CITI Technical Report 01-12

Linux NFS Client Write Performance

Chudk Lever, Network Appliance Incorporated
<cel @et app. conp

Petr Honeyman, CITI, University o Michigan
<honey@i ti.um ch. edu>

ABSTRACT

We introduce a simple seqiential write bentimark and use t to improve he
Linux NFS clent's write performance We reduce he latency ofthe wri t e()
sysem all, improve SMP wite performance, and reducekernel CPU process

ing during seqertial writes. Memay write throughput to NFSfiles inproves ly
mare than a factor of three.

October 2,2001

Center fo Information Technology Integration
University ofMichigan

535 WestWilliam Street

Ann Arbor, Ml 481034943



This document was written as part of the Linux Scalability Project at CITI, U-M. The work described here was sup-
ported via a grant from Network Appliance, Incorporated. For more information, see our home page.

If you have comments or suggestions, email <nfs-perf@citi.umich.edu> .

Copyright © 2001 by the Regents of the University of Michigan, and by Network Appliance, Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.



Linux NFS Client Write Performance

Chudk Lever, Network Appliance Incorporated
<cel @et app. conp

Petr Honeyman, CITI, University o Michigan
<honey@i ti.um ch. edu>

1. Introduction

As Linux becomes a permarert fixture of many corpo-
rate irfrastructures, tie performarceof its Network File
System cliat emeges as Gtical to the sucess of om-
plex corporate applications sucls datdbase andnalil
services [45]. Efficient acces to sheeddata in labora
tories that mke extensive use of Linux wrkstations
also depads an good NFSclient performance.

To undersend NFS clent performance s$sues, wede
velopad a simple file sysem bendimak that measures
write latercy and throughpu. Our interest is ot simgy
to idertify speciic prodems inthe Linux client, but
also to undestand general chalenges to NFS client
peformance measement. In this paper, we desciie
the benchmark aw use it to idertify several oppartuni-
ties to improve application write performarce to files
stored in NFS.

The remainder of this pgper & organized adollows. In
Secton 2 we detil the development of the bendimak
and denify issues Hat distinguish client from sener
pefformance kenchmarking. In Secion 3, we use his
bendimak to expose aw carectlatencies in the Linux
write() sysem cal. In Section 4, we outline fuure
areaf exploration and concludethe paper.

2. Benchmarking NFSclients

In this section v develop a rationale for a simpe se-
quentia write bendhymak based @ Bonnie [1]. This
bendimak was deeloped on specialized hardware
(descriked later inthis report) that includes SMP Linux
NFS clients connecid to a prototype Network Appli-
ance F83iler via gigabit Ethernet.

2.1. Client versus Server benchmarking

NFS is a “client mads right” design: theclient is re-
sponsble for ordering bytes, managhg network and
serer con@stin, ard atherwise handing the canplex
issues of implementing adfibuted file system. Tis
leaves the semr simple ad scalable [78]. Satyanara
yana, et al. [5] justifies his archtectue by painting
out that in typical client/server distributed systems
“workstations have cycles b burn” Consejuently, an
NFS clien tends to be complex, which interferes vith
performance ad correctbehavior.

Benchmarking NFS severs is fairly wel undersbod. A

typical NFS ®rver bendimak is SPECSFS [6]. To

remove client behavioral and peaformarce \ariations

from benchmak resilts, SPEC SFS uses itswn use-

space NFS client to access NFSvees under test.
Likewise,NFS client performance d@endson the pe-

formance ofnetworks ard seavers but it is problemaic

to opeate anNFS client wihout ary sever. A slow

sener or network can causeaplicaion peaformance
problems. As we denonstate, faster serer paform-

ance can also hamper client perfonge on naiwe

bendhimaks. The relationship betveen client ard sever

must be carefully consdered when disse&ting client

performance issues.

Oneway to measureclient performance iso eliminate
performance bottlenecks frordowvnstream compomgs,
using fast networking tecmologies and non-volatile
RAM on the sergr, and b push the clienas hard as
possble o see what breks. Another gproad com-
pares dent performance ad belavior unde more typi-
cal workloads acros a \ariety of netvorking conditions
and serer types.

We use bah approactes in this stdy. Ourhardware test
bed onsists of high-pefformance SMP Linux client
hardware connectedyia a high-performance gidmt
Ethemet switch, © a prototype Network Appliance F85
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filer. Also included in our test bed are afour CPU
Linux sener, and seeral shgleCPU Slaris NFS cli-
ens. Comparing behavior and peformance anong
these clients ral serers exposesperformaence issies
that might otherwise escag attemion.

2.2.  Benchmarking on Linux

Our expeiene with peformance measureme on
Linux has taught us D expect large variatons in pa-
formance betveen individual benhymak runs on the
same O% wersion and oftware and hadware corfigura:
tions.

Othe bentimarks un by the aubors in the pasthave
revealed in&plicable \ariations n performance of ses-
eral pats of the Linux lernel, incuding the vitual
memorysibsystem, th scleduler, ard parts of the sys-
tem whose @rrechess depaxd on the global kernel
lock. There ae often oneor moreoutlying dat points
that skew average resits, often maskng relevant
belavior. Such variations arenot common in comme-
cial operating systems ducas Solaris. The Isé
bendimak resilts on Linux are ecellent, but they are
too ofen hanpered bythe outliers, leaving only moder
ate to good perfornmee on aerage. Seeral
measuremes repoted here illu stratethis pheromenon

To address tis, we generally repat sinde runresuts in
this pgoer. The “shgpe” of the resllts is typicaly consis-
tent from run to run, including ary highly variable out-
lying resdts. We are mat interestedin trerds ratter
than preciseneasurments noting ary aromalies.

2.3.  Simplewrite benchmark

We stated by measing the Linx NFS client with
Bonnie to undestand several aspects d Linux client
performance in comation, under a simple but typical
load. W then refined arr benchmark to include ony a
smallpart of thesute dof tests grformedby Bonnie.

The beichmark we desclie here measires sequential
write throughput. Write throughpu depends an the be-
havior of the kernefs VM, neworking, and RPC layers,
andoffers a geeric picture d file sysem performance
In addtion, raw write performarce is importahto mary
typical real world workloads.

Both read and wite operdions are stwork-intensive
becausedata is transmittedlong with these reguests.
However, client O/S cating modeates the peform-
ance of application relarequests onthe cliert; writes
reflect netvork eficienciesand latercies more drectly
[4]. Using sequental writes we mnimize disk latency
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(i.e., seek time) on the sew We considered testing
against a memory-only sew but we chose to design a
benhimak that does not require aypical sever modifi-
caions. Thus we have a simple ard typical applicaion
to run on the client that exercises may of the critical
paths beteenclient and serer.

We basel ou bendimak program on the block sequen-
tial write porton of the Bonnie file sysem bendhimak.
This test measurdsw quickly an application cawrite
8 KB chunks into a freshfile. Writing into a freshfile
narrovs our focusto write code pathwys becauséhe
client doesnot readary preexisting file dat from the
sener tocomplete wite requests.

Bonnie includes thefina cl ose() call in ebpsa time
and hroughput cakulations b capure 1/O thatoccurs
after the lastwri t e() . However, for many local file
systems, dist data remais in the systems’data cache
after tre fina cl ose() operation. To male fair com-
parisons beiveen NFIS (which alvays flushes com
pletely beforeast close) adh local ile systems (which
may delay flushing), our bentimak reports three
throughput resilts: onefor all writes,onefor the sibse-
quent flush gperation, ard one for the final close @era
tion. Eat resut is a hroughput meaurement reported
in megabytes per seond (MBps), ard is cakulated by
dividing the ttal numbe of bytes written by the
amaunt of time from the beginning of the benchmak
until just afte the respectie operaton (writes, flush,
close).

Our benchmark also reprts system call latenc One
can calculatethroughput by dividing average system
call lateng into the aeragebyte size of each gaest.
Reducing g/stem cal latency has mmeliate posiive
effects onthroughput.

However, to get to the heart of sgtem call misbhavior,
it is sanetimes ecessaryto recordactual, and ot av-
erage latercy. As we demorstrate, jitter (\ariation in
latency from one cal to the next) drasically degrades
data throughput inour test, ad is easilyrevealedwhen
examining acual resilts rather than compued averages.

3. Writelatenciesin the Linux NFSclient

We now report resuts o our benchmak on an SMP
Linux client againstfiles an a Linux NFS srver and a
Network Appliance fler. Our gaal is to idertify ard
correct wite peformarce problems.



3.1. Systemsunder test

In this secton, we doaument the g/stemsusel during
these tests.

Client systemOur client oftware runson a dual proc-
esso Pentium Il systembasd on the SererWorks I
LE chipset. e processs are 933 MHz FC-PGA
packaeswith 256 KB of level 2 cache The front-side
bus ard SDRAM spee is 133 MHz. Theae is 256 MB
of PC133 registered SDRAM in this system. fie client
has ore 30@ IBM Deskstar70GXP EIDE UDMA100
drive. Becauseof limitations in the SererWorks souh
bridge the IDE oontroller runs in multiword DMA
mode 2. The SenerWorks chpset supports two 64
bit/66 MHz PCI slots; there 5 a Negear GA620T gi
gabit Ethemet NIC in one of these hat supprts
1000bese-T (opper). The Netgear cad use the Alteon
Tigon Il chipset. This system runs a Linux 2.4.4 kernel
with the Red Hat 7 distribution.

NetApp filer: The Network Appliance fler is a proto-

type F85 with eighteen 36 @ Seagte 336704LC SCSI

drives The F8 has a sigle 833 MHz FGPGA Pe-

tium Il with 256 KB of level 2 cache,256 MB d

RAM, ard 64 MB d NVRAM. The system supprts
several 64-bit/66 MHz PQ slots that contin a Q-Logic

ISP 1280 SCSI cantroller and afiber optic gigabit

Ethemet card probably basd on the Alteon dipset

Data staed on this system is catained in RAID 4 vol-

umes This systtm wuns a pre-rekaseof Network Ap-

pliances DATA ONTAP operating systen'. Special
options erabled on the test wlume irclude the
no_ati me_updat e option, which eliminates seek
intersive inode wite actvity during workloads that
consist matly of readrequests. Tle testvolume con

tains eght disks. Shapshots are enabté durng these
tests.

Linux serve: Our Linux NFS serer is a éur-way Intel
systembasel on the i450NXmainboad. There ardour
500 MHz Katmai Pentium Il CPUs, e&owith 512KB
of level 2 cade. Thefront-sidebus and SDRAM speels
are 133 MHz. The systemantains512 MB of SDRAM
and sk Segate SCSI LVD drives of varying model
contolled by a Symbios 538% SCSI controller. The
system isnetvork-connectedvia a Negear GA 620T
1000base-T Ethemet NIC installed in a 32-bit/33 MHz
Pd slot. This sysem uns aLinux 2.4.4 kernel with the
Red Hat 7.1 dstribution. NFS files sbred on his sys-
tem ieside on a sinde physical sk (ro RAID).

' Benchmark results produced prototype hardere and
software do nohecessarily iect the performance of any
released product.
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Figure 1 - Local v. NFS write throughput
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Figure 1. Local v. NFS memory write performance.
Write thioughput is measad for test ifes between
the sizes of 25 MB and 450 MB. Note that thgdar
peak in memory write performance for lod&$ does
not appear for RS fles. NFS memory write thugh-
put remains constined to network/server tbugh-
put.

These systems aweonnected to a single Extrerhet-
works Summit7i Ethernet switch The copper canec-
tions aremade via CA6 UTP cabling, ad te fiber
connection to the filer is standard muti-mode. Jumbo
paclets ae not enablé on te switchor on ary of the
sysems unde test during these bendimaks. Unless
othewise mertioned all netvorking speels arefixed at
oneGbps, full duplex.

Both the Network Appliance filer and the Linux NFS
server  are  nounted wth NFS  version 3
rsize=wsize8192. The Netvork Lock Manage is dis-
abled.

3.2. Local versusnetwork write performance

To beyin, we conpare the performance ofsequatial
writes irto a local fle system(ext2 on the clien) to the
performarce of seqeertial writes irto a networked file
system KFS sened from thefiler andfrom the Linw
NFS sever). Ext2 memory write performace is a tar
getfor NFS clent menory write performance.

This test cakulates write throughput by dividing the
total number of bytes written by the ebpsed time re-
quired for all of the wite() system cds to om-
plete. Figue 1 shows troughpu resuts that include
only write cals, notincluding the final f 1 ush() and
cl ose() calls includd. The latter results are not in-
cluded becae et2 usualy does not flush after
cl ose().
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Figure 2 - Actual write latency over time
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Figure 2. Write() system call latency. This fgure
shows theifst 1000 write system calls during 40
MB bentimark run. Rriodically, write systemcalls
take more than 19 milliseconds, ineasing themean
latency and thus werall througtput.

Writes to Iccal files are ery fast while there is still
memory &ailable to cachelirty data.Yet, the NFS cli-
ert corstrains write throughpu to network speed. In
the net secton, we eplore his limitation.

3.3. Periodiclatency spikes

Early in our testing we discovered hatwrit e() sys

tem call lateny varies wildly but periodically. To ex-

plore write() system cdllateng, we execute our
bendimak agninst a shgle 40 MB file resding on the

Network Appliance fler, and reprt latercy for

write() system calls dring the test. Atypical resit

is shavn in Figure 2.

While most writes conplete within 300 microsecords,

there is a priodic jump in latercy, approximately every

85 system cadl The lateng for these sbw system calls
is over 19 milliseconds. While there are retively few

of these slav calls (37out of 2560 calls in ths run, or

about 1.4%), they inflate the meanlatercy for the run
from 139.6 miciosecands per call (excluding the 37
calls exceeding 1 millisecond)o 482.1microseonds
per call, mdtiplying the meanwrite() systemcall

latency by 3.45.

We obsened similar resuts with both the Network Ap-
pliance fler and the Linux NFS serer. The latency
spikesdo not gppea in write requests m the wire.

Figure 3 - Actual write latency over time (no flushing)

14 ‘ ‘ Linux 2.4.4 a{gainst NétApp filer'

12 r

actual write() system call latency (millisecs)

0 1000

2000 3000 4000 5000
count of write() system calls

6000 7000

Figure 3. Write() system call latency without peri-
odic flushes. We showan entie benbmarkrun with a
100 MB fle. The lateny ais is the same asifure 2.
The periodic sikes in wrie sywtem calllatercy are
gone, lot avelage latency gowsworse over time

Eliminaing giky latency belavior seens likely to
lower average write latercy and improve write through-
put We instrumented te Linux NFS cient's write cale
path torecord the time mpired for eah step of a
wite() system call. W use the Linux &nel's
do_gettinmeof day() kernel function to capire
wall clock time on ether side of a érget secton of
code, thenrecord tle timings in the kernel log.

We discovered several places whe the Linux NFS
client delys writing threads to keep merory usae in

check It delys writers wlken te numbe of pending

write requestsfor an inode or mourted file system &-

ceedsfixed limits. When the perinode rguest count
grows lager thanMAX_REQUEST_SCFT (whose \alue

is 192 in the 24.4 kernel) the NFS clent forces he

writer thread to schedule all pending writes fa that
inode and st for their canpletion bebre conpleting

the curret request. Whe the permount request count

grows lager thanMAX_REQUEST_HARD (whose \alue

is 256 in the 244 kernel) the NFS client puts ary

threadwriting to that file system tosleepuntil another

threa signals there are fever than

MAX_REQUEST_HARD requests. Each iahal write
request is no larger thana pege

Every systemcall in our test gemates tvo write re-
quests (8192 bytes s two pages, hus Wwo requess).
After the test maks 90w it e() cals, at least180
internal requests argueued on the tesfile’s inode. If
the serer is lgging, there may be gaestdfrom writes
older than te past90 sysem calls. Therefore,very 80
to 90 ystem @ls, he clent flushes the inodées write



request qewe. Ths is tre case of tle spiky latercy
seenm Figure 2.

In the Linux NFS clieni, there is a segratedaemorthat
flushes cachewrite requestdehind a writing pplica-
tion, called nfs_f | ushd. Ideally, the cliert should
cache as manrequests as itan in &ailable memory
[3]. There B no neda to flush write requess unless he
application requests it (va f sync() orcl ose() for
example), or unless the clint cannot allocate more
memoryfor new requests, inwhich case tke VFS layr
blodcks the writer.

After remaring the redundant flushing logic from the
client, we ranour bendimak again. We seein Figure 3
that ths eliminates tle periodic latercy spkes. How-
ever, meanlatercy does nd improve: for the etire run
(6400 writes) the average laeng is 484.7 microsec
onds. hefigure shws that lateng increase over time.
This suygests hat as write reagests hild up in the cli-
ert, data stricture traversal becanes a peformance
limitin g factor

34. List scansand sequential write performance

Experience tells ¢ that scahhlity prodems areoften
the reslt of lengthy data structwe traversals. © estab
lish whether data stricture traversal limits tloughput in
this casewe use a &rnel-prdiling ol that provides a
sampé-driven histogram of lernel execuion that pin-
points area of heay CPU usage in th&ernel.

The profiler reveals two functions in the NFS cliert that
consume sigficant CPU reaurcesduring the bench
mark run: nfs_find_request () and
nfs_updat e_request (), bah of which use tle
inline furction _nfs_find_request(). This
helper funcion scas a srted st of an inode's write
requests tofind a reaiest that matcles anapplication’s
currert write request. The list is maitained in order of
increasingpage ofset in thefile.

Removing periodic write request flushng males this
per-inode listmuch longer. The segertial nature of the
benchmark catses he cliert to traverse comietely the
list during eachwrite system call, only to find no
mathing request, wheraupon the cient adds the new
request to tle erd of the list.

Linux NFS write performance

Figure 4 - Actual write latency over time (scalable lists)

14 ‘ ‘ Linux 2.4.4 a{gainst NétApp filer'

12 r

0.8

0.6 |

0.4

write latency in milliseconds per call

0.2

0 1000 2000 3000 4000 5000 6000 7000
count of write() system calls

Figure 4. Write latency with scalable data struc-
tures. Write latency emains low gen as the maber
of outstanding equests inaeases for the engty of
this berchmarkrun against a100 MB file. For com-
parison,the latency axis ithe same as inigures 2
and 3.

To correct ths scalability defect, we implemented a
has table, smilar to otherhash &bles n the Linux ker-
nel, to manage the cient's outstanding write request.
This has table supplemetsthe pe-inodewrite request
list. Finding a perding write requestis now muad faster,

at a memory ast of eight bytes perequest and eght
bytesper inode.

The Linux VFS layer passe write requess no larger
than apage o file systemspne at a time. Before the
NFS cliert builds an RPC request, it mainains these
pagewrite requess on a pe-inode list, ordeed by page
offset Our modificaion inserts reqiess into a hak
table basd on the reqiestng inode ard the pageoffset
of therequest.All requests b the samegpage in the same
inode are &pt in the same Isd bucket, so ay overlap-
ping requestsra detected bgearchig all the requests
in a single bicket (the cliat usually caces only a sin-
gle write request perpage b maintain write ordering, 0
this is rormally nat anissie). Write reqests are ca-
lescedinto wsi ze chunks st befae te cient gener
ates write RPE

We see lhe improvemaent in Figure4. Write system call
latency during this run averages B6.9 microseonds
per call, &dout the same athe mea for the original
244 client when ktency spkes are xcludel (see Ri-
ure 9. The sustained menory throughput of our se-
quential write benchmark is now almost 115 MBps,
comparedto 28 MBps in Figue 1 for 2100 MB file.
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Figure 5 - Latency histogram, Linux 2.4.4 client
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Figure 6 - Latency histogram, Linux 2.4.4 client
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Figure 5. Write latency against different servers.

This fgure shows the latey o write cdls during a
bencimark runagainst a 30 NB file. Both runshave
about the same minimum latenbyt the fler run has
a number of dés that tékelonger than the Linuxun.

Theaverage latency d client memory writes icreases
when aile is stoed on a faster server

The clent atempts to find a mathing previous write
request twiceduring eab write() systen call. Be-
fore it handesthe current request, it looks for incom-
paible requess that might need ¢ be flushed first An
example ofan incompatiblerequest might be a raques
geneated by anoher gplicaton in a locked reion
outside te airrent request but on the sane pae; to
mairtain proper write orcering, sich a request eeds to
be flushed before the arrent request A dight addi-
tional improvemen here might occur if the searchor
incompatible requests was canbined with the second
search for a mahing request(in nf s_updat epage).

We alsonotice a gap ofreaty reduced jitter for a few
hundred cals in the middle of Figure 4. This gap g-
pears inseveral runs aganst the filer. A possibde expla-
nation appea at the enaf the next secton.

3.5. Global kernel lock on SMP hardware

Using the alove modfications (noextra flushing in the
write pah, and a scalble hash tableat track write re
quests), we mmpae wite throughput performance of
our client agaist a Netwrk Appliancefiler and gainst
a four-way Linux NFSsewer.

Figure 6. Write latency with less lock contention.
This fgure shavs maximum dtency and latency
variation (jitter) is clearly educed.On aveage, filer
writes still t&ke longer than wries to the Linux NFS
server but the differenceis small. Minimum laengy
remains roughly the same, sgesting tha latency
variation, in this caseis theresult of lok conenion.

During a typical bencimak run with a5 MB file, the
filer sustais about 38 MBps of network throughpu.
Our benchmark reports it cagenerate about 115 MBps
of writes. On the oher hand, the Linux NFS sener can
sushin only 26 MBps of network throughput (less han
70% o the filer's nework throughput), yet our bench-
mark canwrite at a rate graer than 18 MBps (20%
faster tha thefiler run).

To explore this disaepancy, we acain examine write
latency. Figure 5 shows ahistogramof writ e() sys
tem call latenies. Whle someof these calls tad less
than 100 microsecands mary take longe. The distribu-
tion shavs thee are more sl calls when theile re-
sideson thefaster of thetwo seners.

Surprisingly the clientbuffers writes more efficiently
when it is sendng daa to aslow sener. We verified this
resut with a serer cn 100 Mbps Ehernet The bach
mark writes to memory even faster with this server,
which ausfains less han 10 MBps pe seond of net
work throughput. This suggess that the RPC
implemenétion or netwvork layer is impeding the NFS
client’s write path.



Normal No lock
NetApp filer 115 MBps 140 MBps
Linux NFS server 138 MBps 147 MBps

Table 1. Client memory write throughput, before

and after lock modification. Remeing the dobal

kernel lock from the RPC Iger causes immvement in
memory write troughput for ifes residing on both the
Network Appance filer and tre Linux NFS server
Even though tke Network Appliancdiler is faster
than tre Linux NFS servelis, the client lack of scal-

ability slows mmory write thoughput to it moe.

Kernel executon profiling sows that the gbbal kernel
lock taken innfs_conmmit_write() isunde con-
tention on SMP hadware. The lock text section is the
fourth largest CPU corsumer in the kernel, exercised
more thantwice as ofterasthe fifth largest casumer.
A prdfile aralysis of this section shaws that the lock
taken in nfs_commt _wite() is the only con-
tributor to CPU time samfed in the bck section.

On SMP hadware, even a single writer thread uses
more tha one CPU, becausedata hat is not flushel
during awri t e() systemcall is flushed later ly the
NFS cliet’s write-behind daema, nfs_fl ushd.
Kernel lock contertion results vhen bah the sinde
writer thread and he flush daenon geneate netvork
write requests.Nf s_f | ushd hdds the dobal kernel
lock whenever it is avake and flushing rejuests. We
suspectedhe flush daemon & causing antention,but
after remwing the globalkernel lodk from the daemon,
we found little improvemen.

We therefae instrumerted the write path to find out
where he mast time is sprt, andfound tha the lernel
spends 50 microseonds pea write request in the net
work laye (sock _sendnsg() is calle from the
RPC layer for each RPC rete This accounts for
almost 90% of the time mr request spert waiting in the
NFS cliert’s write path to acquire the kernel lock.

During the developmernt of the Linux 2.3 lkernel, the
global kernel lock was remaved from Linux’s network

implementation. Becauseig nov no longer necessary

to hdd the kernel lock while caling the netwvork layer,
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Figure 6 illustrates te improsfement inwrite() sys
tem call lateng that occursafter renoving the lernel
lock aound sock_sendnsg() . During tis run, our
calculated results also imp® the mea write()
sysem cal latency dropsfor both benchmark runs on
the nav client (127 versus 149 microseonds for the
filer, 105 versus 113 microsecords for Linux), ard the
filer's maimum latency also drops, from 381 micro-
secondsd 292 microseonds. In caldlating these ger-
ages, wexcludedthe frst dda point in all four runs.
The latenyg for thefirstwri t e() systemcall was al-
most a millisecad during two of the runs.

Note alsothat the minmum latewy hardly changes.
This agees withthe idea that tk latery variation is
not acode path isste, but results from tle writer waiting
to acquirea resource, sutasa lock.

Running aur 5 MB bendmark again with the lock

madificaion, the bexchmak applcaion generaes at

most 140 MB of dat every secad (amost a 22% in-

crease wer the original throughput ofLl15MB per sec-
ond). Thebenchmak geneates 14 MB per secnd of

data against a testd on thelinux sever. Lock conten-
tion measred by the pofiler is almost enirely gone

Application write throughput for the F85ard for the
Linux NFS sever ae now almostin the sane balpark.

Theseresults & summazed inTable 1.

Even hough the Netvork Appliancefiler provides bet
ter retwork throughput thanthe Linux NFSsener does,
applications writing to files on the filer are slaved by
the lackof client scalability Despite theéct that less
client processing is qeired for filer writes because
they don't requre anaddtional COMMIT RPC, client
throughput to a fast sever is hanperel by lock conten
tion, he wst of sending dat to the sever faster, ard
the cost of handling reply interrupts at a higher rate.
Simpy put, as serers lecomefaster a clent mustdo
the sameanount of work in ashorter amount of time.

During a &st with a sngle applicationwriter thread
conending with a shgle flusher tread, we find less
than deal scaling.On a cliet with a single CPU, we
expectto find the flusher tiread taking sme CPU time
away from a use-level writer threa, increasing as
sener throughput incresses.On a client with more than
one CPU, however, the writer thread and théusher

it is safe to release the lock before callingthreal shoutl notinterfere.We suspectHat faster sev-

sock_sendnsg(), thenreacquie the lock whae it
returns, as long as thePR layer does rot requre that
the lock be held over the call. Ths allows other writing
processesto make progress while the network layer
serds thecurent request.

erswill exhibit even worse peformance a SMP Linux
clients wuntil this issueis propely addressd.

Recal the slort period in Figure 4 during which
write() system callateny is much lever on aer-
age. This is likely due toreducedSMP lodk contention
on the cient that ocairrs when the filer briefly siops



Lever, Honeyman

respnding © netwvork write requess during a file sys
tem checkpait [2]. In efect, the fler behaes like an
infinitely slow sener during this period, momertarily
eliminating SMP Iack contertion on the client. While
the flusher thread does notake ary forward pogress
only the appication writer thread is actve. Other
threads do not interfere with the writer, alowing the
client to return control quickly to the apgication.

In future work, we hope b explain why the nework
layer takes nmore than50 microseonds pe RPC request
on a 933 MHz processr. We sugect IP fragmentation
is a majo experse. Junbo packets, a feature of gidpét
Ethemet, may help by reducing the nee for fragment-
ing andreassemling large RPC requests inthe IP layer.

However, we have denonstrated tat removing the
global kernel lock from the write pah yeilds onsder-
able improvements in throughput ard agplicaion ca-
curreng. Currently the RPQayer requires the gbbal
kernel lock to ersure tle integrity of its intermal deta
structures. Remaoving the global kernel lock from the
RPC layer will allow a system wth multiple network

interfaces toprocess more¢hanone RPC request at a

time ard allow concurrert writes toseratefiles andto
separataseners from s@arateclient CPUs

3.6. Final measurement

Figure 7 illustrates bw our modfications lave im-
proved client write peformance. Wth our modifica-
tions NFS write performarce isvery good while thereis
memory to buffer write reaests, but drgps to the
sener's throughput level asthe cient exhaugs menory.

The kft side d Figure 7 $iows that memay write pe-

formarce toNFSfiles is considrally improved. Write

performarce is nolonger limitedto network andsener

speeds. Cliernt scalallity defects catinue to caise
memorywrites tofiles on the Network Appliarce fler

to be 7 MBps slower than to files a the Linux NFS

sener. The right side of Figur& shavs tat as client
memoryis exhaisted, the filer sustains greateratwork

write throudnpu thanthe Linux NFSsener can

Throughput for the local tesird the test agaist the
Linux NFS sever immdiately trail off for file sizes
that exceed the pysical menory size of the clientbut
the benxchmak is ablke to sustain high data throughput
longer when the test ife resides o the Network Appli-

ance fler. We conjecture thathe flers NVRAM acts
as an etension of the clent's page cabe alowing

writes to the serer to proceed at near local memory

speeduntil the sener's NVRAM is full.

Figure 7 - Local v. NFS write throughput (enhanced)
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Figure 7. Local v. NFS memory write performance,
revisited. Write thioughput ismeasued for testifes
betweenthe sizes of 25 MB ardb0 MB. NFSwrite
throughput is considebly ketter than in Fgure 1.
Application write thioughput © longer tracks net-
work write thoughput for NFSiles. Maximummem-
ory write thouchput is nearly te same for botkerv-
ers tested.

With workloads that hold a fle open for a long ime arl
write asynchronously (that is, without the requirement
that dat be made penanentbefore hewri t e() sys-
tem call is conplete), the Linux NFS serer hes a sligh
adwantage. This adwantagedisappears as client scalabil-
ity concens are addressedVhee applications write
then mmaliately flush or close,or whee applications
require data pemanencebeforeawr i t e() system call
retuns, the Network Appliance fler, with its greater
network ard disk throughpu, performs better. Though
memory writes are slightlglower on the client, appli-
caions rgain contol sooner after they flush or close a
file when writing to dastersener. As client scalability
improves, @plications can tee advantageof improved
memory write throughput and better network through
put

4. Futurework and conclusion

In this paper, we descrbe a smple sequential write
bendhimak to measve file sysem write latency ard
throughput. We show how this bentimak reveak pe-
formance and scalability problems in th&inux NFS
client, ard we descibe seeral modificaions b the
Linux NFSclient thatimprove applicaion write latency
and throughpu.

We alsodemonstrate somiateresing agpects of client
benhimaking. Where NFS sergr bexchmarking is a
directmeasirement of on-the-wire behavior, NFS client



measuremd is a subtle and indéct afair, best accom-
plished ushg conparison. Standad file sysem per
formance bechmaks ae usefll in asssshg clent
performance, but a single benchmark run may rot tell
the wiole sory. Interesing client behaiors emege
when compaing bentimak runs a@inst several differ-
ent serers.

Using comparison we have confirmed interactios be-

tween client and seer implementationshat hamper
appicaton pefformance wih fast seners ad netvorks.

A Linux client pared with a fast sever exposes scal
ahlity isstes n the cliert. Escalatig sener perform-

arce mustbe matched by atention to client scalalfdity .

We want to assess further the impadftthe global ler-
nel lock on the scalabity of the Linux NFSclient. Fur-
ther, we want to continue investigating why slower
seners allav faster memorywrite throughput on Linux
NFS clents, and why, in general, there catinues © be
so mud variance betveen benchmark runsonLinux.

We especiallywant to pove our compeative method-
ology within real applicationdomains. These teb-
nigues ae ako valuable for suveying NFSv client
implementtions. Fnaly, we hope © explore improve-
mens B the Linux NFS clent that affect its belavior in
corner caseshat face avanced deloyments outside
the resealttlab, such as itfle locking and specialized
cachingbehaior, and its peformancewith databases
combinedwith network-attacted storag.
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