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Abstract

Although Quality of Service functionality has become a common feature of network hardware, configura-
tion of QoS parameters is done by hand. There is a critical need for an automated network reservation
system to provide reliable last mile networking for video, audio, and large data transfers. Security of all
communications in the process of automating the network configuration is vital. What makes this security
problem difficult is the allocation of end-to-end network resources across security realms and administrative
domains.

This paper introduces a practical system that shows a design and implementation of GARA services
that offer automated network reservation services to users. The contributions of this paper are twofold.
First, we provide a fine-grained cross-domain authorization for GARA that leverages existing institutional
security and group services, with universal access for users. We identify and discuss issues involved.
Second, we eliminate the need for long term PK credentials and associated overheads that are required
by other systems. We describe the implementation of an easy and convenient Web interface for making
reservation requests.
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1 Introduction

Reliable high speed end-to-end network services are
increasingly important for scientific collaborators,
whether separated by large distances or located just
across town or campus. Our experience shows that
long haul networks demonstrate good performance
(thanks to overprovisioning), but the last mile —
from the edge of the campus network to the desktop
— is often a network bottleneck.

Quality of Service functionality is a common fea-
ture of network hardware. Recent studies show the
viability and utility of these features to control net-
work resources [11]. Currently, QoS configuration of
network hardware is done by hand. While several
standardization efforts are attempting to produce
protocols that enable automated network configu-
ration across administrative domains [12, 23], it is
not yet clear which protocol(s) will be embraced.

Our work, sponsored by a multi institutional part-
nership,’ addresses the need for an automated net-
work reservation system to provide reliable last
mile networking for video, audio, and large data
transfers for the partner institutions. Reliable
end-to-end network service between partner insti-
tutions is achieved by reserving network resources
within the end-point institution networks, coupled
with the demonstrated adequate performance of the
overprovisioned interconnecting long haul networks,
wherein no network resource reservation is needed.

In automating network configuration, security of all
communications is vital. Network hardware is a
prime target for malicious hackers, because control-
ling the routing and resource allocation of a network
enables myriad other attacks. What makes this se-
curity problem difficult is the cross-domain nature of
end-to-end network resource allocation. A user re-
questing end-to-end network resource allocation be-
tween the local domain and a remote domain needs
to be authenticated and authorized in both domains
before the request can be granted.

Globus General-
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purpose Architecture for Reservation and Alloca-
tion (GARA) [6, 8, 7, 10]. This is a natural
choice because the project partner institutions all
run Globus software in either production or pre-
production mode. The goal of the GARA architec-
ture is to create a flexible solution that satisfies re-
quirements of different types of resources (networks,
CPUs, disks, etc.), while providing a convenient in-
terface for users to create both advance and immedi-
ate reservations. GARA uses the Globus Grid Secu-
rity Infrastructure (GSI) [5] for authentication and
authorization. An attractive feature of GSI is that
it performs cross-domain authentication, as well as
coarse-grained access control.

GSI achieves cross-domain authentication by relying
on a Public Key Infrastructure (PKI) and requires
users to have long term PK credentials. However,
many sites lack a PKI, yet they do have an installed
Kerberos [17] base. The University of Michigan is
one such site.

In this paper we describe the design and imple-
mentation of a GARA system that automates net-
work reservations. The contributions of this paper
are twofold. First, we provide a fine-grained cross-
domain authorization for GARA that leverages ex-
isting security and group services, with universal ac-
cess for users. Second, we eliminate the need for
long term PK credentials, currently required by the
system. We also introduce a secure and convenient
Web interface for making reservation requests based
on Kerberos credentials.

The remainder of this paper is organized as follows.
Section 2 describes the GARA architecture. Sec-
tion 3 describes the KX509 and KCT services and
shows how they allow universal access to GARA by
enabling a reservation to be made via the Web,
obviating the need to install Globus software on
workstations. Section 4 presents an architecture
for distributed authorization that employs a shared
namespace, delegated authorization through secure
and trusted channels and a signed authorization
payload, and the policy engine used to make the
authorization decision. Section 5 is a step by step
description of the enhanced GARA system. Section
6 identifies issues that require further research. Sec-
tion 7 discusses related work. Section 8 concludes
by summarizing contributions.
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Figure 1: GARA Architecture. This figure shows the process of reserving local network resources with the
GARA architecture. Long term user PK credentials are stored in the client workstation filesystem. As indicated
by the dashed box, a Globus-Gara Service consists of a gatekeeper, a resource manager and a diffserv_manager all
residing on a single machine. Step 1 uses the GSI protocol. Step 2 is an interprocess communication between root
privileged processes. Step 3 uses the Globus Nexus API. Step 4 uses Telnet.

2 Globus GARA Architecture

GARA relies on Globus GSI for security mechanisms.
GSI supports cross-domain authentication services.
GSI achieves this using a PKI, specifying the use
of self-signed Certificate Authority (CA) certificates
to join domains. GSI requires users to have PK cre-
dentials signed by a CA whose self-signed certificate
is available in the local filesystem, as well as a per
user entry in a per service file called the gridmap
file where PK credential Distinguished Names (DN)
are mapped to local user names. Figure 1 shows
a GARA reservation request step by step. It is as-
sumed that the user has already acquired the long
term PK certificate.

1. The user runs grid_proxy_init, which generate
proxy credentials signed with the user’s long
term key. The user runs the GARA client pro-
gram and inputs reservation parameters via a
command line interface. A GSI [16] secured
connection is established between the GARA
client and the gatekeeper. The reservation re-
quest parameters are passed in the RSL (Re-

source Specification Language) form [24]:

(reservation-type=network)
(start-time=997212110) (duration=5)
(endpoint-a=141.211.92.130)
(endpoint-b=141.211.92.248)
(bandwidth=5) (protocol=tcp)

. The gatekeeper finds an entry in the gridmap

file that matches the Distinguished Name field
in the proxy certificate used to authenticate the
user. The gatekeeper forks a resource manager.

. The resource manager uses the Nexus API [13,

14] for interprocess communication and passes
the RSL to the instance of the diffserv_manager,
which is running with root privileges.

. The diffserv_manager checks configuration files

to locate the routers servicing the reservation
source and destination hosts and on the avail-
ability of requested network resources on the
routers. Having determined resource availabil-
ity, the diffserv_umanager runs the setup_flow
Expect script which Telnet’s to the appropri-
ate routers and configures the flow.
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Figure 2: KX509 GARA Web Interface. This figure how local network resources are reserved with the GARA
Web interface. KX509 junk keys replace long term PK credentials. As indicated by the dashed box, a Globus-Gara
Service consisting of a gatekeeper, a resource manager and a diffserv_manager all residing on a single machine. Steps
1,2,4,5 use the Kerberos protocol. Step 3 uses HTPPS. Step 6 uses the GSI protocol. Step 7 uses interprocess
communication between root privilege processes. Step 8 uses the Globus Nexux API. Step 9 uses Telnet.



3 Web Interfaces to GARA

Many sites, such as the University of Michigan, lack
a PKI, but they do have an installed Kerberos base.
While Globus provides software to translate from
Globus PK credentials into Kerberos credentials or
Andrew File System (AFS) tokens at the service, PK
user credentials are still required at the client.

The University of Michigan has developed a service
that allows users to access Grid resources based on
their Kerberos credentials. The KX509 [9, 15] sys-
tem translates Kerberos V4 or V5 credentials into
short-lived PK credentials, or junk keys, which in
turn can be used by browsers for mutual SSL au-
thentication or by GSI for Globus authentication.
KX509 creates a new public/private keypair, and
sends the public key to a Kerberized Certificate
Authority (KCA) over a Kerberos secured chan-
nel. Successful communication with the KCA im-
plies valid Kerberos credentials. The KCA creates
and signs an X.509 certificate using the presented
public key. The KCA sets a short credential lifetime
and returns the junk keys.

Junk keys have several advantages over traditional
long-lived PK credentials. Junk keys have a short
lifetime, so the problems associated with the need
to check the validity of a user’s long term public
PK certificate (e.g. revocation) are largely obviated.
Furthermore, KX509 supports mobile users who ob-
tain new junk keys at each workstation while users
with long term PK keys need to somehow access
their specific long term private key at each worksta-
tion.

In order to make network resource reservations con-
venient for users, we built a GARA Web interface.
GARA client code, which runs GSI, resides on the
Web server and uses Globus proxy credentials cre-
ated on behalf of the user accessing the GARA net-
work reservation form. The Web server runs KX509
on the user’s behalf, which creates new junk keys
for the user on the Web server. These junk keys
are then used to create Globus proxy credentials.
Figure 2 details these tasks.

1. User executes kinit to acquire Kerberos creden-
tials. This usually occurs at login.

2. User executes kz509 and acquires junk keys.
(This can be placed in a PAM [21] login mod-
ule).

3. Using a browser, the user makes an HTTPS re-
quest for the network resource reservation page.
Mutual SSL authentication is required by the
Web server, so the junk keys obtained in step
2 are used. The reservation request parameters
are sent to the Web server in the RSL form.

4. The Web server kct_module makes a Kerberos
authenticated request to the Kerberized Cre-
dential Translator (KCT) [15] to acquire a ser-
vice ticket for the KCA service on the user’s
behalf.

5. The Web server kz509-module acquires junk
keys on behalf of the user, as in Step 2. This
set of user junk keys are stored on the Web
server. The Web server globus_prozy_init mod-
ule then uses the newly created junk keys to
create Globus proxy credentials.

6. The Web server gara_module uses the proxy cre-
dentials and sends the reservation request to
the gatekeeper using the Globus GSI protocol.
(This step is the same as Step 2 described in
Section 2 protocol).

7. The gatekeeper finds an entry in the gridmap
file that matches the Distinguished Name field
in the proxy certificate used to authenticate the
user. The gatekeeper forks a resource manager.
(This step is the same as Step 2 described in
Section 2 protocol).

8. The resource manager uses the Nexus API for
interprocess communication and passes the RSL
the instance of the diffserv_manager, which is
running with root privileges. (This step is the
same as Step 3 described in Section 2 protocol).

9. The diffserv_manager checks configuration files
to locate the routers servicing the reservation
source and destination hosts and on the avail-
ability of requested network resources on the
routers. Having determined resource availabil-
ity, the diffservomanager runs the setup_flow
Expect script which Telnet’s to the appropri-
ate routers and configures the flow. (This step
is the same as Step 4 described in Section 2
protocol).

4 Distributed Authorization Design

A cross domain distributed authorization scheme is
one that allows authorization decisions to be made



when the requestor and resources reside in separate
domains. Often authorization decisions are made
by a policy engine that applies a set of input at-
tributes to a set of policies. These attributes might
include user attributes such as group membership
or environmental attributes such as time of day. In
designing the distributed authorization system for
GARA, we must address the following issues:

e Use of existing services: Partner institutions
have group and security services in produc-
tion. These services maintain data about users
and resources. Using these existing services
avoids the additional administrative and com-
putational overhead of creating and managing
new services for the same users and resources.
A centralized service where all domains add
user and resource information has the addi-
tional problem of not scaling to the combined
number of users and resources currently main-
tained locally at partner institutions.

o Shared namespace: Central to any authoriza-
tion service design is the formation of an at-
tribute namespace that is understood by policy
engines.

o Signed authorization payload: An authoriza-
tion payload contains attributes gathered lo-
cally and presented to a remote policy engine.
A cryptographic signature of the payload ver-
ified by the remote policy engine provides au-
thenticity.

o Authorization architecture: Attribute informa-
tion can come from a variety of sources — from
a local service, from the local environment, at-
tached to the resource request, etc. We there-
fore separate the authorization process into two
phases, the gathering of attributes, and the run-
ning of the policy engine. We consider several
places in GARA’s resource request data flow to
perform these tasks.

4.1 Shared Namespace

Frequently, the primary concern in the authoriza-
tion decision is related to a group membership ques-
tion: does this user belong to appropriate groups?
Within a domain, the statement of group member-
ship is well defined. Both user identity information
and a group namespace are available.

A distributed system spanning different adminis-
trative domains also requires prior agreement on a
shared attribute namespace. A critical part of the
distributed authorization service design is architect-
ing the shared namespace.

One solution is the creation of a new central group
service where user and resource information from
different domains are replicated and managed by do-
main administrators [26]. The central service main-
tains a group namespace that is referenced in policy
information passed to authorization policy engines.
This scheme has the drawback of adding the admin-
istrative overhead of maintaining replicated data,
and does not scale to hundred of thousands of po-
tential users.

Another solution is to provide a callback address to
a local domain group service along with a user name
[1]. The callback is used by a remote resource pol-
icy engine to gather authorization information from
the user’s local service. In this scheme, the shared
namespace needs to be centrally defined but man-
aged locally by adding the appropriate names to the
local service. This scheme avoids the pitfall of data
replication at the expense of additional communica-
tions.

Our architecture tries to avoid both data replica-
tion and, in the common case, extra communication
outside the local domain. As in the above example,
we propose the formation of a shared namespace
(SN_groups), a small number of group names that
is shared across domains to be used to determine
access to network resources. Fach domain can cre-
ate groups with these names in their existing group
service and manage user membership as any local
group. Instead of using a callback, we place autho-
rization information in the resource request to the
remote network. The GARA in the domain local
to the requestor queries the local group member-
ship service and sends the subset of SN_groups in
which the requestor is a member to the remote do-
main GARA, which uses it as input to the remote
resource policy engine. This case is illustrated in
Figure 6.

4.2 Awuthorization Architecture

We examine the resource request data flow and
note several places where the authorization decision
could be implemented. Each option implies certain



architecture decisions.

4.2.1 Web Server

The first (proxy) service with which the requestor
comes in contact while making a request appears to
be a reasonable place to check whether the requestor
is authorized to perform the desired action. Prior
to initiating any contact with the desired resource,
an authorization service could be contacted with
the user’s identity and resource request information.
This authorization service would necessarily need to
have a policy for each resource and information on
each user. While this architecture would provide a
central place for policy, and could exist per local
domain and so use existing local group services, it
presents extra communications when the resource is
not available, or when fine-grained authorization is
not required.

4.2.2 Globus Gatekeeper

A limited form of authorization is currently pro-
vided by the gatekeeper and enforced with a
gridmap file. This file contains a mapping between
the DN and local username for an authorized users.
If no entry is found for the requestor, then the re-
quest is denied. A call to check the gridmap file
can be replaced with a more general authorization
check. This option has several disadvantages.

Adding authorization at the gatekeeper has an im-
pact on the gatekeeper’s performance. The gate-
keeper is expected to handle a lot of requests, thus
it pushes the functionality of serving individual re-
quests down to the particular resource manager.

At the gatekeeper, it is still unknown if the resource
is available, so as above, the extra communication
and work to make an authorization decision could
be wasted effort. Furthermore, there is no advan-
tage to having the gatekeeper manage per resource
policy information, where one resource may need
fine grained access control, and another may need
no access control.

4.2.3 Diffserv Manager

The last step before the reservation for the re-
source is accepted and performed is also the last
point where the authorization decision can be per-
formed. This choice enforces authorization at the
diffserv_manager, and provides a flexible and scal-
able means for resource services to achieve secu-
rity. Each service is capable of stating, enforcing,
and modifying its policies without depending on the
administration of the Globus architecture at large.
We perform the authorization decision in the diff-
serv_manager.

4.3 Signed Authorization Payload

The authorization payload is added to the reser-
vation request by the first diffserv_manager in the
requestor’s local domain, after local resources have
been successfully reserved (see section 5). The pay-
load is unpacked by successive diffserv_managers
and is used as input to the policy engine.

As part ot the rest of the reservation request, the
payload is protected by the GSI session key based
on the Globus proxy credential of the user. The
user is allowed to add data to this channel (e.g. the
reservation request parameters) and could therefore
add false data to the authorization payload. To se-
cure the authorization payload, we require the diff-
serv_manager to sign the authorization payload be-
fore adding it to the reservation request. There are
several possible ways of signing the payload:

o A diffservmanager can sign the payload with
its private key and include the corresponding
public key in a certificate in the reply to the
Web server. We assume this certificate was is-
sued by the same CA that issued a certificate to
the Globus gatekeeper. The signed payload and
the certification are included in the request to
the remote domain. We sign the authorization
payload in this manner.

o A diffservumanager can sign the payload with
the gatekeeper’s private key. Because the gate-
keeper’s certificate is known to the remote
party, no additional certificates are transmitted
and no additional trust relations are assumed.
However, if the diffserv_manager requires ac-
cess to the gatekeepers certificate, it must ei-



ther reside on the same hardware as the gate-
keeper and run with gatekeeper’s privileges, or
it must satisfy all the security requirements im-
posed on the gatekeeper (e.g., secure storage of
the private key).

e A resource manager can sign the payload after
receiving the reply from the diffserv_manager.
Although the resource manager is guaranteed
to run on the same hardware as the gatekeeper,
it runs with different privileges than the gate-
keeper and thus does not have easy access to
the private key.

4.4 Policy Engine

After all the requestor’s attributes including group
membership have been established, the authoriza-
tion decision can be made by the policy engine. In
order to allow for the use of different policy en-
gines, the authorization callout has a generic API
that passes information about the requestor and the
requested action to the policy engine. We chose
KeyNote [2, 3, 4] for our policy engine because of
its easy availability.

Applications such as GARA describe policies to
KeyNote with a set of attribute-value pairs (called
an action condition) creating a policy namespace.
In Figure 5, the policy namespace consists of the
following attributes and their corresponding values:
app-domain, operation, type, location, amount,
time, and grid_bw. In Section 4.1 we discussed the
notion of a shared namespace. An example in the
KeyNote policy of SN_groups would be the group
named grid_bw. Each Globus site is free to choose
any descriptive attribute name to express the secu-
rity policy. However, if any of the attributes are to
be included in the authorization data that is passed
to or received from a remote domain, then the at-
tributes need to be included in the shared names-
pace we described in Section 4.1.

We now describe the basic pseudocode for the
KeyNote policy engine call with a group member-
ship action condition.

e requester: the requesting principal’s identifier.

e action_description: the data structure describ-
ing an action contains attribute value pairs
which are included in the request. For example,

“system_load < 70” specifies an environment
condition stating that the current system load
must not exceed 70%.

o SN_groups: the shared namespace groups in
the action_description, also added as attribute
value pairs describing the action. For exam-
ple, “umich_staff = yes” states the request is a
member of the umich_staff group.

e policy: the data structure describing local pol-
icy, typically read from a local file.

o credentials: the data structure with any rele-
vant credentials, typically sent along with the
request by the requesting principal. Before
making use of these credentials, their validity
must be confirmed by verifying a signature in-
cluded in the credential data structure.

Figure 3 shows the main actions

serv_manager.

of diff-

SN_groups =
retrieve_group_membership(requestor) ;

result =
authorization_decision(requestor,
action_description, policy, credentials);

if (result == "allowed")
do the requested action
else

report action is not allowed

Figure 3: Pseudo-code for the authorization mech-
anism in diffserv_manager

Figure 4 provides details of the authoriza-

tion_decision function.

Figure 5 shows an example of a KeyNote top level
security policy that allows the action if the follow-
ing conditions hold: an application domain is called
gara and the requested operation is reservation for
the resource of type bandwidth. Furthermore, if this
is a local request then bandwidth for more than
100Mb is not allowed. If the request is from a re-
mote user, then amount greater than 10Mb is not
allowed. If the current time is after hours, then no
restriction on bandwidth is enforced. The requestor
must be a member of grid_bw group.



session_id = kn_init();

kn_add_assertion(session_id,policy[i]);

kn_add_assertion(session_id,credentials[i]);

for all actions in action_description

kn_add_action(session_id,

action_description.attr,
action_description.value);

result = kn_do_query(session_id);

Figure 4: Pseudo-code for the call to the KeyNote
Policy Engine

keynote-version: 2

local-constants: ADMIN_UM = "x509-base64:MIICrzCC"

authorizer: "POLICY"
licensees: ADMIN_UM

conditions: app_domain == "gara" &&
operation == "reservation" &&
type == "bandwidth" &&
((location == "local" && Qamount <= 100) ||
(location == "remote" && Q@amount <= 10) ||
time == "night") && grid_bw == "yes");

Figure 5: Trusted assertion stating KeyNote top
level security policy. Note that the value of the key
has been truncated.

If the KeyNote policy engine states that the ac-
tion is not allowed, no reservation is made by the
local diffserv_manager and an authorization fail-
ure is returned to the Web server. As the result,
e2e_gara_-module stops the reservation protocol and
replies back to the client with the authorization er-
ror. e2e_gara_module returns a success value to the
client only if both local and remote authorization
has succeeded.

5 Putting It All Together

We successfully demonstrated our modifications to
GARA by reserving bandwidth for a video appli-
cation running between the University of Michigan
and CERN.

Bandwidth was reserved by filling in a form served
by a modified Apache Web server that runs the
GARA client. The GARA client communicates with
separate GARA services at each endpoint domain, as
shown in Figure 6. The GARA services use KeyNote
authorization policies configured to require bounded
request parameters for bandwidth, time and dura-
tion. Group membership is also required.

We demonstrated that if any of the policy param-
eters were not satisfied, e.g. too much requested
bandwidth or incorrect AFS PTS group membership,
the reservation fails. If the request parameters are
in bounds, and if the user is a member of the correct
AFS PTS group(s), the reservation succeeds.

Successful reservation results in configuring the end
domain Cisco ingress routers with the appropriate
Committed Access Rate (CAR) ratelimit, which
marks the packets and polices the flow. The partic-
ipating routers are statically configure with WRED,
Cisco’s implementation of the Random Early Detec-
tion (RED) class of congestion avoidance algorithms.

What follows is a step by step description of an
end-to-end network reservation using the enhanced
GARA.

1. The user in the local realm executes kinit to ac-
quire Kerberos credentials. This usually occurs
at login.

2. The user in the local realm executes kz509 and
acquires junk keys. This can be placed in a
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PAM login module [21].

. Using a browser, the user makes an HTTPS
request for the network resource reservation
page. Mutual SSL authentication required by
the Web server uses the junk keys obtained in
Step 2. Network reservation parameters such
as source and destination IP address, desired
bandwidth, start time, etc. are filled in and
sent to the Web server.

. The Web server kct_module makes a Kerberos
authenticated request to the Kerberized Cre-
dential Translator or KCT [15] to acquire a ser-
vice ticket for the KCA service on the user’s
behalf.

. The Web server kz509-module acquires junk
keys on behalf of the user as in Step 2. These
junk keys are stored on the Web server. The
Web server globus_proxy_init module then uses
the newly created junk keys to create user
Globus proxy credentials.

. The Web server e2e_gara_-module uses the proxy
credentials and sends the reservation request to
the local gatekeeper using the Globus GSI pro-
tocol.

. The local GARA gatekeeper finds an entry in
the gridmap file that matches the Distinguished
Name field in the proxy certificate use to au-
thenticate the user. The DN and local id are at-
tached to the RSL (Resource Specification Lan-

guage):

(reservation-type=network)
(start-time=997212110) (duration=5)
(endpoint-a=141.211.92.130)
(endpoint-b=141.211.92.248)
(bandwidth=5) (protocol=tcp)
(client-name=aglo) (client-dn=287f42
c19122ec08ddc679ba259070£9)

The last two attribute value pairs (client-
name=client-dn) are the two fields not present
in the original GARA RSL reservation request.
DN is a considerably long string, se we use a
hashed value of the DN instead. The local gate-
keeper forks a resource manager.

. The resource manager uses the Nexus API for
interprocess communication and passes all the
information on to the instance of the diff-
serv_manager, which is running with root priv-
ileges.

9.

10.

11.

12.

13.

14.

The diffserv_manager checks configuration files
to locate the routers servicing the reservation
source and destination hosts and on the avail-
ability of requested network resources on the
routers. Having determined resource avail-
ability, The diffserv_manager passes the local
user name to the group_membership function,
which performs one of several actions, depend-
ing on configuration and on whether a request
is from a local or remote user. As the au-
thorization data in this RSL is null, the re-
quest is from a user in the local domain. The
group_membership function uses interprocess
communication with root privilege to commu-
nicate with a get_group module. The UMICH
get_group module, PTS_get_group, queries the
Andrew File System (AFS) PTS group service.
The modular design allows a query to any local
group service such as an LDAP service, or a flat
file.

The PTS_get_group module receives the local
name as input and queries the AFS PTS for the
list of all SN_groups that include local name.
The call is performed over an authenticated
channel using diffserv_manager identity. Prior
to accepting any connections, diffserv_manager
acquires AFS tokens needed to authenticate
with the PTS server. The diffserv_manager
passes the results of the get_module query, the
reservation request information, and environ-
ment information to the KeyNote policy engine
which reads the policys from the KeyNote pol-
icy file and makes and authorization decision.

Having determined resource availability and
that the user is authorized to make the re-
quest, the diffserv_manager runs the setup_flow
Expect script which Telnet’s to the appro-
priate routers and configures the flow. The
diffserv_manager packages the results of the
group_membership function call into a string
which is signed and added to the RSL.

This step is the same as Step 6 except this time
the RSL carries the authorization payload. We
use auth-data as the attribute name. The value
is variable length. In our current implementa-
tion, the RSL is limited to 4KB, at least enough
to encode information 64 groups (assuming 64
byte names).

Same as Step 7.

Same as Step 8.



15. This is the same as Step 9, except that since the
user is from a remote realm, the auth_data in
the RSL is non-null and is used as input to the
KeyNote policy engine instead of the results of
a group_membership function call.

6 Discussion

Our design enables expression of many policies, in-
cluding who can request which network resources
and when such requests are valid. In the example
we presented, the authorization payload is signed by
one certificate, the remote GARA diffserv manager-.
More broadly, a site must require the authoriza-
tion payload to contain assertions from other ser-
vices. For example, a site might require that users
be U.S. citizens, verified by some specific Certifi-
cate Authority. Signed assertions can be added to
the authorization payload to accommodate such re-
quirements.

We have yet to explore the management of the
SN_group namespace and associated policies. We
envision a service 2 that lists SN_group names. Each
site might also post the authorization information
needed to successfully access a resource.

Our desire to provide fully secure communication
channels fell short at the router configuration com-
munication. Telnet places passwords on the wire
in the clear, so the router configuration step re-
lies on physical security in the form of a pro-
tected network between the diffserv_manager and
the routers. Another security exposure in the de-
sign is the setup_flow Expect script, which stores in
the local file system the password(s) used to log into
the routers command line interface.

Our choice of policy engines was influenced by the
availability of working code. The modular design al-
lows for use of other policy engines. Akenti [25], and
GAA API [20] were also considered. We acknowl-
edge Akenti’s strength over KeyNote in terms of
credential management. On the other hand, Akenti
imposes a lot of overhead, not required by KeyNote,
such as creation of certificates for each of the clients.

2Web and/or LDAP

7 Related Work

The Globus MyProxy [19] initiative provides a
trusted server to store a user’s delegated creden-
tials indexed by a tag and a password. Later, a
service can contact a MyProxy server, present a tag
and a password and receive corresponding creden-
tials (e.g., certificate or Kerberos ticket) on a client’s
behalf. Each service requires a different tag and
password, forcing users to manage many passwords.
This approach requires users to type in their pass-
words into HTML forms. HTML forms are easily
reproduced by a malicious hacker wanting to collect
passwords who can obtain a certificate signed by one
of the default Certificate Authorities supported by
browsers, and run a web server that uses the creden-
tial to deliver the spoofed login HTML form. The
user can tell if the login form is a spoof by exam-
ining the credential - an activity most users don’t
bother with.

The Grid Portal Architecture [18] is a Web interface
to Grid Computing resources that uses MyProxy
Services for client authentication.

The Community Access Service (CAS) [26] is a pro-
posed Grid authorization service that the user calls
prior to making a request for Grid resources. CAS
returns a signed capability to indicate a successful
authorization request. The capability is then added
to the Grid resource request.

The GARA client is designed to contact each end do-
main GARA service. Future GARA implementations
will have the GARA client contact the first GARA
service, which in turn will contact other bandwidth
brokers (BB) needed for the end-to-end reservation.
The need for such a bandwidth broker to bandwidth
broker protocol is discussed by Sander et al. in [22].
The Simple Inter-Domain Bandwidth Broker Spec-
ification (SIBBS) [23] is a simple request-response
bandwidth broker to bandwidth broker broker pro-
tocol being developed by the Internet2 QBone Sig-
naling Design Team. It is anticipated that GARA
will be an early development code base for SIBBS.

8 Conclusions

We have demonstrated a scalable fine-grained dis-
tributed authorization service for GARA that joins



local domain group services via a shared namespace,
and asserts group membership by adding a signed
authorization payload to existing communications.
We eliminate the need for long term PK credentials
currently required by the system. We also introduce
a secure and convenient Web interface for making
reservation requests based on Kerberos credentials.

We showed that authorization succeeds only when
the user is a member of the correct groups and the
reservation parameters are within bounds, as dic-
tated by the policies present at each endpoint diff-
serv_manager.

9 Acknowledgments

We thank Homer Neal, Sean Mckee, Eric My-
ers, Brian Athey, Tom Hacker, Victor Wong, Roy
Hockett, Bill Doster, and Kevin Coffman from the
University of Michigan, as well as Olivier Mar-
tin, Paolo Maroni, and Danny Davids from CERN
for their help in designing and demonstrating this
work. We also acknowledge Ian Foster and Alain
Roy from Argonne National Lab and Volker Sander
from Forschungszentrum Jlisch for their work on the
GARA code base and their support of this work. We
thank Peter Honeyman for his criticism and advice.

References
1] A Digital Library Authentica-
tion and Authorization Architec-
ture. http://wuw.ucop.edu/irc/cdl/

tasw/Authentication/Architecture-3_W95.pdf.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and
A. Keromytis. The KeyNote trust managment
system version 2, September 1999. RFC 2704.

[3] M. Blaze, J. Feigenbaum, and A. Keromytis.
Keynote: Trust management for public-key
infrastructure. In Proceedings Cambridge
1998 Security Protocols International Work-
shop, 1998.

[4] M. Blaze, J. Feigenbaum, and M. Strauss.
Compliance checking in the PolicyMaker trust
management system. In Proceedings of Second
International Conference on Financial Cryp-
tography, 1998.

[5] R. Butler, D. Engert, I. Foster, C. Kesselman,
S. Tuecke, and J. Volmer. A national-scale au-

thentication intrastructure. IEEE computer,
33(12):60-66, 2000.

[6] Documentation: A Guide to GARA.
http://www-fp.mcs.anl.gov/qos/
qos_papers.htm.

[7] Documentation: — Administrators Guide to

GARA.
qos_papers.htm.

http://www-fp.mcs.anl.gov/qos/

[8] Documentation:
GARA.
qos_papers.htm.

Programmers Guide to
http://www-fp.mcs.anl.gov/qos/

[9] W. Doster, M. Watts, and D. Hyde. The
KX.509 protocol. CITI Technical Report 01-
2, February 2001.

[10] I. Foster, A. Roy, and V. Sander. A Quality of
Service Architecture that Combines Resource
Reservation and Application Adaptation. In
Proceeding of the 8th International Workship
on Quality of Service (IWQQOS 2000), pages
181-188, June 2000.

[11] GEANT. Premium ip  overview.

http://www.inernet2.edu/presentations/
vimm/20011004-QoSWorkingGroup-Campanella.htm.

[12] IETF Internet Traffic Engineering Working
(}roup. http://www.ietf.org/html.charters/
tewg-charter.html.

[13] N. Karonis, C. Kesselman, G. Koenig, and
S. Tueke. A secure communication infrastruc-
ture for high-performance distributed comput-
ing. In Proceedings of the 6th IEEE Symposium
on High-Performance Distributed Computing,
pages 125-136, 1997.

[14] Kesselman and S. Tueke. Managing security
in high-performance distributed environment.
Cluster Computing, pages 95-107, 1998.

[15] O. Kornievskaia, P. Honeyman, B. Doster, and
K. Coffman. Kerberized credential translation:
A solution to web access control. In Proceed-
ings of the 10th USENIX Security Symposium,
pages 235-249, August 2001.

[16] J. Linn. Generic security service application
program interface, version 2, update 1, October
2000. RFS2743.



[17] C. Neuman and T. Ts’o. Kerberos: an au-
thentication service for computer networks.
IEEE Communications, 32(9):33-38, Septem-
ber 1994.

[18] Grid Computing Portal.
http://hotpage.npaci.edu/cgi-bin/
hotpage_top.cgi.

[19] MyProxy project.
http://dast.nlanr.net/Projects/MyProxy.

[20] T.Ryutov and C. Neuman. Representation and
evaluation of security policies for distributed
system services. In Proceedings of the DISCEX,
January 2000.

[21] V. Samar and R. Schemers. Unified login with
pluggable authentication modules (PAM), Oc-
tober 1995. OSF Request For Comments 86.0.

[22] V. Sander, W. A. Adamson, I. Foster, and
A. Roy. End-to-end provision of policy informa-
tion for network qos. In Proceedings of the 10th
Symposium on High Performance Distributed
Computing. IEEE, August 2001.

[23] SIBBS. The simple inter-domain
bandwidth broker specification.
http://qbone.internet2.edu/bb/.

[24] The Globus Resource Speci-
fication Language RSL v1.0.
http://www.globus.org/gram/rsl_specl.html.

[25] M. Thompson, W. Johnson, S. Mudumbai,
G. Hoo, K. Jackson, and A. Essiari. Certifi-
cate based access control for widely distributed
resources. In Proceedings of the 8th USENIX
Security Symposium, August 1999.

[26] S. Tuecke. Security and CAS fu-
tures. http://wuw.globus.org/about/
events/retreat01/presentations/
retreatOltueckeSecurity_and_CAS_AugO1.ppt.



