callsafs_GetOnePage, which

† Although mapping is the preferred way of accessing files and
many Solaris system utilities have been rewritten to use it, the need
for the conventional calls remains. So we findcat, which now uses
memory mapping, still opening and reading a single byte from every
file it maps — to update the file read time.

‡ Actually, getpage is called for every page access as Solaris

callsafs_GetDCache. The last of these is responsi-
ble for verifying that a DCache (AFS data cache) entry
exists for the file and for determining the latest version
of the file. afs_GetDCache may be called with vari-
ous flags that dictate whether it should merely verify
that a DCache entry exists, or whether it must ensure
that the latest file data for that file are present in the
client’s cache; in the latter case, if the cached copy of
the file is out of date, the file contents are fetched a
chunk at a time via Rx streaming RPC from the server
and stored to the AFS disk cache.

After calling afs_GetDCache, afs_GetOnePage
enters a loop callingpage_lookup, a Solaris VM
routine to determine whether the page already exists in
the kernel’s virtual memory. If not, it calls
afs_ustrategy to read the data from the disk cache
into the user’s virtual memory.

5.2. Solaris Modifications

Our modifications to Solaris are grouped into two cate-
gories: changes to handle uncached fetches from the
file server, and changes required to improve perfor-
mance in the presence of both prefetching and locking.

5.2.1. Uncached Fetches

For our selective caching implementation, we believed
that by not writing data to the disk cache file and then
reading them back into virtual memory a page at a time
we would improve performance considerably. We
changed theafs_getpage vnode op to determine
whether the file should be cached or not. If not, it calls
our new routineafs_GetOnePageNoCache instead
of afs_GetOnePage. The former is very similar to
the latter, except that it does not callafs_GetDCache
— we don’t need to maintain a DCache entry for non-
cached files. Likeafs_GetOnePage, our routine
callspage_lookup to determine if the required page
is already in virtual memory. If it is not, instead of call-
ing afs_ustrategy to read the disk cache file, it
simply allocates virtual memory to hold a chunk of the
file and then calls the AFS server to get the data.

Unlike the caching case, when the data arrive from the
server they are written directly into the kernel’s virtual
memory segment. A pair of new routines,afs_Get-
NullCache andafs_NullCacheFetchProc, are
used to accomplish this. These routines are similar to
the UFS and in-memory AFS cache routines. We con-
sidered making the null cache analogous to the UFS
and memory caches already supported by the AFS
code; however, doing so would have required the
unnecessary overhead of using thefs_GetDCache

depends on the filesystem to determine whether a filesystem’s page is
up to date in virtual memory.

-4-

routine. This turned out to be a good decision, as we’ll
see later.

After implementing this strategy, we compared its per-
formance to the caching case. Attempting to log kernel
timing data viaprintf generated too much additional
overhead and resulted in many lost timing records, so
we implemented a ring buffer in the kernel to accumu-
late timing data and a user-level program to dump the
data after completion of a test. Contrary to expecta-
tions, the improvement was slight, less than 5%. Inves-
tigation showed that while the caching code does write
data to the disk cache file and then read them back into
virtual memory, this is not expensive because virtual
memory is a filesystem cache. The data normally
remain in VM between writing and subsequent read-
back, replacing disk I/O with a simple memory copy.
When it is necessary to do the disk I/O, it is usually
because the file data are not cached on the client at all
— in which case the network time dominates.

5.2.2. Prefetched Data

Not satisfied with the previous results, we looked else-
where. The original code attempts to prefetch chunks
from the fileserver when it recognizes that the user is
accessing the data in a sequential manner; in effect, a
fetch for the anticipated next chunk of data is sent to the
fileserver while the current request is being processed.
Code for this exists inafs_nfsrdwr, but it depends
on the existence of a DCache entry that we don’t hav e
for non-cached files.

We dev eloped theafs_PrefetchNoCache routine,
called from an asynchronous kernel daemon so that it
would not interfere with the user’s original request, to
prefetch chunks for non-cached files. Interestingly,
instrumentation of the existing prefetch code showed
that it was never prefetching. Concerned that there
might be an architectural reason for this that would
interfere with our own prefetch code, we contacted
Transarc and were sent patches to fix the existing
prefetch code [11]. The patches did not improve the
performance of the caching case. Upon further investi-
gation, we suspected that kernel data structure locking
was interfering with prefetching.

We received more patches that change the way the lock-
ing of the vnode structures is done during data fetches
[12]. The application of the latter patches caused us to
see improvements in our code, but no improvements for
the caching case. The routineafs_GetDCache
always gets a shared lock on the vcache entry for the
file in question. The caching case prefetch code also
acquires a shared lock. The locking semantics allow
only one shared or exclusive lock to be granted at any
one time, which prevents two processes from running

Elapsed time, s

read2

read1

rdwr

0 0.25 0.5 0.75 1

Elapsed time, s

read2

read1

rdwr

0 0.2 0.4 0.6

Figure 2 Locking effects. The diagrams
show sequences ofafs_nfsrdwr calls
and resulting Rx data fetches, plotted
against time. The top diagram shows
afs_nfsrdwr calls and Rx fetches
blocking each other; the bottom diagram
shows the improved concurrency exhib-
ited by the cache bypass code with the
locking patches applied.

concurrently if they both require a shared lock. This
means that the user attempting to read data is blocked
while the prefetch of the next chunk is in progress,
defeating the purpose of the prefetch entirely.

Luckily for us, we do not callafs_GetDCache for
non-cached files. The user’s read operation requires
only a read lock on the vcache and the prefetch can
obtain the shared lock without interference. We
observe a 26% decrease in elapsed time due to the elim-
ination of this blocking, when compared to the caching
case.

Figure 2 makes clear the effect of locking on concur-
rency, which compares the time necessary to fetch five
64 KB chunks from the fileserver with and without
locking patches. Both graphs shows a sequence of calls
to afs_nfsrdwr, each of which requests a 4 KB
page. If such a request cannot be satisfied from the
cache, the next 64 KB chunk is retrieved from the
server using two Rx calls: a fetch of the count of the

-5-

number of bytes to be fetched (read1) followed by a
fetch of that number of bytes of data (read2). In the
top graph, without locking patches, the first page
request triggers both a chunk request and a prefetch for
the next chunk; because of locking, the two requests
occur sequentially. Thereafter, a prefetch blocks access
to the previous chunk — already present in the cache —
while the prefetch completes. The bottom graph shows
the improvement: the initial fetch and subsequent
prefetch occur concurrently; thereafter,afs_nfsrdwr
calls overlap with Rx fetches, and we observe a 40%
decrease in time required to fetch the five chunks.†

These measurements were taken from our Solaris cache
bypass implementation; the results for the Solaris
caching implementation are similar to those shown in
the top graph.

5.3. IRIX Modifications

For the Solaris work, we had access to the kernel source
code and documentation [10]; these were invaluable.
For the IRIX work, we didn’t hav e access to either.
However, we were able to infer enough information
from the existing AFS code for IRIX to perform a port
of the Solaris work. To our good fortune it appears that
the IRIX virtual memory code does more of the work of
managing VM pages for the filesystem than does
Solaris. This port was made easier by the experience
we gained with the Solaris work; we were able to reuse
several of our routines without modification.

The IRIX read vnode op calls the AFS routine
afs_xread. Both afs_xread and afs_xwrite
call a common routineafsrwvp. This routine calls
the IRIX routinechunkread. Comments in the AFS
code led us to believe thestrategy vnode op is
called fromchunkread. Thestrategy vnode op is
responsible for getting the data from the fileserver and
putting them into VM.

afsrwvp calls chunkread for a page of data at a
time. This results in a call toafs_strategy if the
page does not already reside in VM. It appears that
chunkread determines page residency, whereas this
task was left to the filesystem in Solaris. We changed
afsrwvp to request data a chunk at a time rather than
a page at a time, to obviate one-page I/O requests to the
fileserver.

We also changedafsrwvp to queue a request for our
prefetch routine, which does not depend on a DCache
entry, rather than the normal DCache-based request. In
afs_strategy, we changed the code to fetch the
data from the server via routines similar to the routines
created for the Solaris port. For non-caching files, we

† The gap near the center of the bottom graph is probably due to
missing trace records, but requires further investigation.

call afs_NoCacheStrategy which calls
afs_GetNullCache to get the data from the server
and put them into virtual memory.

5.3.1. Non-cached File Writes

We do not implement non-caching file writes. This
would seem to require synchronous writes to the file-
server which would slow down the caching writes unac-
ceptably. When a non-cached file is opened for writing,
the file is transitioned into caching mode; when the last
writer closes the file, it becomes non-caching again.
The file’s cache and VM pages are flushed on each tran-
sition. We assume such transitions are infrequent.

5.3.2. Caching Strategies

We recognize that the development of application-
aw are caching strategies continues to be an active area
of research with diverse and potentially complex solu-
tions [13, 14, 15]. We decided not to implement any of
these automated caching strategies, relying instead on a
simpler model proposed by Hacker [9], in which the
AFS volume becomes the unit of cacheability. All files
located in a given volume observe the same caching
strategy, which is determined from the volume name;
individual files may still observe a differing strategy as
explained below. We believe that volume-based
caching is a good idea, because it permits caching deci-
sions to be made without requiring special file names or
other application-level changes, while retaining the
ability to influence those decisions in a way transparent
to applications. More experience with the implementa-
tion will help validate this idea.

We modifiedafs_lookup to check the name of the
AFS volume in which the file resides to determine
whether the file should be cached. If the name of the
volume contains two leading underscores, such as
__video.data.volume, then files within the vol-
ume are, by default, not cached on the client; otherwise,
files from the volume are cached. This behavior can be
overridden on a per-file basis: a file in a non-caching
volume is cached if its name begins with two plus signs,
as in++CacheThisFile; a file in a caching volume
will not be cached if the file name begins with two lead-
ing underscores, as in__DontCacheMe.

In situations where a given file or volume name cannot
be altered to achieve the desired caching behavior, we
implemented apioctl call to set the caching behavior
for a file. However, should the file entry be discarded
from the AFS VCache on the client, any caching behav-
ior set in the entry by thepioctl call is lost.

-6-

6. Split Path Implementation

Again, we began our development work on the Solaris
platform, intending as before to port our solution to
IRIX when documentation on the in-kernel ATM sup-
port became available for that platform. However, our
efforts to secure such documentation were not success-
ful, and in this case we had no existing AFS kernel code
to study. This precluded an IRIX port.

Our overall strategy is to establish a point-to-point
ATM connection between AFS client and server, and
route data fetched from the server over this connection.
Other client/server communcations continue to use the
existing Rx connection. This is a classic split-path
design in which file data can take advantage of ATM’s
higher bandwidth and MTU sizes, while the smaller
control packets travel over a control channel of smaller
capacity without cluttering the data channel.†

We run a modified version of the Rx protocol over the
data channel in which the basic Rx packet size has been
increased to 64 KB; Rx jumbograms are disabled and
Rx packets are transmitted individually. In addition, we
streamlined the protocol layering by removing the UDP
and IP layers from the protocol stack; Rx passes pack-
ets to the ATM network directly.

ATM is by nature a stateful connection-oriented proto-
col. User processes access the ATM hardware via an
XTI library; the Solaris kernel can access ATM via a
mostly undocumented kernel XTI library.‡ While the
AFS file server is a user process and can use the user
level XTI library, the cache manager resides in the ker-
nel and must use the kernel library. In the absence of
kernel documentation, we were forced to assemble the
portions of the kernel XTI API needed for the cache
manager by examining the Solaris kernel sources and
extrapolating from the user library API.

One issue with the XTI protocol is the inherent scaling
limitation caused by point-to-point ATM connections.
This limits the number of ATM-capable clients with
which a given server can maintain connections, and also
limits the number of ATM-capable servers to which a
given client can connect. We hav e not been able to
investigate these limits using our testbed.

6.1. Solaris Overview

Once the AFS cache manager has determined that a
file’s contents must be fetched from the server,
afs_GetDCache establishes a new Rx call via
rx_NewCall, which determines if an Rx connection

† On machines with a single ATM connection providing both native
ATM and LAN Emulation, this distinction reduces to a less efficient
control channel.

‡ The XTI [16] facility originates from System V streams [17] while
eliding none of its complexity.

Client1

Client2

Server

Figure 3 Split-path ATM connections.
Client1 has established an ATM connec-
tion to Server, but there is no ATM con-
nection between Client2 and Server.
Client1 file fetch traffic uses our modified
Rx over the ATM connection, while
Client2 fetch traffic uses conventional Rx
over UDP. All clients and servers use
conventional Rx for traffic other than file
fetches (not shown).

already exists to that server. If not, the server’s IP
address is found in the cache manager’s data structures
and an Rx connection structure is allocated. This con-
nection structure points to a peer structure that main-
tains information pertinent to communicating with the
server. In this way multiple Rx connections can share a
single peer structure.

afs_GetDCache then makes a conventional Rx
streaming RPC call to the server using the Rx connec-
tion, obtaining data in chunks and passing them to the
kernel for further processing as explained in the section
on selective caching.

6.2. Solaris Modifications

Our design augments the existing AFS client and server
connections with native ATM connections accessed
through XTI library calls. Fetch requests and replies
travel over ATM if it is available and over a conven-
tional Rx/UDP connection if not. An ATM connection
is attempted by a cache manager the first time a fetch
request occurs for a given server and the result of the
attempt is remembered for future requests by that cache
manager. ATM connections persist after creation for
future use. Split-path connectivity is shown in Figure 3.

Our split path changes here are grouped into four
classes: NSAP address discovery, ATM connection
management, Rx packet routing and MTU manage-
ment. Each is treated in more detail below.

6.2.1. NSAP Address Discovery

In order to establish an ATM connection, theNSAP
address of the remote endpoint must be known to the
connection initiator,i.e., the AFS cache manager. A

-7-

new RXAFS_GetNSAP RPC allows a cache manager
to interrogate a fileserver; if the server supports ATM it
returns its NSAP address, otherwise the RPC fails.

For a server to respond to the new RPC, it must be able
to discover its endpoint address. The server first
attempts to retrieve its address from a configuration file,
if it exists; missing or malformed data in the file
prohibit the server from establishing ATM connections.
If the file does not exist, the server probes the ATM
hardware to obtain the NSAP address.† Implementing
the operations in this order allows an administrator to
prevent a file server from accepting ATM connections
ev en though it possesses operable ATM hardware, and
to prevent or override ATM hardware probes.

Once a cache manager succeeds in establishing an ATM
connection, the ATM listener,i.e., the AFS file server,
needs to obtain the NSAP address of the initiator in
order to send back replies. This information is avail-
able to the listener at connection establishment via the
user-level XTI library.

6.2.2. ATM Connection Management

When a cache manager needs to create a new Rx con-
nection to a file server,rx_NewConnection is
called. We added code to this routine to establish the
ATM connection as well. If the current state of the
ATM connection to the server is not known, an NSAP
discovery RPC is attempted; if successful, the ATM
connection is created and the NSAP and IP address of
the server are remembered. If the RPC fails or the
server indicates it does not support ATM, this is cached
in the peer structure to prevent future calls torx_New-
Connection from retrying indefinitely.

Both cache manager and file server require anATM lis-
tener to wait for and process Rx packets arriving over
the ATM connection; these are similar in nature to the
Rx listeners that already exist. On the server the ATM
listener is implemented by a pthread created when the
server accepts an ATM connection; it accepts and pro-
cesses incoming packets until the connection is closed,
after which it exits. On the client, a small pool of ker-
nel ATM listeners is created when the cache manager is
initialized. These listeners never exit; an idle listener is
chosen from the pool and allocated to a newly created
ATM connection. When the connection is closed, the
listener is returned to the pool.

A global ATM connection table (ACT) holds state
information about each open ATM connection for both
cache manager and file server, including the NSAP
address of the remote endpoint, the IP address and port

† Our implementation probes the hardware by issuingioctls to
/dev/fld; this is supported for ForeThought 5.0.0.8 and 5.2.0.3,
but not for other releases or vendors.

of the remote endpoint, a handle to the ATM connec-
tion, and the process ID and state (runningvs. idle) for
kernel ATM listeners. Multihomed file servers continue
to be supported (multiple IP addresses can map to the
same NSAP address), but a file server is assumed to
possess only one ATM connection.

6.2.3. Rx Packet Routing

Recall afs_GetNullCache makes an RPC call to
the file server when higher-level cache manager code
has determined that a file must be fetched from the
server. We inserted code to check the state of the peer
flag; if set to indicate a valid ATM connection to the
server exists, a corresponding flag is set in the call
structure associated with the current RPC call, and pro-
cessing continues to prepare packets for transmission to
the server. The call structure flag is later checked in
rxi_Send and rxi_SendList; if set, the ATM
connection handle is placed in the associated packet
structure. Later, the low-level routinerxi_Send-
Packet sends the packet via the stored handle, effec-
tively routing the packet either via our ATM or the con-
ventional UDP connection to its destination. Packets
containing data from the file server are similarly routed
back to the cache manager via the correct kind of con-
nection by using the server’s copy of the ACT.

6.2.4. MTU Management

In order to achieve maximum performance over the
ATM connection, we need to send packets at the native
MTU size, 64 KB. Accordingly, a set of MTU-related
data is added to the peer structure for an ATM-capable
peer, augmenting the data already kept for the conven-
tional Rx connection. This permits link level metrics
and so forth to be kept independently for both kinds of
connections. All ATM-related MTUs are set to the
native ATM MTU size less the size of the Rx header.

Minimal tuning of Rx’s retransmission logic has been
done to date. Retransmissions are not much of an issue
over uncongested ATM connections, but for other con-
ditions more work needs to be done here.

7. Experiments

This sections summarizes our experimental results. All
experiments were conducted on the CITI testbed.

7.1. Rx Protocol Stack Measurements

Initially, we obtained some comparative measurements
on a pair of available 70 Mhz SparcServer 5 machines,
each equipped with a 23 Mhz system bus, 1 GB of disk
and running Solaris 5.6; one machine contains 32 MB
of memory, the other 64 MB. An OC-3 ATM network
connects the two machines. The goal of these

-8-

measurements is to compare the performance of various
layers of the Rx protocol stack in order to determine
bottlenecks, not to obtain performance numbers com-
parible to larger and faster machines such as those run-
ning at the sponsor’s site.

The measurements of the Rx protocol stack include the
raw ATM AAL5 bandwidth as measured by the
svc_send/svc_recv utility that is supplied with
the ATM card; UDP throughput as measured by
sendudp/recvudp, a locally-written instrumented
UDP packet sender and receiver; and Rx throughput as
determined by the AFS utilityrxtest, which mea-
sures throughput rates between two user-level pro-
cesses. For comparison, we also show TCP throughput
as measured byftp in binary mode. The results are
shown in Table 1.

These results show that native ATM performance is
good. However, the UDP layer reduces this by a little
less than half, and Rx performance is dismal at 12
Mbps; this is less than a third of TCP’s performance
under the same conditions.

However, observe that the native ATM test is perform-
ing little packet processing at either end of the connec-
tion. This confirms our suspicions that the network is
not the bottleneck. We verified this by comparing FTP
binary and ASCII-mode transfers; the latter were signif-
icantly slower, probably due to the CR/LF processing
necessary in that mode. This pointed to the CPU as a
bottleneck.

From these results we also identified two other likely
bottlenecks: the UDP layer itself reduces throughput
considerably, and while the native ATM test uses packet
sizes of 64 KB, LAN Emulation limits IP packet sizes
to 9 KB, so the smaller packet sizes seem to be hurting
UDP throughput, and to a similar extent, TCP.

Rx Protocol Stack

Test Mbps

ATM 92

UDP/IP 55

Rx 12

TCP/IP 40

Rx/SGI 35

Table 1 Rx Protocol Stack. This table
shows measurements of the Rx protocol
stack, including native OC-3 ATM, UDP,
and Rx protocols. running on a pair of
Solaris 5.6 SparcServer 5 machines con-
nected by an OC-3 ATM network.. TCP
performance is shown for comparison, as
is the Rx performance on a pair of SGI
machines running IRIX 6.5.

Accordingly, we built a version ofsvc_send that
eliminates the UDP layer, instead communicating
directly using native ATM, and ran the native
svc_send with both 9 KB and 64 KB packet sizes.
We repeated some of the tests on the newly-arrived
Ultra 1 machines; the results are shown in Table 2.

The results show an almost four-fold increase in perfor-
mance when eliminating UDP from the Rx protocol
stack; Rx performance is approaching the physical
OC-3 limit, and this performance occurs while Rx is
processing packets at both ends of the connection.† In
contrast, increasing the packet size had a negligible
effect on performance.

7.2. Selective Caching Results

We initially implemented selective caching, with
prefetching and without any split-path modifications,
for both Sun Ultra 1 (Solaris 5.6) and SGI O2 (IRIX
6.5), as well as MR-AFS on SGI O2 (IRIX 6.5). We
measured the performance of our implementation by
repetitively flushing a test file from the client AFS
cache and measuring the time to fetch the file. Steady-
state performance was measured by discarding initial
runs. File sizes of 1 MB, 10 MB, and 100 MB file were
used. The results are shown in Table 3.

With selective caching enabled, an average
improvement of about 19% in elapsed time is observed
when reading a 100 MB file. We see an 85% average
improvement in system time as well, but the elapsed
time dominates. User time is essentially unchanged.

7.3. Split Path Results

We implemented split path processing by adding this
capability to both cache manager and file server, for
Sun Ultra 1 (Solaris 5.6). As this cache manager had

Modified Rx Protocol Stack

Test Mbps

Rx/ATM, 64 KB 127

Rx/ATM, 9 KB 126

Rx/UDP, 9 KB 38.5

Table 2 Modified Rx Protocol Stack.
These tests were run on Solaris 5.6 Ultra
1 machines, which are faster than Sparc-
Server 5’s. Rx over native ATM shows
performance independent of packet size
approaching the physical OC-3 limit,
while Rx over UDP shows a marked per-
formance drop.

† Both sides of the Rx connection are serviced by user-level pro-
cesses in this test; when serving files, the AFS cache manager uses a
kernel Rx implementation.

-9-

Selective Caching Performance

Elapsed Time User Time System Time
Size Cach Bypass Impr Cach Bypass Impr Cach Bypass Impr
MB s s % s s % s s %

Config

1 1.24 1.15 7 0.13 0.16 -23 0.08 0.02 75
10 13.5 11.45 15 1.42 1.41 1 0.53 0.17 86

100 149.19 117.15 21 14.43 14.16 2 4.9 1.71 85
Solaris

1 1.4 1.28 9 0.02 0.02 0 0.15 0.04 73
10 14.93 12.34 17 0.17 0.16 6 1.45 0.21 86

100 155.09 127.41 18 1.67 1.61 4 14.31 2.15 85
IRIX

1 1.37 1.23 10 0.02 0.02 0 0.15 0.04 73
10 14.65 12.27 16 0.17 0.16 6 1.42 0.21 85

100 163.97 132.12 19 1.7 1.6 6 14.76 2.07 86

IRIX
MR−AFS

Table 3 Selective caching performance. This table compares the elapsed (wall clock), user, and system times
when reading a file, for three file sizes in three configurations: a Solaris cache manager with a conventional
AFS server, an IRIX cache manager with a conventional AFS server, and an IRIX cache manager with an
IRIX MR-AFS server. Each test compares the caching and non-caching (bypass) performance and the per-
centage improvement shown by the bypass code.

Combined Selective Caching and Split Path Performance

Elapsed Time User Time System Time
Size Cach Comb Impr Cach Comb Impr Cach Comb Impr
MB s s % s s % s s %

Config

1 2.11 0.42 80 0.13 0.16 -23 0.07 0.02 71
10 15.38 3.37 78 1.47 1.43 3 0.55 0.14 75

100 155.27 26.83 83 14.55 14.32 2 5.42 1.72 68

1 1.51 0.24 84 0.15 0.15 0 0.07 0.02 71
10 15.3 2.56 83 1.43 1.45 -1 0.55 0.11 80

100 157.94 29.21 82 14.28 14.3 0 5.54 1.73 69

1 0.9 0.26 71 0.15 0.14 7 0.07 0.03 57
10 14.83 2.61 82 1.43 1.39 3 0.55 0.16 71

100 152.27 27.9 82 14.72 14.23 3 5.44 1.8 67

Solaris

Table 4 Combined performance. This table compares the elapsed (wall clock), user, and system times when
reading a file, for three file sizes, in a single configuration with a Solaris cache manager and a conventional
AFS server. The test was repeated three times.

already been changed to accommmodate selective
caching, this had the effect of implementing the com-
bined features. Although the two features are separa-
ble, we did not create a version implementing split
path processing only.

Again, we measured the performance of our combined
implementation by repetitively flushing a test file from
the client AFS cache and measuring the time to fetch
the file. We used the same file sizes as before, and
measured steady-state performance by discarding ini-
tial runs. The results are shown in Table 4.

Combining selective caching and split path process-
ing, we observe a remarkable average reduction of
80% in elapsed time for file transfers across all file
sizes tested. For example, the 100 MB file is trans-
ferred over five times faster, in less than half a minute

as opposed to over two and a half minutes. Figure 4
shows these results graphically for the 100 MB file.

Figure 5 compares throughput versus file size for the
caching and combined selective caching and split path
cases. Data for Figures 4 and 5 are taken from the
first row of Table 3; the remaining rows show similar
results.

While much better than the caching figures, we note
that these throughput values are one quarter of those
observed in the Rx protocol stack measurements dis-
cussed in Section 7.1. There are two main differences
between the protocol stack measurement code and the
combined implementation: the latter implements the
full AFS client and server, not just the Rx layer; and
the AFS client runs in the kernel. We were not able to
duplicate Table 2 for the combined implementation.

-10-

10
0

M
B

 tr
an

sf
er

 ti
m

e,
 s

0

50

100

150

Elapsed User System

Combined

Caching

Figure 4 100 MB transfer time. This
graphs compares elapsed, user, and sys-
tem time consumed for the caching
transfersvs. cache bypass and selective
caching combined.

However, we believe the disparity in throughput is
mostly due to CPU costs in the combined implemen-
tation; this is corroborated by the sharp drop in
throughput for the protocol stack measurement when
ASCII-mode FTP is selected. This supports the
notion that our testbed is CPU-limited, and that the
performance of our implementation will improve
when ported to a platform with a faster CPU.

8. Future Work

While the results of this work have been successfully
demonstrated in the laboratory, sev eral issues remain
to be addressed before this can be considered a robust
implementation suitable for general deployment. A
physical or logical link failure occasionally causes the
associated kernel ATM listener to fail gracelessly,i.e.,
the cache manager crashes. This must be fixed, and
in-progress Rx calls correctly dealt with, and the ATM
link state should be reset so future Rx calls will
attempt to recreate the connection.

The link-level metrics have not been extensively tuned
for native ATM networks. It will be necessary to
deploy to or simulate a congested ATM network in
order to adjust link parameters such as retransmission
timeouts appropriately.

Currently, the combined implementation provides
native ATM connectivity only between AFS clients
and servers. In the MR-AFS domain, it is useful to
extend ATM connectivity between residencies, so the
benefits accrue to those transfers as well.

File size, MB

T
hr

ou
gh

pu
t,

M
B

/s

1 10 100

1

2

3

4

Combined

Caching

Figure 5 Throughput vs. file size.
While the caching case shows poor per-
formance and little improvement with
file size, cache bypass and selective
caching combine for greatly improved
throughput that increases with file size.

9. Conclusion

We hav e discussed two enhancements to the AFS dis-
tributed file system intended to improve the perfor-
mance of large file fetches over high-speed networks:
selectively bypassing the client disk when local
caching is of little benefit, and implementing a high-
performance native ATM connection between AFS
client and server.

We hav e implemented these enhancements in our lab-
oratory and measure an 80% reduction in the elapsed
time required to fetch a large (100 MB) file, while
retaining compatibility with unmodified AFS clients
and servers.

Some work remains to develop a robust implementa-
tion suitable for general deployment, including tuning
for performance in congested ATM networks, and
graceful handling of failed ATM links. It is also nec-
essary to evaluate the results of our work on machines
faster than those available in our laboratory.

10. Acknowledgements

We thank Pradip Patel of Information Technology
Communications Services for making the Cisco 5500
and associated ATM module available to us for the
duration of our project, and for getting the switch to
work with our ATM cards when no one else could.

-11-

Thanks also go to Seth Meyer of the Information
Technology Division’s Login Team for lending us
Ultra 1 Solaris machines. Timely access to these
machines was essential to the successful completion
of our project.

Sushila Subramanian helped us in many ways, includ-
ing conducting porting work and performance tests at
the sponsor site and in general being an excellent liai-
son between our project team and the sponsor. We are
grateful for her assistance.

Marcus Watts provided Solaris kernel expertise,
divined the kernel XTI library API, and implemented
much of the ATM Rx packet routing and MTU code.

Bob Hyer of IBM kindly supplied us with patches for
the cache manager locking code, and provided valu-
able insights.

This work is supported by the Naval Research Labora-
tory under Grant No. N00173-98-1-G017.

References

1. J.H. Howard, “An Overview of the Andrew File
System” in Proc. Winter USENIX Conf., p.
23−26, Dallas (February, 1988).

2. M.T. Stolarchuk, “Faster AFS” inProc. AFS
Users Group (Spring, 1992). Available at
http://www.citi.umich.edu as CITI
Technical Report 92-3.

3. C.J. Antonelli, W.A. Doster, and P. Honeyman,
“Access Control in a Workstation-Based Dis-
tributed Computing Environment” inProc.
IEEE Workshop on Experimental Distributed
Systems, Huntsville (October, 1990). Available
athttp://www.citi.umich.edu as CITI
Technical Report 90-2.

4. “NRL Motion Imagery Lab (MIL)” in
http://www.nrl.navy.mil/CCS/
people/kern/HDTV/.

5. “Survivors of the Shoah Visual History Founda-
tion” in http://www.vhf.org/.

6. “Clementine - Deep Space Program Science
Experiment” in http://www.nrl.navy.
mil/clementine/.

7. Jonathan S. Goldick, Kathy Benninger, Christo-
pher Kirby, Christopher Maher, and Bill
Zumach, “Multi-resident AFS: An Adventure in
Mass Storage” inProc. Winter USENIX Conf., p.
47−58, New Orleans, LA (January 16-20,
1995).

8. Bob Sidebotham,Rx: A High Performance
Remote Procedure Call Transport Protocol,

Information Technology Center, Carnegie-Mel-
lon University (February, 1989).

9. Thomas J. Hacker,Cache Bypassing in AFS
(1992). Unpublished work.

10. Berny Goodheart and James Cox,The Magic
Garden Explained: The Internals of UNIX Sys-
tem V Release 4, an open systems design, Pren-
tice-Hall (1994).

11. Bob Hyer, personal communication, Transarc
Corporation (July, 1999).

12. Bob Hyer, personal communication, Transarc
Corporation (July, 1999).

13. Jim Griffioen and Randy Appleton, “Reducing
File System Latency using a Predictive
Approach” inProc. Summer USENIX Conf., pp.
197-207, Boston (Summer, 1994).

14. Brian Noble, M. Satyanarayanan, and Morgan
Price, “A Programming Interface for Applica-
tion-Aware Adaptation in Mobile Computing”
in 2nd USENIX Mobile and Location-Indepen-
dent Computing Symposium, pp. 57-66, Ann
Arbor (April, 1995).

15. Todd A. Anderson and James Griffioen, “An
Application-Aware Data Storage Model” in
Proc. USENIX Conf., pp. 309-322, Monterey,
California (June, 1999).

16. W. Richard Stevens,UNIX Network Program-
ming, Volume 1: Networking APIs - Sockets and
XTI, Prentice-Hall (1997).

17. Dennis M. Ritchie, “A Stream Input-Output
System” in UNIX Research System Papers, p.
503−511, Murray Hill (1990).

