CITI Technical Report 01-10

The 10 Mbps Advanced Packet Vault

Charles J. Antonelli, Kevin W. Coffman, and J. Bruce Fields

cjaOumich.edu, kwc@umich.edu, bfields@umich.edu

Abstract

This paper describes the Advanced Packet Vault, a cryptographically secured archiver of network packet
data that reliably captures all packets on a 10 Mbps Ethernet network, encrypts them, and writes them
to long-term magnetic tape storage for later analysis and evidentiary purposes. Based on a previous
prototype, the APV provides an enhanced cryptographic organization that allows site-specific selection of
the encryption format and that permits selected traffic to be made available without compromising the
security of other traffic. The APV operates reliably under a continuous 10 Mbps load.

October 4, 2001

Center for Information Technology Integration
University of Michigan

535 West William Street, 3rd Floor

Ann Arbor, MI 48103-4943

1 Introduction

The objective of the packet vault project at the Cen-
ter for Information Technology Integration remains
the production of a cryptographically secured long-
term store of network packets for later use as input
data for intrusion detection algorithms or for possi-
ble evidentiary purposes.

We describe the Advanced Packet Vault (APV),
which reliably archives all of the network traffic on
a 10 Mbps Ethernet subnet. This work is based on
a prototype previously developed at CITI [3].

As noted in this previous work [3], creating a com-
plete and permanent record of all activity on a sub-
net addresses security threats by providing a corpus
of data suitable for training and comparing intrusion
detectors, detecting and helping to shape responses
to intrusions in progress, providing a record of activ-
ity on a subnet, or if properly constructed, serving
as evidence in legal proceedings.

The remainder of the paper is organized as follows.
While the main foci of the APV project have been
improved performance and reliability, the crypto-
graphic organization of the APV has been signifi-
cantly extended. Therefore, a brief review of the
project goals is followed by a description of the new
cryptographic organization. We then present the
APV’s architecture and discuss the hardware and
software used, and present results of performance
tests which establish the APV’s ability to handle
reliably any traffic on a 10 Mbps network. We con-
clude with a discussion of future work necessary to
scale up the APV to 100 Mbps or better.

2 Goals

We retain our goals of commodity, completeness,
and security from our prototype [3]:

commodity: We have built the APV from high-
performance commodity hardware and soft-
ware, continuing to avoid expensive or special-
purpose platforms and to depend on Moore’s
Law to deliver increased capacities down the
road.

completeness: As any attempt at packet triage
can be exploited by an adversary, we defend
against such attacks by building a vault that
can reliably archive every packet seen on the
network. The APV is designed to archive all

traffic on a 10 Mbps network under any condi-
tions, including attacks against the vault itself.

security and privacy: We use cryptography to
protect privacy so that a breach of physical se-
curity does not expose the data contained in
an archive. We use strong cryptography with
strong keys, we change keys periodically, and
we use keys that are dependent on the IP ad-
dresses on each packet, so that some subsets
of the data can be revealed without disclosing
others.

openness: It is difficult to convince users that a
system respects their privacy if its operation
is opaque. Source code for all of our software
(including the OpenBSD operating system) is
freely available. The vault is designed to oper-
ate reliably and securely despite the existence
of adversaries with complete knowledge of its
design.

The prototype vault used CD-ROM for its perma-
nent record. While we could have used this medium
for the APV, future editions of the vault will be ex-
pected to operate at 100 Mbps and above. When
attached to a heavily loaded 100 Mbps network, the
challenge is to capture, process, and store about a
terabyte each day.

We are sensitive to the recurring costs of operation,
which include personnel costs for system operation
and maintenance, storage costs for media, and the
cost of media. Our targets are to store a year’s
worth of 100 Mbps vault data in a cubic meter, at
a cost of $50,000 for physical media. These targets
translate into $0.135 and 2.7 cc per gigabyte.

Today’s LTO tape technology meets our volumet-
ric target and costs $1.15/GB. While this is down
from $1.50/GB one year ago, it is a bit off the pace
predicted by Gray and Shenoy [6], who suggest that
storage cost is improving by a factor of four every
three years. If the prediction proves accurate, this
yields an annual cost for media of almost $140,000, a
dominating and forbidding price tag. Under certain
assumptions, though, such as compressibility of the
raw network traffic, volume discounts for tape car-
tridges purchased by the thousands, and the emer-
gence of unconventional storage media such as opti-
cal tape, we anticipate this cost to fall by an addi-
tional factor of two to four, which achieves our cost
target. See Figure 1 for a comparison of storage
media.

Advertised | Measured | Native
Type MBps MBps GB/volume §/GB | cc/GB
AIT2 6 50 1.50 1.9
DLT8000 6 4.6 40 1.50 11
Mammoth2 12 9.6 60 1.50 1.5
AIT3 12 100 0.95
LTO 15 5-10 100 1.15 2.3
DVD-R 5/10 4.7 4 3.2

Figure 1: Comparison of Storage Technologies. Note AIT3 is not yet generally available.

These developments in storage systems have caused
us to modify a goal:

permanence: Despite consistently bad long-term
experiences with data storage on magnetic
tape, the latter is currently the only medium
which has the speed, density, and cost neces-
sary to meet our targets.

3 Cryptographic Organization

The APV’s cryptographic organization is heavily in-
fluenced by the security and privacy goal. In the
event, of loss of physical control over the vault, we
must rely entirely on the strength of the cryptogra-
phy for the security of the vault archives. Also, in
order to allow use of the vault data with the min-
imum disclosure necessary, the vault is designed so
that cryptographic keys can be given out which de-
crypt only subsets of the archived data.

As in the prototype, we use a symmetric cipher to
encrypt packet data, and an asymmetric master key
to encrypt the symmetric keys. The master public
key is stored in the APV and is used during packet
collection; the encrypted symmetric keys are written
to tape along with the encrypted packets. When re-
trieving packets from the APV, the master private
key is used to recover the symmetric keys, which
are used to decrypt the retrieved packets. We refer
to the agent possessing the private key as the vault
owner. The other party involved in any data re-
trieval operation is the person requesting some sub-
set of the vault’s data, whom we will refer to as the
requester.

The priorities that shape the vault’s cryptographic
design are as follows.

Privacy: It should be infeasible for an adversary
without possession of any keys to recover any

data, or for an adversary with some keys to
discover other keys. Given a request for data
from the vault, it should be possible to generate
keys that decrypt the requested data without
exposing other data.

On-line performance: The vault must be able to
keep up with a 10 Mbps network at all times.

Off-line performance: The vault should be able
to answer common types of requests for stored
data in a reasonable amount of time.

While we won’t give up privacy or on-line perfor-
mance to gain off-line performance, there are ways
that off-line performance can affect privacy. For ex-
ample, if the vault is not designed to handle com-
mon kinds of queries easily, then recovery requests
may be overly broad. Also, we prefer to minimize
the complexity of the work that must be done with
the vault master key, to minimize the chances of a
mistake being made that discloses or misuses that
key.

3.1 General Organization

The vault gathers incoming packets into segments,
which are in turn gathered into volumes. Segments
are at most 16 MB in size and are encrypted and
aggregated into 1 GB volumes, which are written to
tape. The vault only stores those Ethernet frames
that contain IP packets; all others are discarded.

With each new volume, two symmetric keys are
created, a wvolume key Ky and a translation
table key Krp. These keys are created using
OpenBSD’s strong random number generator via
/dev/srandom, and are used to encrypt the packet
data in each segment, as described below. After a
volume is completed, both keys are encrypted under
the vault master public key and written to tape.

The volume key is used exclusively to generate con-
versation keys, which in turn are used to encrypt
packets. The conversation key used to encrypt a
packet depends both on the volume key and on the
source and destination address in that packet.

Note that finding the correct volume key(s) for a
requested time interval will require reading through
the vault output unless the vault owner maintains a
database mapping epochs to volumes and encrypted
volume keys. The APV keeps such a database on
local disk, although the current version does not
include the volume keys.

3.2 Encryption Formats

The APV supports three encryption formats (the
prototype vault supported only the first described
below). All formats generate a conversation key K¢
derived from the packet’s source and destination IP
addresses as follows

K¢ = Ek, (src||dst)

In other words, we compute K< by concatenating
the IP source and destination addresses and en-
crypting the result using Ky .

3.2.1 Open Header Format

The open header encryption format uses K¢ to en-
crypt the link-level header and body of each IP
packet under the conversation key, but does not en-
crypt the IP header; instead, the IP addresses in the
header are translated using a translation table built
on-the-fly for each segment. We then encrypt the
translation table using K.

Cleartext packet headers can be useful material for
research and for a variety of applications including
traffic analysis [4, 12, 1]. Open header format allows
the vault archives to deliver packet headers while
protecting packet contents.

Several issues arise, however. A simple mapping of
IP addresses may not be sufficient to obscure infor-
mation about which hosts were involved in a given
conversation. For example, an attacker could ex-
pose the mapping used for a particular IP address
by sending a recognizable packet across the network,
with a spoofed source address equal to the address
he or she wishes to discover. Packets could be rec-
ognized by observing unusual IP header fields or
packet lengths.

It is also possible to identify all packets of a con-
versation within the same segment by observing
that they all possess the same translated address.
This identification does not cross segment bound-
aries, as a new translation table is built for each
segment, and each translation table is encrypted in
CBC mode with a different initialization vector.!

Finally, managing the translation table efficiently
is difficult in the face of sustained and determined
attacks. For example, injecting packets with unique
spoofed source addresses forces the translation table
to grow and defeats conversation key caching.

3.2.2 Conversation Format

To address the above concerns we have added a
new encryption format to the cryptographic organi-
zation. Conversation format encrypts each packet
in its entirety under K¢, including the IP header.
This also removes the need to maintain a transla-
tion table. However, it is now infeasible to recover
an entire volume of data, because it is impossible
to know which conversation key to use to decrypt a
given packet without knowing its source and desti-
nation addresses a priori. To make volume recovery
practical, we prepend a copy of K¢ encrypted under
K to each packet.

3.2.3 Endpoint Format

A third encryption format generates two additional
endpoint keys Ks and Krp for each packet: Kg
depends only on the source address and Ky; Krp
depends only on the destination address and Ky .
Two additional copies of K¢ are prepended to each
packet, one encrypted with each endpoint key. This
allows someone in possession of an endpoint key to
decrypt all traffic which was sent or received by a
particular host.

Creating files in endpoint format consumes more
processing time and increases the per-packet storage
overhead, but it allows the vault to satisfy queries
for all traffic sent to or received by a given host by
decrypting only the designated traffic, rather than
resorting to decrypting entire volumes.

The layout of a packet stored in each of these for-
mats is summarized in Figure 2.

I This addresses a defect from the prototype vault, which
encrypted the tables in ECB mode, so that it was possible
to identify connections between conversations across segment
boundaries.

vault open header format:

| length | timestamp | Eg . (Ethernet header) | translated IP header | Eg . (IP payload)]

conversation format:

| length | Fk,(K¢) | Bk, (timestamp, Ethernet header, IP packet) |

endpoint format:

| length | Ex,(Kc) | Ex, (Kc) | Ex,(Kc) | Exk, (timestamp, Ethernet header, IP packet) |

Figure 2: The formats of encrypted packets offered as alternatives by the vault; Ex., Ex,, Ek,., and Ex,,
represent encryption under source and destination endpoint keys, conversation keys, and translation table

keys, respectively.

3.3 Key Generation

Conversation and endpoint keys are generated by
encrypting the IP address or addresses using the
volume key.

An analysis of the algorithm used by the prototype
vault revealed a flaw that made it easier than it
should have been for an adversary in possession of
one key to find other keys. That algorithm was
also designed specifically for use with DESX, and
didn’t obviously generalize to algorithms with dif-
ferent block or key lengths.

Therefore a new algorithm was required, meeting
the following requirements:

Repeatability: To allow easy retrieval, the algo-
rithm must use only knowledge of the IP ad-
dresses involved and the volume key; the key
generated shouldn’t depend on other random
numbers or past history of the vault.

Security: It must be hard to guess the volume key
given only knowledge of some addresses and
corresponding conversation keys, and it must
be hard to guess conversation keys or parts of
such keys given only knowledge of addresses or
other conversation keys.

Flexibility: The key-generating algorithm should
take a variable amount of input: we might de-
cide to index on something other than source
and destination addresses; we might also use
port addresses, or might use some other kind
of address (e.g. Ethernet MAC addresses or
IPv6 addresses). The algorithm should also be
able to produce variable amounts of output, so
that we can easily change the lengths of the
keys produced.

Speed: The algorithm must be fast enough to meet
the performance requirements under all condi-
tions. If this is not the case, and if we depend

on key caching for adequate speed, then an at-
tacker could disable the vault by sending nu-
merous packets with spoofed IP addresses. The
vault is robust against such an attack only if
the key-generation algorithm is fast enough to
generate a new key for every packet.

To generate conversation keys, we concatenate the
source and destination addresses to form 64 bits of
plaintext that are encrypted with Ky . Endpoint
keys are made by concatenating the source or des-
tination address, 32 zero bits, and a unique byte;
the resulting plaintext is encrypted with Ky . The
unique byte ensures that duplicate conversation and
endpoint keys are never generated. See Appendix A
for a detailed description of the key generation al-
gorithm.

Based on our experiments, we believe that our new
algorithm meets all requirements. However, the fi-
nal requirement seems to be the most difficult; while
we have met our performance requirements for the
current generation vault, key generation and key
scheduling may prove to be a bottleneck when we
scale to a 100 Mbps vault, and some form of key-
schedule caching may be required.

3.4 Encryption Algorithms

As we have seen, the vault requires (at least) two
ciphers: a public-key cipher to use for the master
key, and a symmetric-key cipher for everything else.
Our criteria for choosing ciphers include:

Security: The completeness and permanence of
the vault data demands encryption that will re-
sist attack for as long as possible. This is par-
ticularly important for the private key, since it
is not routinely changed, and since knowledge
of that key alone is sufficient to expose all of
the vault data.

Performance: This is less important for the public
key cipher, since it is only used once per volume
to encrypt a small amount of data. The sym-
metric cipher, however, must be able to han-
dle the full 10 Mbps flow of data from the net-
work. The performance of the key-scheduling
algorithm is particularly critical, because in the
worst case a new key is used for each packet.

Availability: We restrict our choice to freely-
available implementations.

For symmetric encryption the vault uses Rijndael,
which has been selected by NIST as the new Ad-
vanced Encryption Standard (AES) [9]. Rijndael
provides variable block and key sizes; we use 128
bits for both, as these are convenient for the key-
generation algorithm previously described.

A brute-force search of the 128-bit key space is likely
to remain impractical for some time. Exactly how
long depends mainly on guesses about progress in
the computing hardware; Lenstra and Verheul esti-
mate that a brute-force attack against a symmetric
algorithm using 128-bit keys should remain infeasi-
ble for well over 50 years [7].

This assumes no breakthroughs in the cryptanaly-
sis of Rijndael. However, Rijndael did withstand a
great deal of scrutiny during the the AES selection
process, and its selection as the AES will guarantee
that it is the target of more extensive cryptanalysis
in the near future. If it is insecure, at least we are
likely to find out sooner rather than later.

The performance of Rijndael is particularly well-
suited to the vault; in addition to excellent perfor-
mance on regular encryption, the key-scheduling al-
gorithm is particularly fast[11, 5]. For the 10 Mbps
vault, we use an optimized ANSI C implementation
of Rijndael [10]. On the vault hardware, we have
found this implementation can encrypt data at up
to 200 Mbps, with a key-scheduling operation taking
less time than encryption of a single 128-bit block.
The selection of Rijndael for AES increases the like-
lihood that implementations further optimized for
our hardware platform will become available in the
near future, so it may be possible for the vault to
scale to 100 Mbps networks even without recourse
to cryptographic hardware.

The vault’s master key is a 1024-bit ElGamal key,
and we depend on GPGI2] to perform ElGamal en-
cryption. While 1024-bit keys currently appear to
provide adequate security, Lenstra and Verheul [7]
speculate that such keys could become vulnerable

in the near future. Therefore we plan to test the
vault with longer keys, and to explore other public-
key algorithms. Since the master key is only used to
encrypt a small, fixed amount of data once per vol-
ume, the cost of this encryption is amortized over a
volume’s worth of data, which gives us considerable
flexibility to choose stronger cryptography.

In addition, the vault software is designed to allow
drop-in replacement of the encryption algorithms,
so that we can continue to consider alternatives
when there is a clear gain in security or performance.

Finally, as noted in our previous work [3], exposed
vault data continue to pose a problem for any en-
cryption scheme. There is no way to guarantee that
encrypted data will withstand advances in crypt-
analysis or technological improvements over arbi-
trarily long periods of time. If the period is suf-
ficiently long, it may be that a given vault’s data is
no longer valuable enough to be worth the effort of
decryption, or sensitive enough for its exposure to
be a concern. These risks will have to be evaluated
as more vaults are deployed.

4 Architecture

Since the development of the vault prototype, ad-
vances in commodity hardware made it possible to
consider collapsing the vault onto a single machine.
Accordingly, the main design consideration for the
APV was to perform all tasks on a single host.

In addition, advances in magnetic tape technology,
embodied in the commercial availability of LTO Ul-
trium tape drives and media, now permit the stor-
age of 100 GB of data at 10 MBps on a tape car-
tridge. Optical storage has not kept pace. Despite
misgivings about longevity and reliability, we have
chosen magnetic tape as the most cost- effective so-
lution for the APV archives.

The APV hardware consists of a machine built from
an Intel STL2 Server Board containing two 866 MHz
Pentium IIT processors with 133 MHz system bus
speed and 512 MB of system memory. This moth-
erboard contains an integrated 10/100 Mbps Fast
Ethernet Controller. Two high-speed 35 GB Ul-
tral60 SCSI disk drives are attached to an on-board
Ultral60 SCSI controller to buffer data after it has
been collected and encrypted. A single EIDE disk
contains the operating system partitions. APV data
are stored on a Qualstar 8211 Tape Library Subsys-
tem. The library contains an HP Model 230 LTO
Ultrium tape drive and a cartridge picker; both de-

10 Mbps Network Segment

listener

encrypter

archiver

ot

?

Figure 3: Vault data flow

vices are attached to the same Adaptec 29160 SCSI
controller.

OpenBSD was chosen as the operating system be-
cause of its high-performance in-kernel BPF packet
filter [8]; its built-in support for cryptographic hard-
ware; and its reputation for providing a secure op-
erating system platform.

Our current implementation does not utilize the sec-
ond processor because OpenBSD does not currently
support multiprocessing; work on this is reported
to be underway. We also do not yet utilize cryp-
tographic hardware. While neither was necessary
to achieve our current performance targets, we be-
lieve that either the second processor or the cryp-
tographic hardware will be essential to scale perfor-
mance to faster network speeds.

The APV software consists of three major compo-
nents, described below, driven by two scripts. A
script called pilot.tcl drives two of the components,
the listener and encrypter. A second script called
archiver.pl drives the third component, the archiver.
See Figure 3 for a data flow diagram.

Each component operates as follows:

listener: The kernel passes copies of packets re-
ceived on a network interface to the BPF sub-
system. The BPF code buffers incoming pack-
ets and periodically writes them to a file in a
memory file system (MFS). Though this is done
in-kernel by a specially modified version of the
BPF code, the operation is overseen by a user-
space listener process. When the destination
MEFS file exceeds 16 Megabytes, or when more
than a minute passes, the listener renames the
file and starts a new file. We call each resulting
raw packet file a segment.

encrypter: The encrypter reads each new segment
from MFS, encrypts it according to the speci-
fied format, and writes the result to SCSI disk.
When 1 GB of segments have been collected,
the encrypter starts a new volume.

archiver: The archiver encrypts the volume key
and translation table key of each completed vol-
ume using the vault’s public master key, and
writes the result, together with all of the en-
crypted segments, to tape.

The pilot script starts the listener and invokes
the encrypter program for each completed segment.
The archiver script waits for completed volumes and
writes them to tape using tar. The archiver also
manages the tape library, prompting for more tapes
when all the tapes in the library have been filled.

We use a separate program apvsync to synchronize
the activities of the other components using shared
memory and semaphores. We extend the classic
producer-consumer synchronization model by allow-
ing a consumer to return an item for future con-
sumption if it cannot be processed due to some
transient error. When a volume is completed, the
pilot script uses apvsync to synchronize with the
archiver.

The archiver maintains a database of all the volumes
archived. This database can be examined at a later
time to find volumes of interest for restoration. The
database retrieval interface is currently a manual
procedure, but an automated mechanism is planned.

5 Performance Testing

Since the vault encrypts each packet under a key
depending on both the source and destination ad-
dresses, there is a great deal of overhead associated
with each new packet. To write a packet to a file in
the conversation format, the vault has to examine
the addresses on the packet and generate a conver-
sation key, encrypt a copy of the new conversation
key under the translation key, and then create a
schedule for the conversation key, all before it can
begin encrypting the packet. To write a packet in
endpoint format, the vault must, in addition, gener-
ate and schedule both endpoint keys, and must en-
crypt both under the translation table key. When
using open header format, the vault avoids having
to prepend encrypted keys to each packet, but must
instead perform translation of IP addresses.

megabits per second

Mbps (averaged over a one minute interval)
over a three week period (8/21/2001 - 9/11/2001)

70

"bps.dat" us‘ing 1:3 ——

60 - B

40 R

20 -

10

NI M W JL:

09/01 09/08

Figure 4: Observed Mbps during a 3-week period

Only a restricted subset of the possible IP addresses
will appear on a network under ordinary conditions,
so it is likely that great performance improvements
could be made by caching conversation and end-
point keys. However, an adversary might be able
to inject packets with spoofed addresses onto the
network in order to defeat this caching. Also, the
adversary could make those packets as small as pos-
sible, forcing the vault to spend most of its time
doing key generation and scheduling.

For maximum robustness, therefore, we have de-
signed the 10 Mbps vault to keep up with a fully
loaded network without any caching of keys or key
schedules.

5.1 10 Mbps Performance

The APV has been tested extensively on traffic con-
sisting of packets of the minimum allowable size (60
bytes) at the maximum possible rate, with each
packet having distinct spoofed IP addresses, thus
forcing the APV to generate new conversation keys
at a high rate. On a real network, this sort of traffic
would occur only as the result of a concerted attack
on the APV by an adversary with direct access to
the network.

Tests with synthetic data were conducted by attach-
ing the vault to a private 100 Mbps Ethernet hub
shared with several other machines that could pro-
duce packets of chosen rates and sizes.

By configuring the network interfaces on the sending
machines to use the 10 Mbps media type, we could
simulate a 10 Mbps network. With the vault writ-
ing files in the conversation or endpoint formats we

percent of packets

packet sizes over a 33-hour period
14%

12% —

10% B

8% B

6% |- R

a% | g

2%

400

| | | . |
800 1000 1200 1400
packet size in bytes

0% 1l

[200 600

Figure 5: Observed distribution of packet sizes as a
percentage of total packets

were unable to force the vault to lose any packets.
When writing files in open header format, however,
we could force the vault to lose data in extreme cir-
cumstances. For example, given traffic consisting
of 60 byte packets with each packet having unique
spoofed source and destination addresses, the maxi-
mum load the vault could handle was about 4 Mbps
(about 8,500 packets per second).

5.2 100 Mbps Performance

Since testing of the vault on a 10 Mbps network ex-
posed so few performance limits, we next performed
tests with the network interfaces set to 100 Mbps to
characterize the vault’s performance beyond the 10
Mbps target. All of these tests were done using con-
versation format.

First, we ran the vault continuously for three weeks
while monitoring all of the traffic on the CITI local
area network. The traffic levels during this period
are shown in Figure 4. A total of 50 GB and 138
million packets were stored to tape by the vault.
The only error detected was a single event in which
422 packets were lost before being copied out of the
kernel.

In synthetic tests on our 100 Mbps network, we
found that occasional packet drop events such as
these could occur even with loads below those that
the vault could handle reliably on a 10 Mbps net-
work. We believe these packet drops are due to
bursts of packets arriving in sub-second time inter-
vals, but more investigation will be necessary.

Besides the packet drops inside the kernel, the vault

1600

Packet Size | Max Rate | Max Rate
(encrypt) | (write to tape)
60 bytes 18 Mbps N/A
(37K pps)
1500 bytes | 50 Mbps 35 Mbps
(4K pps) | (3K pps)
observed 35 Mbps 30 Mbps
mixture (20K pps) | (17K pps)

Figure 6: Performance extrema

may fail in two other ways: if the encrypter falls
behind, then MFS will overflow; and if the tape
drive falls behind, then the on-disk buffer in UFS
will overflow. Figure 6 shows maximum rates at
which the vault can perform without overflowing
these buffers, under three different test loads:

60 byte packets: Traffic consisting completely of
the smallest frames allowable on an Ethernet
(14 bytes of header, and 46 bytes of payload).

1500 byte packets: Traffic consisting completely of
the largest frames allowable on an Ethernet.

observed mixture: Traffic with a combination of
four packet sizes, chosen to correspond roughly
with the peaks in distribution of packet sizes
seen on our local network (see Figure 5), but
erring on the side of smaller packets, which
stress the vault more for a given Mbps load.
More specifically, 36% of the packets were 60
bytes long, 53% were 159 bytes long, 5% were
598 bytes long, and 6% were 1478 bytes long.

Note that the Mbps numbers reported above do
not include additional components of network over-
head, including checksums, preambles, and inter-
frame gaps, which are required to transmit each
packet at the physical layer, but which are not seen
by the vault software. This means that these num-
bers are underestimates by at least 30 percent in the
60-byte packet case.

These performance figures ignore packet drops.
However, during the tests which produced the data
in Figure 6, there were only four packet drop events.

6 Discussion and Future Work

We have constructed a packet vault using commod-
ity parts that fully meets its operational goal of en-
crypting and archiving all packets seen on a 10 Mbps

network, and is capable of operations at speeds con-
siderably beyond this.

With this 10 Mbps APV in hand, we have already
begun to investigate the 100 Mbps landscape. There
are many opportunities for future work.

One way to improve the APV’s reliability and scal-
ability is to design the APV to handle a wide range
of "normal” traffic well, and to back off gracefully
in the event of a denial of service attack. The
APV already has mechanisms in place to monitor
its resources, such as free space on filesystems where
packets are buffered, but ceases operation immedi-
ately when resources become exhausted. We plan to
investigate alternative failure modes, such as switch-
ing to bulk encryption under a single key to avoid
the overhead of generation and scheduling of con-
versation keys.

We plan to continue to investigate alternative cryp-
tographic organizations that give APV owners the
flexibility to implement policies that balance perfor-
mance, privacy, and the production of useful data.
Further investigation is also needed to determine
how best to disclose information such as headers for
research purposes with minimal risk of disclosing
personally identifiable data. In particular, further
work is necessary on scalable methods for mapping
IP addresses, and we may also consider encrypting
headers under keys distinct from those used to en-
crypt packet payloads.

The APV is currently operated by several user-level
programs. We will investigate moving the data ac-
quisition and encryption functionality into the ker-
nel for more efficient operation. We are also in-
terested in improving the LTO tape drive’s perfor-
mance by a careful analysis of its driver.

One way to reduce the encryption bottleneck is
through use of cryptographic hardware. For ex-
ample, the Hifn 7814 chip can encrypt even small
packets at 200 Mbps using AES. We intend to com-
pare software with hardware AES encryption, pay-
ing close attention to the performance penalties in-
curred by the use of large numbers of encryption
keys. As OpenBSD does not support multiple pro-
cessors, we will investigate FreeBSD- and perhaps
Linux-based solutions.

Finally, gigabit Ethernet is becoming widely de-
ployed, and multi-gigabit backbones are no longer
exceptional. A single APV cannot cope with these
network speeds. We will investigate a parallel archi-
tecture in which groups of APV engines cooperate to
cover a high-speed network, possibly using a round-

robin technique or a CRC of a packet’s contents to
distribute packets among multiple engines.

References

[1] Macroscopic visualisation = of the in-
ternet during october, 2000. http:
//www.caida.org/analysis/topology/
as_core_network/AS_Network.xml, 2000.

[2] The GNU privacy guard. http://www.gnupg.
org/, 2001.

[3] C. J. Antonelli, M. Undy, and P. Honey-
man. The packet vault: Secure storage of
network data. Technical Report 98-5, Center
for Information Technology Integration, 535 W.
William St., Ann Arbor, MI, 1998.

[4] A. Feldmann, A. Gilbert, P. Huang, and
W. Willinger. Dynamics of ip traffic: A study
of the role of variability and the impact of con-
trol. In Proceedings of ACM/SIGCOMM, 1999.

[5] Brian Gladman. AES algorithm effi-
ciency. http://fp.gladman.plus.com/
cryptography_technology/aes/.

[6] Jim Gray and Prashant Shenoy. Rules of thumb
in data engineering. Technical Report MS-
TR-99-100, Microsoft Research, Redmond WA,
2000.

[7] Arjen K. Lenstra and Eric R. Verheul. selecting
cryptographic key sizes. In proceedings of PKC
2000, volume 1751 of lecture notes in computer
science, pages 446—465. Springer-Verlag, 2000.

[8] Steven McCanne and Van Jacobson. the BSD
packet filter: a new architecture for user-level
packet capture. In winter 1993 USENIX con-
ference proceedings, pages 259-270, 1993.

[9] National Institute of Standards and Technol-
ogy. AES home page. http://csrc.nist.gov/

encryption/aes/.

—

[10] Vincent Rijmen, Antoon Bosselaers, and
Paulo Barreto. Optimised ANSI C
code for the Rijndael cipher. http:
//www.esat.kuleuven.ac.be/"rijmen/

rijndael/rijndael-fst-3.0.zip.

[11] B. Schneier, J. Kelsey, D. Whiting, D. Wagner,
C. Hall, and N. Fergesun. Performance com-
parison of AES submissions. In Proceedings of
the Second AES Candidate Conference, 1999.

[12] Jacobus van der Merwe, Ramon Caceres, Yang
hua Chu, and Cormac Sreenan. mmdump: A
tool for monitoring internet multimedia traffic.
Technical Report 00.2, AT&T Labs Research,
2000.

A Key Generation Algorithm

In this appendix, we describe the key generation
algorithm in more detail:

Assume the following are given:

X: a block cipher (e.g., DESX, triple-DES, or AES)
b: the length of the blocks that X operates on

D: some data that the key depends on (e.g., a pair
of IP addresses and port numbers)

d: the length in bits of D

k: the desired length in bits of the resulting key
Perform the following steps:

1. Let m = d/b rounded up; this is the number of
blocks required to represent D.

2. Let n = k/b rounded up; this is the number of
blocks required to represent k.

3. Let p = m + n — 1; this is the number of en-
cryptions we’ll perform.

4. Pad D with pxb—d zero bits, and call the result
D'. (So D' will have length p*b.)

5. Encrypt D' using the volume key and X in
CBC mode with a zero initialization vector.
Call the result J; it should be p*b bits long.

6. Discard the first p x b — k bytes of J, and use
the leftover bits as the payload key.

The resulting key depends only on the volume key
and the conversation data, as required. Clearly, we
can also produce variable amounts of input and out-
put data as necessary.

To generate conversation keys, we concatenate the
source and destination addresses to form 64 bits of
plaintext that are encrypted with Ky . Endpoint
keys are made by concatenating the source or des-
tination address, 32 zero bits, and a unique byte;
the resulting plaintext is encrypted with Ky . The

unique byte ensures duplicate conversation and end-
point keys are never generated.

To generate conversation keys, we take the data D
to be the concatenated source and destination ad-
dresses. Endpoint keys are made by concatenating
the source or destination address, 32 zero bits, and
a single byte representing either the character “S”
or “D”. This extra byte ensures that duplicate con-
versation and endpoint keys are not generated.

The security of the algorithm rests on the security of
the underlying block cipher X. Knowing many pairs
(D, Kp) is essentially the same as having many ci-
phertext /plaintext pairs under X. So recovering the
volume key given many such pairs is as hard as a
known-plaintext attack against the block cipher X.
Also, guessing a conversation key Kp based on the
data D is equivalent to being able to encrypt D
under the volume key without knowing the volume
key. Since we use CBC and throw out the first n— 1
blocks, obtaining even a single bit of K¢ should re-
quire being able to encrypt every bit of C'. Again,
doing this should be as difficult as breaking X.

