
CITI Technical Report 01-13

ScanSSH - Scanning the Internet for SSH Servers

Niels Provos Peter Honeyman
{provos,honey}@citi.umich.edu

Abstract

SSH is a widely used application that provides secure remote login. It uses strong cryptography to provide
authentication and confidentiality. The IETF SecSH working group is developing SSH v2, an improved
SSH protocol that fixes cryptographic and design flaws in the SSH v1 protocol. SSH v2 compatible server
software is widespread.

Recently discovered security flaws make it critically important to find vulnerable SSH servers and
update them. In this paper, we describe a method to determine with good precision how many servers
supporting the various protocol versions have been deployed on the net.

We describe the design and implementation of ScanSSH, a scanner that probes SSH servers for their
software version, and discuss the results of scanning the Internet and our local networks for several months.

October 2, 2001

Center for Information Technology Integration
University of Michigan

535 West William Street
Ann Arbor, MI 48103-4943

.

ScanSSH - Scanning the Internet for SSH Servers

Niels Provos Peter Honeyman
Center for Information Technology Integration

University of Michigan

1 Introduction

SSH is a client/server application that provides se-
cure remote login [?]. SSH uses strong cryptography
to provide authentication and confidentiality. The
IETF SecSH working group is developing SSH v2,
an improved SSH protocol that fixes cryptographic
and design flaws in the SSH v1 protocol.

Among all security sensitive services, access to SSH
servers is widely unfiltered. SSH v2 compatible
server software is widely available, yet recently dis-
covered security flaws in SSH software make updat-
ing many older servers on the Internet critically im-
portant. In this paper, we describe a method to
determine with good precision how many servers
supporting the newer protocol version have been de-
ployed on the net.

In particular, we designed and implemented a
scanner that probes SSH servers and classifies
them according to their advertised version number.
ScanSSH is the result of this effort.

In this paper, we describe the design and implemen-
tation of ScanSSH and our experiences in scanning
the Internet and our local nets for a period of several
months. We illustrate changes in the deployment of
SSH protocols as measured by our software.

ScanSSH supports fast scanning of large networks,
so we have used it to classify random SSH servers on
the Internet and thereby obtain a rough proportion
of the fraction of SSH servers of various breeds.

Our Internet measurements scan over two million
addresses per run on a regular basis. The scans can
be distributed over several machines. It is possible
to pick non-repeating random addresses from spec-
ified network ranges, as well as to exclude networks
with alert and overly cautious administrators. We
use ScanSSH on our internal network to find all SSH
servers and to ensure that all vulnerable ones have
been updated.

Coincidentally, during the development and testing
of ScanSSH, a major security hole was discovered in
most of the known versions of SSH. We describe our
experiences in using ScanSSH as a tool to help local
administrators update their SSH servers to address
these vulnerabilities.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the design goals for
ScanSSH. We present implementation details and a
performance analysis in Sections 3 and 4. In Sec-
tion 5, we discuss the results from probing the In-
ternet and local university networks. We present
related work in Section 6 and conclude in Section 7.

2 Design Goals

In this section, we describe the design goals that
underly the development of ScanSSH.

The scanner has two questions to answer:

• What is the ratio of deployed SSH v2 servers
to SSH v1 servers on the Internet?

• Which hosts on a network run vulnerable SSH
servers?

To determine a server’s protocol version, it suf-
fices to look at the first message in the SSH pro-
tocol. The SSH v2 transport draft states that
when a connection has been established, both sides
must send an identification string of the form
SSH-protoversion-softwareversion [?].

Servers that support the SSH v2 protocol use a pro-
tocol version of either 2.0 or 1.99. We use the infor-
mation contained in the softwareversion field to
determine whether a server is running a vulnerable
server version.

To retrieve this information, it is necessary to estab-
lish a TCP connection to the destination host and
read the first protocol message in the SSH protocol.

We can estimate SSH server deployment by ran-
domly sampling hosts on the Internet. The distribu-
tion obtained from a random sample is close to the
actual distribution, given that the random sample
is large enough; see Section 5.

IPv4 can address about four billion addresses, so we
want to be able to scan addresses quickly, even for
a large sample. IPv6 is not widely deployed and the
address space is too large for random sampling, so
we ignore IPv6 addresses.

To find vulnerable SSH servers on a given network,
we need to be able to scan specific networks. In-
evitably, we run afoul of network administrators sus-
picious of our scans. For that reason, we need a way
to exclude particular hosts or networks from a scan.

In summary, we need an efficient scanner that takes
random or complete samples of a number of net-
works while excluding particular hosts that suspi-
cious administrators do not want scanned.

3 Implementation

In this section, we discuss how the implementation
of ScanSSH achieves the design goals from the pre-
vious section.

3.1 Producer-Consumer Model

ScanSSH implements a producer-consumer
model [?]. The producer is implemented as a
single process that discovers reachable hosts. The
number of consumers is configurable. The producer
feeds addresses of reachable hosts to the consumers.
Once a consumer reads an address, it establishes a
TCP connection to obtain the SSH version string.
The result is returned to the central producer and
printed to stdout.

3.2 Address Generation

Networks and hosts to be scanned are specified on
the command line either as a single IP address or in
classless inter-domain routing (CIDR) [?] notation.

The addresses can be modified with special prefixes
that determine if the scan is distributed over more
than one machine or if addresses are randomly gen-
erated.

The following example line specifies random address
generation for the class B network 192.168 and the
class C network 10.1.0:

random(0,Apollo)/(192.168.0.0/16 10.1.0.0/24)

The zero specifies that all addresses should be
scanned. Any other number specifies a limit on the
number of hosts that should be scanned. The string
�Apollo is a seed for the pseudo-random number gen-
erator. Having a seed allows us to repeat a scan or
distribute it on multiple hosts, because the genera-
tion of random numbers remains the same.

ScanSSH generates chunks of 64, 000 addresses. The
addresses in an address range are represented by a
counter. The counter starts at zero and counts up
to the number of available addresses. If the end of
one network is reached, the next value of the counter
repesents the address at the beginning of the next
network.

It is simple to generate addresses at random. En-
crypting the counter with a block-cipher yields a
random number that we can map to an Internet
address. Using a counter guarantees unique ad-
dresses. Because encryption is bijective, the en-
crypted counter also produces unique addresses.

Most block ciphers use 64-bit blocks or larger. How-
ever, if we want to generate addresses for a /25 net-
work, we need a block cipher using 7-bit blocks. We
create a a variable block size that is related to the
Tiny Encryption Algorithm (TEA) [?]. While the
cryptographic security of TEA is not known with
certainty, we don’t rely on its security, just its bi-
jectivity.

A single round of the variable block size cipher looks
as follows:

sum += 0x9e3779b9

cnt ^= rndsbox[(cnt^sum) & sboxmask] << kshift;

cnt += sum;

cnt = ((cnt << left) | cnt >> right)) & mask;

We use the following constants:

kshift = left = bits / 2;

right = bits - left;

sboxmask = (1 << kshift) - 1;

The input to the block cipher is the block size bits
and a counter cnt. After iterating the round 32
times, cnt contains the encrypted result. It is easy
to see that the encryption function is bijective by
observing that each round is reversible.

3.3 Producing Addresses

The producer process takes an address from the gen-
erated chunk of addresses and sends a TCP SYN
packets to the host specified by the address. The
destination port is set to 22, for SSH.

In the default configuration, ScanSSH supports 4096
outstanding TCP SYN packets. If we do not re-
ceive a reply in a certain time period, the TCP SYN
packet is resent and the timeout increased. This
process continues until the retry limit has been re-
ceived. In that case, ScanSSH reports a timeout.

If we receive a response from a host, it is either a
TCP RST segment or a TCP SYN/ACK segment.
In the former case, ScanSSH reports a refused con-
nection, and in the latter case, the address is put
on a queue from which the consumer processes can
feed.

3.4 Consuming Addresses

The consumers feed from the address queue in a
round-robin fashion. We use standard inter-process
communication to send an address to a consumer
process. The consumer then establishes a TCP con-
nection to the remote host, and waits for the SSH
identification string.

After the identification string has been received, it
is printed to stdout and the consumer sends its own
version string SSH-1.0-SSH Version Mapper to the
SSH server. The protocol number 1.0 causes a SSH
server to close the connection, because protocol 1.0
is not specified.

3.5 Address Exclusion

ScanSSH reads an exclusion file that specifies the
hosts that should not be scanned. If an address that
falls in an excluded network range is generated, the
address is ignored. In addition, private and multi-
cast networks are ignored by default.

4 Performance Analysis

The performance of ScanSSH depends on the per-
centage of responsive hosts. By default, ScanSSH

0

50

100

150

200

250

0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 s
ec

on
ds

Number of addresses

Figure 1: Worst case performance of ScanSSH when
scanning only unresponsive hosts.

manages a list of 4,096 outstanding TCP SYN pack-
ets. When ScanSSH receives a reply to a SYN
packet, the corresponding address is removed from
the list and replaced by a new address. However, if a
host does not respond to any packets, its address en-
try remains on the list for about half a minute. That
means that the unresponsive hosts are the limiting
factor for the scan rate.

Scanning the CITI network consisting of 384 ad-
dresses connected via a 100 MBit network takes
about 36 seconds. The scan reports 62 active hosts
with 44 of them running SSH servers. With a
primed ARP cache, scanning the active hosts takes
0.2 seconds. Scanning only the 322 unresponsive
hosts takes 36 seconds.

We measure the worst case performance of ScanSSH
by scanning unroutable networks; see Figure 1. The
average scan rate is about 135 hosts per second. We
expect the worst case behavior to be a good estimate
for scanning random addresses on the Internet, as
most are unresponsive.

5 Measurement Results

In this section, we present results from measuring
the deployment of SSH servers on the Internet and
from assessing the number of vulnerable SSH servers
running at the University of Michigan.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
0

10

20

30

40

50

60

70

80

90

100

Date

S
S

H
 v

er
si

on
s

in
 p

er
ce

nt

SSH 1.5
SSH 1.99
SSH 2.0

Figure 2: Deployment of SSH protocol versions on
the Internet.

5.1 SSH Server Deployment

We have been scanning over two million random ad-
dresses on the Internet since July 2000. The scans
are repeated monthly.

Figure 2 shows the deployed SSH protocols from
July 2000 until the end of June in 2001. In
July 2000, about 15% of all SSH servers supported
SSH v2. At the end of our measurements in June
2001, almost 50% of all SSH servers support the ver-
sion 2 protocol. Interestingly, the fraction of servers
that support only SSH v2 remains almost constant.
They change from 7% to 10%, whereas the percent-
age of servers that support both SSH v1 and SSH v2
increases from 8% to 40%.

Examining Figure 3 provides an explanation for this
behavior. The increase of SSH v2 capable servers is
mostly due to OpenSSH. OpenSSH’s contribution
of SSH v2 servers increased from 1.7% in July 2000
to 30% in June 2001.

Because we sample hosts randomly, the data can be
used to estimate the number of responsive hosts on
the Internet, i.e., hosts that are connected to the
Internet and not hidden behind a firewall. Given
the number of responsive hosts, we can estimate the
percentage of hosts that run SSH services.

The upper graph in Figure 4 shows the data as mea-
sured. There is no significant change in the per-
centage of responsive hosts during our scan period.
The slight variations might result from changes in
the location from where the scans were conducted.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
0

10

20

30

40

50

60

70

80

90

100

Date

S
S

H
 im

pl
em

en
ta

tio
ns

 in
 p

er
ce

nt

legacy−other
legacy
ssh.com
OpenSSH

Figure 3: Deployment of different SSH server soft-
ware on the Internet.

However, we notice stronger variations in the per-
centage of hosts that run SSH servers. In February
2001, there is a significant drop in hosts running
SSH servers. The drop might be correlated to a
serious security problem in the “CRC32 Compensa-
tion Attack Detector” [?]. The thicker line in the
graph represents a linear fit under that assumption.

However, a closer examination of the data shows
that the distribution of SSH servers is not uniform.
Figure 5 shows that certain areas in the network run
significantly more SSH servers than others. We no-
tice a strong decrease of servers for these addresses
between our scans. We observe a similar decrease in
the number of responsive hosts. One possible expla-
nation is that the address of our scanning hosts has
been filtered. When we remove the part of the net-
work in which we measured the drop in responsive
hosts, the number of SSH servers increases linearly,
as shown in the lower graph of Figure 4.

5.2 SSH Vulnerability Scanning

Because SSH servers are a critical component of
the Internet infrastructure, it is important to react
quickly to security holes discovered in SSH server
software. The remote root hole described in the
previous section was a motivation for us to help to
update vulnerable SSH servers at the University of
Michigan.

To find vulnerable SSH servers, we scanned about
400, 000 addresses on a daily basis. We found about
2, 300 hosts running SSH services. To identify if

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
0

2

4

6

8

10

Date

H
os

ts
 in

 p
er

ce
nt

SSH Servers
Responsive Hosts

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
0

2

4

6

8

10

Date

H
os

ts
 in

 p
er

ce
nt

SSH Servers
Responsive Hosts

Figure 4: Percentage of responsive hosts and per-
centage of hosts running SSH servers. The upper
graph shows the data as measured, the lower graph
shows adjusted data.

a host was vulnerable, we check the software ver-
sion returned by the SSH server against a table of
software known to be vulnerable. We assign the
category “unknown” to hosts for which we have no
vulnerability information. The results are shown in
Figure 6.

In February 2001, we found that 90% of the SSH
servers running at the University of Michigan had
known security problems. In the course of our re-
search, we sent lists of vulnerable hosts to the ad-
ministrators of the respective networks. After two
months, the percentage of vulnerable SSH servers
went below 20%. As security researchers, we think
of this as a long time period. However, given the
administrative needs and structure of the university
(or any bureaucracy), the reaction time is not sur-
prising.

6 Related Work

Nmap is a port scanner that allows scanning multi-
ple hosts at once [?]. Nmap scans hosts sequentially,
i.e. a port scan on one host must complete before
the next host is scanned. While that might be ade-
quate for small networks, it is too slow for scanning
many addresses. ScanSSH scans hosts in parallel
and thus achieves higher scanning speeds.

0 50 100 150 200 250
0

0.5

1

1.5

2
SSH Servers 2001−02−03 vs. 2001−02−24

P
er

ce
nt

 o
f S

S
H

 s
er

ve
rs

2001−02−03

0 50 100 150 200 250
0

0.5

1

1.5

2

P
er

ce
nt

 o
f S

S
H

 s
er

ve
rs

2001−02−24

0 50 100 150 200 250
−1

−0.5

0

0.5

1

D
iff

er
en

ce

Servers per most significant octet in IP address

Figure 5: Comparision of SSH server distribution at
the beginning and end of February 2001.

7 Conclusion

We described the problem of measuring the deploy-
ment of the SSH v2 protocol and finding vulnerable
SSH software.

To solve these problems, we implemented an effi-
cient SSH scanner. We reasoned that efficiency was
our main design goal and showed how our imple-
mentation meets it.

We measured the deployment of SSH servers on the
Internet and showed how ScanSSH has been used to
update vulnerable servers to more secure software.

ScanSSH has been released as UNIX source code
under a BSD license and is available at
http://www.monkey.org/~provos/scanssh/.

8 Acknowledgments

We thank Bob Beck, the University of Alberta,
CORE-SDI and Peter Galbavy for providing net-
work and computing resources for our scans. We
thank David Wagner for helpful conversations about
random number generation and Theo de Raadt for
reviews and helpful suggestions about data analy-
sis. We also thank Adam Moskowitz for shepherd-
ing this paper.

Mar Apr May
0

10

20

30

40

50

60

70

80

90

100

Date

S
er

ve
r

in
 p

er
ce

nt

vulnerable
unknown
safe

Figure 6: Percentage of SSH servers that are either
safe or vulnerable to known security holes.

	Introduction
	Design Goals
	Implementation
	Producer-Consumer Model
	Address Generation
	Producing Addresses
	Consuming Addresses
	Address Exclusion

	Performance Analysis
	Measurement Results
	SSH Server Deployment
	SSH Vulnerability Scanning

	Related Work
	Conclusion
	Acknowledgments

