CITI Technical Report 01-3

Improving AFS Performance via Selective Caching and Native ATM AALS

Charles J. Antonelli, Kevin Coffman, Jim Rees

{cja,kwc,rees}@citi.umich.edu
http://www.citi.umich.edu/

ABSTRACT

We describe two enhancements to the AFS distributed file system intendeddeeithprperfor-

mance of large file fetches over high-speed netwo8ekective caching AFS bypasses the client

local disk when fetching files, which improves the performance of applications such as streaming
video, for which local caching is of little benefit, and gives client processor and cache resources
to applications for which local caching is an advantag#it-path AFS augments the conven-
tional UDP-based connection between AFS client and server with a "fast path" over native ATM
AALS5 for file data fetches.

These enhancements combine to reduce the elapsed time of large (100 MB) file fetches by 80%
in our laboratory environment.

12 February 2001

Center for Information Technology Integration
The University of Michigan
Ann Arbor, Michigan 48103-4943

Improving AFS Performance via Selective Caching and Native ATM AALS

Charles J. Antonelli, Kevin Coffman, Jim Rees

{cja,kwc,rees}@citi.umich.edu
http://www.citi.umich.edu/

1. Introduction storage and was connected to a 10 Mbps network [3].

We describe two enhancements to the AFS [1] wideln this environment, AFS is an excellent alternative to
area distributed file system intended to ioyarthe per- local disk storage: it provides crucial semantics such as

formance of large file fetches over high-speed networks? consistent local view of a global distributed filesys-
Solecti hina AFS b he cli local disk tem; it provides good security via strong encryption for
ective caching ypasses the client local dis authentication, authorization, and access; it introduces

\(/jvhen fe_tc_:hlnfg flles.ﬂth caching _dlsat_>led, g‘_Fslmethe powerful concept of volume-based storage aggre-
ata arriving from a file server are given immediately to ation; it makes large amounts of centrally managed

t?.e re:qlfestlrglaf plllc_:r?no_n, and arehnever ;:ached ontf sk storage available to resource-poor workstations;
client'’s local disk. is improves the performance of 44t qoesn't run too slowly either.

continuous media applications (such as streaming video ,))
players) by eliminating disk latencies from the data pro-Today’s commodity platforms contain 750 Mhz proces-

cessing pipe. This is especially advantageous when tHRO"S: hundreds of GB of local disk capable of. transfer-
network is faster than the local disk. As a secondaryind data at better than 20 MBps, and are routinely con-
benefit, selective caching frees client processor anfected to fast networks of 100 Mbps to 1 Gbps. More-

cache resources for use by applications for which loca#lVe™» AFS has been ported to high-performance plat-
caching is an advantage. forms such as the SGI Origin 2000 family, members of

i h AFS h ional UDP-b dWhich contain up to 512 R12000 processors each run-
Sp|t-pat. augments t € conventiona r-base ning at 400 Mhz, support peak system bandwidth of
connection between AFS client and server with a

"faSEGO GBps, and in today’s datacenters are connected to

pgth" over native ATM AALS5 for. file data fetches. ..\ orks exceeding OC-12 (622 Mbps) speeds.
With split-path AFS enabled, file contents travel

between file server and client over a native ATM AALS N such environments, AFS is generally perceived to be
connection. Taking full advantage of the larger MTU Miserably slow. Trapped in layers of network code and
available and eliminating the UDP network layer, split-fileSystem implementation, AFS cannot take advantage

path AFS greatly improves transfer rates compared t8f these higher processor and network speeds to remain
conventional IP-based networks. a viable alternative to local disk storage. AFS does

Th h bi q he el continue to provide access to data stores far larger than
ese enhancements combine to reduce the eapsgguld be accommodated on a local disk, but the perfor-

time of Iarge (100 MB) file fetches by 80% in our labo- mance gap is so large that users have substantial incen-
ratory environment. tive to avoid using AFS.

In the remainder of this paper, we define our goals an@)ur work thus reflects the following goals:
motivations and describe our testbed. Following a short '

overview of AFS, we describe our implementation on® Performance. Our primary goal is to improve
the Sun Solaris and SGI IRIX platforms, analyze our AFS performance in today’s networked environ-
experimental results, and close with a discussion of ~ Ments such that AFS continues to be a viable
future work. alternative to client local disk.

. Compatibility. Due to the size of the installed
2. Goalsand Motivations base of AFS-capable machines, it is vital that our
It has long been known that AFS is slow [2]. modifications allow an unmodified AFS client to

. . interoperate with a modified AFS server and
In fact, as processor, disk and network speeds continue vice-versa.
to improve, AFS continues to get slower. When AFS]
was developed over ten years ago, a typical client work: ~ Mass Storage. Because truly large collections of
station sported 3 MIPS and 60 MB of fairly slow disk data, such as HDTV images [4] or the Shoah [5]

10 Mbps Ethernet

and Clementine [6] data sets, are too large to be
to campus

stored feasibly on magnetic disks, mass storage
systems combining slower media of higher A
capacity with faster media of lower capacity are
popular for such data. It is important that our br |
modifications apply in this arena, in that they oc-3 /| Solaris 2.6
interoperate with MR-AFS, a multi-resident ver-
sion of AFS designed to work with mass storage
devices by Goldick et al [7]. hf
Solaris 2.6 |

3. AFSOverview Cisco

AFS [1] is a wide-area distributed filesystem that per- 5500
mits transparent access by clients to files stored on <[]
servers. Client programs access these files as though
they were local, using conventional file access calls via
a cache manager running in the kernel, accessing

remote files via a user-levéle server running on the]
server. Client and server platforms are connected by offsite
conventional IP networks. (test)

bullrun
IRIX 6.5

harpersferry
IRIX 6.5

Some of the innovations introduced by AFS include the v
implementation of a single global filesystem indepen-
dent of client configuration; the provision for good

security via strong encryption for authentication, autho-

Figurel CITI experimental testbed. One
of the Cisco 5500 ATM ports is connected
to a LANE module, a second provides

rization, and access; and the organization of filesystem
data intovolumes, which represent collections of files
that are treated similarly with respect to storage loca-

connectivity to an offsite test ATM net-
work. br andhf are shown connected to
the remaining two ports.

tion, quota management, and backup.

AFS uses a remote procedure call component called xnd 2 GB of disk running IRIX 6.5.6m; and

for communication between file servers and cache ma rarpersferry, an SGI 02 with a .180 Mhz_ R5000,

) . . . 4 MB of memory, and 2 GB of disk running IRIX
agers [8]. Rx is a connection-oriented, streaming RP% 5 3f
protocol built on top of UDP/IP, on which it depends ="~
for low-level packet addressing and delivery. A clientEach system is permanently attached to a 10 Mbps Eth-
and server communicate by establishing an Rx conne@&net for Internet connectivity and legacy traffic. ATM
tion between themselves; this connection may bé&onnectivity is provided by a four-port OC-3 ATM card
authenticated and supports data encryption. An RPC j§cated in a Cisco 5500 switch; LANE services are pro-
implemented via Rx calls made over such a connectior¥ided by software in the switch. The Sun and SGI
Rx provides reliable communication via packet ordermachines are equipped with Fore Systems (now Mar-
ing, elimination of duplicates, and selective retransmisconi) SBA-200E and PCA-200E OC-3 ATM cards,
sion of dropped packets_ A Windowing protoco| per-respectively. All machines share two available ATM
mits bulk data to be transmitted efficiently. Data is senPorts; this permits us to exchange ATM traffic between
over an Rx connection iohunks, nomina”y 64 KB in two hosts at a time. The Cisco switch also prOVideS
size. Some number of Rx packets are usually transmi€onnectivity (and LANE services) to an offsite test net-
ted as a Sing|q'umbogram packet for better perfor- work; it is Usua"y ||ght|y loaded. All of our ATM traf-
mance. fic passes between the two shared ports.

All hosts run an AFS 3.5 cache manager. Bofhand

4. CITI Testbed harpersferry run an AFS 3.5 file servetlif was

Our experimenta| testbed shown in Figure 1 consists (ﬂiven 4 GB of additional external disk Storage for this
four systemsbr, a 167 Mhz Sun Ultra 1/170 with an Purpose.harpersferry also runs an MR-AFS 3.4

83 Mhz system bus, 64 MB of memory and 2 GB ofserver;T both servers access the same AFS partitions,
disk running Solaris 2.6hf, a 167 Mhz Sun Ultra but may not be run concurrently.

1/170 with an 83 Mhz system bus, 256 MB of memory

and 2 GB of disk running Solaris 2.6u111run, an
SGI 02 with a 175 Mhz R10000, 128 MB of memory, T As of this writing MR-AFS has not been upgraded to version 3.5.

5. Selective Caching Implementation callsafs GetDCache. The last of these is responsi-
We began our development work on the Solaris platble for verifying that a DCache (AFS data cache) entry
form as it was more familiar to us and because we hagXists for the file and for determining the latest version
complete operating system source code. Developmef the file. afs_GetDCache may be called with vari-

of the IRIX solution was delayed pending completion®US flags that dictate whether it should merely verify
of the Solaris prototype. that a DCache entry exists, or whether it must ensure

We added cod ol lecti hi that the latest file data for that file are present in the
e added code to implement selective caching (0CCgjjgnyg cache; in the latter case, if the cached copy of

sionally known as cache bypass in the code) for reag]e file is out of date, the file contents are fetched a

operations. Our requirements do not include imIOIe'chunk at a time via Rx streaming RPC from the server
menting selective caching for writes, which simplifies

: . i . and stored to the AFS disk cache.
our implementation and the following analysis some-

what. After calling afs GetDCache, afs GetOnePage
enters a loop callingpage lookup, a Solaris VM
5.1 Solaris Overview routine to determine whether the page already exists in

the kernel's virtual memory. If not, it calls

Initially, we examined some previous co_de written at ¢ ustrategy to read the data from the disk cache
CITI that implemented a version of selective caching in . e user's virtual memory

the RS/6000 AIX kernel [9]. We learned quickly that
the Solaris and_ AIX kernels are very different |n_the5.2_ Solaris M odifications
way they treat filesystems and virtual memory; neither

the previous design nor the previous code were viable. Our modifications to Solaris are grouped into two cate-
In the Solaris k | the vi | d h%ories: changes to handle uncached fetches from the
n the Solaris kernel, the virtual memory system and the, server, and changes required to iover perfor-

filesystem are not independent _[10]‘ Solaris treat?jnance in the presence of both prefetching and locking.
almost all of virtual memory as a filesystem cache, an

a filesystem must be integrated with the virtual MemOonk 5 1 ncached Fetches
system to provide consistency of data when files are”

accessed both by memory mapping and by the conveffor our selective caching implementation, we believed
tional read/write operations.t that by not writing data to the disk cache file and then

. . _ reading them back into virtual memory a page at a time
The AFS cache manager interacts with the Solaris ke(,-ve would impove performance considerably. We
nel as follows. When aead call is made from a user changed theafs getpage vnode op to deter.mine
process to read dat‘."’l fro"m a file {rafS, the AFS whether the file should be cached or not. If not, it calls
filesystem vnode routine ("vnode opifs_vmreadis o, hew routineafs GetOnePageNoCache instead
invoked. afs_vmread andafs vmwrite both call o ¢ ootonepage. The former is very similar to

a common routine afs—nfsrd:]’r’f_IWh'Ch callsh the latter, except that it does not Gafls GetDCache
al{fs—ve;‘;lfyvﬁaChe tol ensure t ehl e status on the __ e qon't need to maintain a DCache entry for non-
client reflects the actual status on the server, to verify._ .4 files. Likeafs GetOnePage, our routine

that ag ﬁFSd vnofde ex;]sts for the file on the .C“ent\’N".i?]_ allspage lookup to determine if the required page
to read the data from the server a page at a time. Withig already in virtual memory. If it is not, instead of call-

thls_read Ioﬁpﬁfs—nfsr%wz %allshse\éerlals_eglznap | ing afs_ustrategy to read the disk cache file, it
routines, which are provided by the Solaris kernel tq imply allocates virtual memory to hold a chunk of the

manage segments of virtual memory for both the kern le and then calls the AFS server to get the data.

and user processes, as well as the AFS routine responsi-))
ble for copying data from kernel to user SpaceUnllke the caching case, when the data arrive from the

AFS UIOMOVE. The latter causes a page fault if the S€Tver they are written directly into the kernel’s virtual

data are not presengg., if this is the first time this MemMOry segment. A pair of new routinesis_Get -
AFS file has been accessed by this client. NullCache andafs_NullCacheFetchProc, are

used to accomplish this. These routines are similar to
the UFS and in-memory AFS cache routines. We con-
sidered making the null cache analogous to the UFS
t Although mapping is the preferred way of accessing files anddnd memory caches already supported by the AFS
many Solaris system utilities have been rewritten to use it, the needode; however, doing so would have required the

for the conventional calls remains. So we f(n{t, which now uses unnecessary Overhead Of us|ng the GetDCache
memory mapping, still opening and reading a single byte from every -

file it maps — to update the file read time. depends on the filesystem to determine whether a filesystem’s page is
t Actually, getpage is called for every page access as Solarisup to date in virtual memory.

To resolve the page fault, Solaris calls thetpage
vnode op,f which callssfs_GetOnePage, which

routine. This turned out to be a good decision, as we’ll
see later.

After implementing this strategy, we compared its per-
formance to the caching case. Attempting to log kernel
timing data viaorintf generated too much additional ~ rdwr— ——
overhead and resulted in many lost timing records, SO ygg5q1_|
we implemented a ring buffer in the kernel to accumu-

late timing data and a user-level program to dump the fead2— ——
data after completion of a test. Contrary to expecta-
tions, the improvement was slight, less than 5%. Inves- | ‘ ‘ ‘ ‘
tigation showed that while the caching code does write 0 0.25 0.5 i 0.75 1
data to the disk cache file and then read them back into Elapsed time, s
virtual memory, this is not expensive because virtual
memory is a filesystem cache. The data normally
remain in VM between writing and subsequent read-
back, replacing disk I/O with a simple memory copy.
When it is necessary to do the disk I/O, it is usually
because the file data are not cached on the client at all rdwr— ——
— in which case the network time dominates.

readl— - - - -

5.2.2. Prefetched Data read2—

Not satisfied with the previous results, we looked else-
where. The original code attempts to prefetch chunks ‘ ‘ ‘ ‘
from the fileserver when it recognizes that the user is 0 0.2 _0'4 0.6
accessing the data in a sequential manner; in effect, a Elapsed time, s

fetch for the anticipated next chunk of data is sent to the Figure 2 Locking effects. The diagrams
fileserver while the current request is being processed. show sequences @ffs nfsrdwr calls
Code for this exists imfs nfsrdwr, but it depends and resulting Rx data fetches, plotted

on the existence of a DCache entry that we don’t have against time. The top diagram shows
afs nfsrdwr calls and Rx fetches

for non-cached files. blocking each other; the bottom diagram

We developed thefs PrefetchNoCache routine, shows the improved concurrency exhib-

called from an asynchronous kernel daemon so that it ited by the cache bypass code with the
. .) . locking patches applied.

would not interfere with the user’s original request, to

prefetch chunks for non-cached files. Interestingly,

instrumentation of the existing prefetch code Showeé:oncurrently if they both require a shared lock. This

that it was never prefetching. Concerned that therdcans that the user attempting to read data is blocked

might be an architectural reason for this that WouldWhlle the prefetch of the next chunk is in progress,

interfere with our own prefetch code, we Contacteqd efeating the purpose of the prefetch entirely.

Transarc and were sent patches to fix the existinguckily for us, we do not caltfs_GetDCache for
prefetch code [11]. The patches did not ioyer the non-cached files. The user's read operation requires
performance of the caching case. Upon further investionly a read lock on the vcache and the prefetch can
gation, we suspected that kernel data structure lockingbtain the shared lock without interference. We
was interfering with prefetching. observe a 26% decrease in elapsed time due to the elim-

We received more patches that change the way the Ioc'<r]atlon of this blocking, when compared to the caching

ing of the vnode structures is done during data fetched

[12]. The application of the latter patches caused us tGigure 2 makes clear the effect of locking on concur-
see improvements in our code, but no improvements fdiency, which compares the time necessary to fetch five
the Caching case. The routinefs_GetDCache 64 KB chunks from the fileserver with and without
always gets a shared lock on the vcache entry for th@cking patches. Both graphs shows a sequence of calls
file in question. The caching case prefetch code alstp afs_nfsrdwr, each of which requests a 4 KB
acquires a shared lock. The locking semantics allovpage. If such a request cannot be satisfied from the
only one shared or exclusive lock to be granted at angache, the next 64 KB chunk is retrieved from the
one time, which prevents two processes from running€rver using two Rx calls: a fetch of the count of the

number of bytes to be fetchedead1) followed by a call afs NoCacheStrategy which calls
fetch of that number of bytes of datee@d2). Inthe afs GetNullCache to get the data from the server
top graph, without locking patches, the first pageand put them into virtual memory.

request triggers both a chunk request and a prefetch for

the next chunk; because of locking, the two requests.3.1. Non-cached File Writes

occur sequentially. Thereafter, a prefetch blocks accesge qo not implement non-caching file writes. This
to the previous chunk — already present in the cache goy1d seem to require synchronous writes to the file-
while the prefetch completes. The bottom graph show§grer which would slow down the caching writes unac-
the improvement: the initial fetch and subsequentepiably. When a non-cached file is opened for writing,
prefetch occur concurrently; thereafief,s nfsrdwr e file js transitioned into caching mode; when the last
calls overlap with Rx fetches, and we observe a 40%iter closes the file, it becomes non-caching again.
decrease in time required to fetch the five chunks.t 1he file’s cache and VM pages are flushed on each tran-
These measurements were taken from our Solaris cack#ion. We assume such transitions are infrequent.
bypass implementation; the results for the Solaris

caching implementation are similar to those shown irb.3.2. Caching Strategies

the top graph. We recognize that the development of application-

o aware caching strategies continues to be an active area
5.3. IRIX Modifications of research with diverse and potentially complex solu-
For the Solaris work, we had access to the kernel sourdmns [13, 14, 15]. We decided not to implement any of
code and documentation [10]; these were invaluableghese automated caching strategies, relying instead on a
For the IRIX work, we didn't have access to either.simpler model proposed by Hacker [9], in which the
However, we were able to infer enough informationAFS volume becomes the unit of cacheability. All files
from the existing AFS code for IRIX to perform a port located in a given volume observe the same caching
of the Solaris work. To our good fortune it appears thastrategy, which is determined from the volume name;
the IRIX virtual memory code does more of the work ofindividual files may still observe a differing strategy as
managing VM pages for the filesystem than doe®xplained below. We believe that volume-based
Solaris. This port was made easier by the experienceaching is a good idea, because it permits caching deci-
we gained with the Solaris work; we were able to reussions to be made without requiring special file names or
several of our routines without modification. other application-level changes, while retaining the

The IRIX read vnode op calls the AFS routine ability to influence those decisions in a way transparent

afs xread. Both afs xread and afs xwrite [0 applications. More experience with the implementa-

call a common routin@fsrwvp. This routine calls ton will help validate this idea.

the IRIX routinechunkread. Comments in the AFS We modifiedafs_ lookup to check the name of the
code led us to believe thetrategy vnode op is AFS volume in which the file resides to determine
called fromchunkread. Thestrategy vhode opis whether the file should be cached. If the name of the
responsible for getting the data from the fileserver andolume contains two leading underscores, such as
putting them into VM. ___video.data.volume, then files within the vol-
afsrwvp calls chunkread for a page of data at a Ume are, by default, not cached on th_e client; _otherwise,
time. This results in a call tafs strategy if the files from the volume are cached. This behavior can be

page does not already reside in VM. It appears thaqverridd_en on a p_e_r-file basis: a file _in a non-cac_hing
chunkread determines page residency, whereas thiy0lume is cached if its name begins with two plus signs,
task was left to the filesystem in Solaris. We change@S in++CacheThisFile; a file in a caching volume
afsrwvp to request data a chunk at a time rather thaﬁ{"'” not be cached if fthe file name begins with two lead-
a page at a time, to obviate one-page 1/O requests to tid Underscores, as in DontCacheMe.

fileserver. In situations where a given file or volume name cannot

We also changedfsrwyp to queue a request for our be altered to achieve the desired caching behavior, we

prefetch routine, which does not depend on a DCachigPlemented @ioct1 call to set the caching behavior

entry, rather than the normal DCache-based request. (A" & file. However, should the file entry be discarded
afs strategy, we changed the code to fetch the from the AFS VCache on the client, any caching behav-

data from the server via routines similar to the routinedor set in the entry by theioct1 call is lost.
created for the Solaris port. For non-caching files, we

t The gap near the center of the bottom graph is probably due to
missing trace records, but requires further investigation.

6. Split Path Implementation

Again, we began our development work on the Solaris

platform, intending as before to port our solution to

IRIX when documentation on the in-kernel ATM sup-

port became available for that platform. However, our

efforts to secure such documentation were not success-

ful, and in this case we had no existing AFS kernel code -
to study. This precluded an IRIX port.

Our overall strategy is to establish a point-to-point
ATM connection between AFS client and server, and

route data fetched from the server over this connection. Figure 3 Split-path ATM connections.
Other client/server communcations continue to use the Clientl has established an ATM connec-
existing Rx connection. This is a classic split-path tion to Server, but there is no ATM con-

. ; : , nection between Client2 and Server.
design in which file data can take advantage of ATM’s Clientl. file fetch traffic uses our modified

higher bandwidth and MTU sizes, while the smaller Rx over the ATM connection. while
control packets travel over a control channel of smaller Client2 fetch traffic uses conventional Rx

capacity without cluttering the data channel.t over UDP. All clients and servers use
conventional Rx for traffic other than file

We run a modified version of the Rx protocol over the fetches (not shown).

data channel in which the basic Rx packet size has been
increased to 64 KB; Rx jumbograms are disabled and ooy exists to that server. If not, the servers IP

Rx packets are transmitted individually. In addition, we,4ress is found in the cache manager's data structures

streamlined the protocol layering by removing the UDP,q an Rx connection structure is allocated. This con-

and IP layers from the protocol stack; Rx passes packjetion structure points to a peer structure that main-
ets to the ATM network directly. tains information pertinent to communicating with the
ATM is by nature a stateful connection-oriented proto-server. In this way multiple Rx connections can share a
col. User processes access the ATM hardware via asingle peer structure.

XTI library; the Solaris kernel can access ATM via 8,fs GetDCache then makes a conventional Rx

mostly undocumented kernel XTI library.3 While the streaming RPC call to the server using the Rx connec-

AFS file server is a user process and can use the USQS, shtaining data in chunks and passing them to the

level XTI library, the cache manager resides in the kerygre| for further processing as explained in the section
nel and must use the kernel library. In the absence qf;, solective caching

kernel documentation, we were forced to assemble the
portions of the kernel XTI API needed for the cacheg 5 giaris Modifications

manager by examining the Solaris kernel sources and] o .
extrapolating from the user library API. Our design augments the existing AFS client and server

connections with native ATM connections accessed

One issue with the XTI protocol is the inherent Sca"ngthrough XTI library calls. Fetch requests and replies
limitation caused by point-to-point ATM CONNECiONS. yaye| gyer ATM if it is available and over a conven-
This limits the number of ATM-capable clients with 54| Rx/UDP connection if not. An ATM connection
v_vh?ch a given server can maintain connections, aqd alsig attempted by a cache manager the first time a fetch
limits the number of ATM-capable servers to which ayq 65t occurs for a given server and the result of the
given client can connect. We have not been able Qempt is remembered for future requests by that cache
investigate these limits using our testbed. manager. ATM connections persist after creation for
future use. Split-path connectivity is shown in Figure 3.

_ Our split path changes here are grouped into four
Once the AFS cache manager has determined that @,5ses: NSAP address discovery, ATM connection

file’s contents must be_ fetched from the Ser_’er’management, Rx packet routing and MTU manage-
afs GetDCache establishes a new Rx call via ment. Each is treated in more detail below.

rx_NewCall, which determines if an Rx connection

6.1. Solaris Overview

+ On machines with a single ATM connection providing both native 6-2.1. NSAP Address Discovery

ATM and LAN Emulation, this distinction reduces to a less efficient In order to establish an ATM connection. tNSAP
control channel. . '
address of the remote endpoint must be known to the

T The XTI [16] facility originates from System V streams [17] while . S .
eliding none of its complexity. connection initiator,i.e., the AFS cache manager. A

new RXAFS GetNSAP RPC allows a cache manager of the remote endpoint, a handle to the ATM connec-
to interrogate a fileserver; if the server supports ATM ittion, and the process ID and state (runniagdle) for
returns its NSAP address, otherwise the RPC fails. kernel ATM listeners. Multihomed file servers continue
For a server to respond to the new RPC, it must be abf@ be supported (multiple IP addresses can map to the
to discover its endpoint address. The server firsBame NSAP address), but a file server is assumed to
attempts to retrieve its address from a configuration filgP0SSess only one ATM connection.

if it exists; missing or malformed data in the file)

prohibit the server from establishing ATM connections.6-2-3- Rx Packet Routing

If the file does not exist, the server probes the ATMRecall afs GetNullCache makes an RPC call to
hardware to obtain the NSAP address.t Implementinghe file server when higher-level cache manager code
the operations in this order allows an administrator tdhas determined that a file must be fetched from the
prevent a file server from accepting ATM connectionsserver. We inserted code to check the state of the peer
even though it possesses operable ATM hardware, arfthg; if set to indicate a valid ATM connection to the
to prevent or override ATM hardware probes. server exists, a corresponding flag is set in the call

Once a cache manager succeeds in establishing an ATRfucture associated with the current RPC call, and pro-
connection, the ATM listenef.e., the AFS file server, CesSing continues to prepare packets for transmission to
needs to obtain the NSAP address of the initiator ifh€ server. The call structure flag is later checked in

order to send back replies. This information is avail-*xi_Send and rxi_sendList; if set, the ATM

able to the listener at connection establishment via thgonnection handle is placed in the associated packet

user-level XTI library. structure. Later, the low-level routinexi Send-
Packet sends the packet via the stored handle, effec-
6.2.2. ATM Connection M anagement tively routing the packet either via our ATM or the con-

ventional UDP connection to its destination. Packets

When a cache manager needs to create a new Rx CO&Sntaining data from the file server are similarly routed

nection fo a file serverxx__Newco_nnection 'S back to the cache manager via the correct kind of con-
called. We added code to this routine to establish thﬁection by using the server's copy of the ACT

ATM connection as well. If the current state of the

ATM connection _to the server Is not known, an NSAP6.2_4_ MTU Management

discovery RPC is attempted; if successful, the ATM _)

connection is created and the NSAP and IP address 8t order to achieve maximum performance over the
the server are remembered. If the RPC fails or thé\TM connection, we need to send packets at the native

server indicates it does not support ATM, this is cache®!TU Size, 64 KB. Accordingly, a set of MTU-related

in the peer structure to prevent future callgo New- data is added to the peer structure for an ATM-capable
- peer, augmenting the data already kept for the conven-
. . _ tional Rx connection. This permits link level metrics
Both cache_ manager and file server requwA'E_M_ lis- and so forth to be kept independently for both kinds of
tener to wait for a_md process Rx _pa_cke_ts arrving oveleonnections. All ATM-related MTUs are set to the
the ATM connection; these are similar in nature to th

. . hative ATM MTU size less the size of the Rx header.
Rx listeners that already exist. On the server the ATM

listener is implemented by a pthread created when thi¥flinimal tuning of Rx’s retransmission logic has been
server accepts an ATM connection; it accepts and prdjone to date. Retransmissions are not much of an issue
cesses incoming packets until the connection is close@Ver uncongested ATM connections, but for other con-
after which it exits. On the client, a small pool of ker-ditions more work needs to be done here.

nel ATM listeners is created when the cache manager is

initialized. These listeners never exit; an idle listener is7. Experiments

chosen from the pool and allocated to a newly createghs sections summarizes our experimental results. All
ATM connection. When the connection is closed, theexperiments were conducted on the CITI testbed.
listener is returned to the pool.

A global ATM connection table (ACT) holds state 7.1. Rx Protocol Stack M easurements

information about each open ATM connection for bothpitially, we obtained some comparative measurements
cache manager and file server, including the NSAR, 5 pair of available 70 Mhz SparcServer 5 machines,
address of the remote endpoint, the IP address and pii.p, equipped with a 23 Mhz system bus, 1 GB of disk
t Our implementation probes the hardware by issdingt1s to ~ and running Solaris 5.6; one machine contains 32 MB
/dev/£1d; this is supported for ForeThought 5.0.0.8 and 5.2.0.3,0f memory, the other 64 MB. An OC-3 ATM network
but not for other releases or vendors. connects the two machines. The goal of these

Connection from retrying indefinitely.

measurements is to compare the performance of variossccordingly, we built a version okvc send that
layers of the Rx protocol stack in order to determinecliminates the UDP layer, instead communicating
bottlenecks, not to obtain performance numbers comdirectly using native ATM, and ran the native
parible to larger and faster machines such as those ruavc_send with both 9 KB and 64 KB packet sizes.
ning at the sponsor’s site. We repeated some of the tests on the newly-arrived

The measurements of the Rx protocol stack include th¥/!tra 1 machines; the results are shown in Table 2.

raw ATM AAL5 bandwidth as measured by the The results show an almost four-fold increase in perfor-
svc _send/sve_recv utility that is supplied with mance when eliminating UDP from the Rx protocol
the ATM card; UDP throughput as measured bystack; Rx performance is approaching the physical
sendudp/recvudp, a locally-written instrumented OC-3 limit, and this performance occurs while Rx is
UDP packet sender and receiver; and Rx throughput ggocessing packets at both ends of the connection.t In
determined by the AFS utilityxtest, which mea- contrast, increasing the packet size had a negligible
sures throughput rates between two user-level proeffect on performance.

cesses. For comparison, we also show TCP throughput

as measured bytp in binary mode. The results are 7.2. Selective Caching Results

shown in Table 1. We initially implemented selective caching, with
These results show that native ATM performance igprefetching and without any split-path modifications,
good. However, the UDP layer reduces this by a littlfor both Sun Ultra 1 (Solaris 5.6) and SGI 02 (IRIX
less than half, and Rx performance is dismal at 13.5), as well as MR-AFS on SGI O2 (IRIX 6.5). We
Mbps; this is less than a third of TCP’s performancemeasured the performance of our implementation by
under the same conditions. repetitively flushing a test file from the client AFS

However, observe that the native ATM test is perform-Cache and measuring the time to fetch the file. Steady-
ing little packet processing at either end of the connecState performance was measured by discarding initial
tion. This confirms our suspicions that the network ig'Uns- File sizes of 1 MB, 10 MB, and 100 MB file were
not the bottleneck. We verified this by comparing FTPUSed. The results are shown in Table 3.

binary and ASCII-mode transfers; the latter were signifWith selective caching enabled, an average
icantly slower, probably due to the CR/LF processingmprovement of about 19% in elapsed time is observed
necessary in that mode. This pointed to the CPU asw&hen reading a 100 MB file. We see an 85% average
bottleneck. improvement in system time as well, but the elapsed

From these results we also identified two other likelylime dominates. User time is essentially unchanged.
bottlenecks: the UDP layer itself reduces throughput)

considerably, and while the native ATM test uses packef-3 Split Path Results

sizes of 64 KB, LAN Emulation limits IP packet sizes We implemented split path processing by adding this
to 9 KB, so the smaller packet sizes seem to be hurtingapability to both cache manager and file server, for
UDP throughput, and to a similar extent, TCP. Sun Ultra 1 (Solaris 5.6). As this cache manager had

Rx Protocol Stack Modified Rx Protocol Stac
Test Mbps Test Mbps
ATM 92 Rx/ATM, 64 KB 127
UDP/IP 55 Rx/ATM, 9 KB 126
Rx 12 Rx/UDP, 9 KB 38.5
TCPI/IP 40 Table 2 Modified Rx Protocol Stack.
RY/SGI 35 These tests were run on Solaris 5.6 Ultra
X 1 machines, which are faster than Sparc-

Table 1 Rx Protocol Stack. This table Server 5's. Rx over native ATM shows

shows measurements of the Rx protocol
stack, including native OC-3 ATM, UDP,
and Rx protocols. running on a pair of

performance independent of packet size
approaching the physical OC-3 limit,
while Rx over UDP shows a marked per-

Solaris 5.6 SparcServer 5 machines con- formance drop.
nected by an OC-3 ATM network.. TCP
performance is shown for comparison, as
is the Rx performance on a pair of SGI
machines running IRIX 6.5.

t Both sides of the Rx connection are serviced by user-level pro-
cesses in this test; when serving files, the AFS cache manager uses a
kernel Rx implementation.

Selective Caching Performance

Elapsed Time User Time System Time
Config Size Cach Bypass Impr Cach Bypass Impr Cach Bypass Impr
MB S S % S S % S S %
1 1.24 1.15 7 0.13 0.16 -23 0.08 0.02 75
Solaris 10 135 11.45 15 1.42 1.41 1 0.53 0.17 86
100 | 149.19 117.15 21 14.43 14.16 P 4.9 1.71 85
1 1.4 1.28 9 0.02 0.02 0 0.15 0.04 73
IRIX 10 14.93 12.34 17 0.17 0.16 g 1.45 0.21 86
100 | 155.09 127.41 18 1.67 1.61 4 1431 2.15 85
IRIX 1 1.37 1.23 10 0.02 0.02 0 0.15 0.04 73
MR-AES 10 14.65 12.27 16 0.17 0.16 g 1.42 0.21 85
100 | 163.97 132.12 19 1.7 1.6 6 14.76 2.07 86

Table 3 Selective caching performance. This table compares the elapsed (wall clock), user, and system times
when reading a file, for three file sizes in three configurations: a Solaris cache manager with a conventional
AFS server, an IRIX cache manager with a conventional AFS server, and an IRIX cache manager with an
IRIX MR-AFS server. Each test compares the caching and non-caching (bypass) performance and the per-

centage improvement shown by the bypass code.

Combined Selective Caching and Split Path Performance

Elapsed Time User Time System Time
Config Size Cach Comb Impr Cach Comb Impr Cach Comb Impr
MB S S % S S % S S %
1 2.11 0.42 80 0.13 0.16 -23 0.07 0.02 71
10 15.38 3.37 78 1.47 1.43 3 0.55 0.14 75
100 | 155.27 26.83 83 1455 14.32 P 5.42 1.72 68
1 1.51 0.24 84 0.15 0.15 a 0.07 0.02 71
Solaris 10 15.3 2.56 83 1.43 1.45 -1 0.55 0.11 80
100 | 157.94 29.21 82 1428 14.3 D 5.54 1.73 69
1 0.9 0.26 71 0.15 0.14 7 0.07 0.03 57
10 14.83 2.61 82 1.43 1.39 3 0.55 0.16 71
100 152.27 27.9 82 14.72 14.23 B 5.44 1.8 67

Table4 Combined performance. This table compares the elapsed (wall clock), user, and system times when
reading a file, for three file sizes, in a single configuration with a Solaris cache manager and a conventional

AFS server. The test was repeated three times.

already been changed to accommmodate selective
caching, this had the effect of implementing the com-
bined features. Although the two features are separa-
ble, we did not create a version implementing split
path processing only.

Again, we measured the performance of our combined
implementation by repetitively flushing a test file from
the client AFS cache and measuring the time to fetch
the file. We used the same file sizes as before, and
measured steady-state performance by discarding ini-
tial runs. The results are shown in Table 4.

Combining selective caching and split path process-
ing, we observe a remarkable average reduction of
80% in elapsed time for file transfers across all file
sizes tested. For example, the 100 MB file is trans-
ferred over five times faster, in less than half a minute

as opposed to over two and a half minutes. Figure 4
shows these results graphically for the 100 MB file.

Figure 5 compares throughput versus file size for the
caching and combined selective caching and split path
cases. Data for Figures 4 and 5 are taken from the
first row of Table 3; the remaining rows show similar
results.

While much better than the caching figures, we note
that these throughput values are one quarter of those
observed in the Rx protocol stack measurements dis-
cussed in Section 7.1. There are two main differences
between the protocol stack measurement code and the
combined implementation: the latter implements the
full AFS client and server, not just the Rx layer; and
the AFS client runs in the kernel. We were not able to
duplicate Table 2 for the combined implementation.

-10-

4]
0150 m
GE) (I v
= : : ——— Combined g 3—
g1004 : : - - — Caching o — Combined
E : : :cl 2 ——— Caching
= Lo 2@ <7
0 50— (I o
= ¥ £
8 (I =
—l ﬂ (. H I 1—
00— L1 [Ca o ____
Elapsed User System B
X X X
. . . 1 10 100
Figure 4 100 MB transfer time. This File size. MB

graphs compares elapsed, user, and sys-
tem time consumed for the caching
transfersvs. cache bypass and selective
caching combined.

However, we believe the disparity in throughput is
mostly due to CPU costs in the combined implemen-
tation; this is corroborated by the sharp drop in
throughput for the protocol stack measurement when
ASCIl-mode FTP is selected. This supports the
notion that our testbed is CPU-limited, and that the
performance of our implementation will improve
when ported to a platform with a faster CPU.

8. Future Work

While the results of this work have been successfully
demonstrated in the laboratory, several issues remain

Figure 5 Throughput vs. file size.
While the caching case shows poor per-
formance and little improvement with
file size, cache bypass and selective
caching combine for greatly improved
throughput that increases with file size.

9. Conclusion

We have discussed two enhancements to the AFS dis-
tributed file system intended to ingwe the perfor-
mance of large file fetches over high-speed networks:
selectively bypassing the client disk when local
caching is of little benefit, and implementing a high-
performance native ATM connection between AFS
client and server.

to be addressed before this can be considered a robust we have implemented these enhancements in our lab-

implementation suitable for general deployment. A
physical or logical link failure occasionally causes the
associated kernel ATM listener to fail gracelesiséy,

the cache manager crashes. This must be fixed, and
in-progress Rx calls correctly dealt with, and the ATM
link state should be reset so future Rx calls will
attempt to recreate the connection.

The link-level metrics have not been extensively tuned
for native ATM networks. It will be necessary to
deploy to or simulate a congested ATM network in
order to adjust link parameters such as retransmission
timeouts appropriately.

Currently, the combined implementation provides
native ATM connectivity only between AFS clients

and servers. In the MR-AFS domain, it is useful to
extend ATM connectivity between residencies, so the
benefits accrue to those transfers as well.

oratory and measure an 80% reduction in the elapsed
time required to fetch a large (100 MB) file, while
retaining compatibility with unmodified AFS clients
and servers.

Some work remains to develop a robust implementa-
tion suitable for general deployment, including tuning
for performance in congested ATM networks, and
graceful handling of failed ATM links. It is also nec-
essary to evaluate the results of our work on machines
faster than those available in our laboratory.

10. Acknowledgements

We thank Pradip Patel of Information Technology
Communications Services for making the Cisco 5500
and associated ATM module available to us for the
duration of our project, and for getting the switch to
work with our ATM cards when no one else could.

-11-

Thanks also go to Seth Meyer of the Information
Technology Division’s Login Team for lending us
Ultra 1 Solaris machines. Timely access to these
machines was essential to the successful completion
of our project.

Sushila Subramanian helped us in many ways, includ-

ing conducting porting work and performance tests at

the sponsor site and in general being an excellent liai-
son between our project team and the sponsor. We are
grateful for her assistance.

Marcus Watts provided Solaris kernel expertise,
divined the kernel XTI library API, and implemented
much of the ATM Rx packet routing and MTU code.

Bob Hyer of IBM kindly supplied us with patches for
the cache manager locking code, and provided valu-
able insights.

This work is supported by the Naval Research Labora-
tory under Grant No. N00173-98-1-G017.

References

1. J.H. Howard, “An Overview of the Andrew File
System” in Proc. Winter USENIX Conf., p.
23-26, Dallas (February, 1988).

2. M.T. Stolarchuk, “Faster AFS” ifProc. AFS
Users Group (Spring, 1992). Available at
http://www.citi.umich.edu as CITI
Technical Report 92-3.

3. C.J. Antonelli, W.A. Doster, and P. Honeyman,
“Access Control in a Workstation-Based Dis-
tributed Computing Environment” inProc.
IEEE Wbrkshop on Experimental Distributed
Systems, Huntsville (October, 1990). Available
athttp://www.citi.umich.edu as CIT
Technical Report 90-2.

4. “NRL Motion Imagery Lab (MIL)" in
http://www.nrl.navy.mil/CCS/
people/kern/HDTV/.

5. “Survivors of the Shoah Visual History Founda-
tion” in http://www.vhf.org/.

6. “Clementine - Deep Space Program Science
Experiment” in http://www.nrl.navy.
mil/clementine/.

7. Jonathan S. Goldick, Kathy Benninger, Christo-
pher Kirby, Christopher Maher, and Bill
Zumach, “Multi-resident AFS: An Adventure in
Mass Storage” ifProc. Winter USENIX Conf., p.
47-58, New Orleans, LA (January 16-20,
1995).

8. Bob SidebothamRx: A High Performance
Remote Procedure Call Transport Protocol,

10.

11.

12.

13.

14.

15.

16.

17.

Information Technology Center, Carnegie-Mel-
lon University (February, 1989).

Thomas J. HackeiCache Bypassing in AFS
(1992). Unpublished work.

Berny Goodheart and James Coke Magic
Garden Explained: The Internals of UNIX Sys-
tem V Release 4, an open systems design, Pren-
tice-Hall (1994).

Bob Hyer, personal communication, Transarc
Corporation (July, 1999).

Bob Hyer, personal communication, Transarc
Corporation (July, 1999).

Jim Griffioen and Randy Appleton, “Reducing
File System Latency using a Predictive
Approach” inProc. Summer USENIX Conf., pp.
197-207, Boston (Summer, 1994).

Brian Noble, M. Satyanarayanan, and Morgan
Price, “A Programming Interface for Applica-
tion-Aware Adaptation in Mobile Computing”
in 2nd USENIX Mobile and Location-Indepen-
dent Computing Symposium, pp. 57-66, Ann
Arbor (April, 1995).

Todd A. Anderson and James Griffioen, “An
Application-Aware Data Storage Model” in
Proc. USENIX Conf., pp. 309-322, Monterey,

California (June, 1999).

W. Richard Stevend)NIX Network Program-
ming, Volume 1: Networking APIs - Sockets and
XTI, Prentice-Hall (1997).

Dennis M. Ritchie, “A Stream Input-Output
System” in UNIX Research System Papers, p.
503-511, Murray Hill (1990).

