

CITI Technical Report 00-8

An analysis of the TUX web server

Chuck Lever, Sun-Netscape Alliance
chuckl@netscape.com

Marius Aamodt Eriksen, Linux.com
marius@linux.com

Stephen P. Molloy, University of Michigan
smolloy@engin.umich.edu

ABSTRACT

We report on a high-performance in-kernel web server for Linux known as the
Threaded linUX http layer, or TUX, for short. TUX uses aggressive network
layer data caching to accelerate static content delivery, and invokes CGI scripts
directly from the kernel to accelerate dynamic content generation. We describe
the TUX web server architecture, modifications included in the patch, and how
they affect kernel operation and web server performance.

November 16, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

This document was written as part of the Linux Scalability Project. The work described in this paper was supported
via grants from the Sun-Netscape Alliance, Intel, Dell, and IBM. For more information, see our home page.

If you have comments or suggestions, email <linux-scalability@citi.umich.edu>

Copyright © 2000 by the Regents of the University of Michigan, and by AOL-Netscape Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.

An analysis of the TUX web server

Chuck Lever, Sun-Netscape Alliance
chuckl@netscape.com

Marius Aamodt Eriksen, Linux.com

marius@linux.com

Stephen P. Molloy, University of Michigan
smolloy@engin.umich.edu

1. Introduction
As the demand for faster and more scalable web
service increases, system designers have discovered
ways to improve web server performance and
scalability by integrating web server functionality
into operating systems. This trend began when O/S
designers added system interfaces specifically
designed for web servers, such as the TransmitFile
system call in Windows NT [9].

Ideally, one could create an O/S whose only purpose
is to provide HTTP access to a local file system and
run CGI scripts securely on behalf of web clients.
Data is cached in the kernel’s address space with
zero-copy techniques to reduce the overhead
associated with data copying operations and
checksum computation. CGI scripts could be invoked
directly by the kernel, and output from the scripts
routed directly to the network layer via zero-copy to
reduce data copying and context switching.

TUX is an HTTP protocol layer and a web server
object cache integrated into the Linux kernel. Its aim
appears to be to approach the ideal of a fully
integrated web server and operating system [2]. TUX
stands for Threaded linUX http layer. Created by
Ingo Molnar, an employee of Red Hat Software and
long-time Linux kernel developer, TUX takes the
next step in web server evolution that TCP took
nearly a decade ago when it was integrated into UNIX
kernels as a standard feature of networking stacks [4].

The TUX web server competed favorably in a web
server competition earlier this year, performing better
than web servers of more standard design including
Microsoft’s IIS on Windows NT [3]. TUX uses
several general techniques to achieve high
performance, such as:

• SMP-friendly multi-threading to complete
complex requests asynchronously

• Driving the web server directly from the kernel’s
networking layer to create a truly network event-
driven server

• Caching complete responses in the kernel’s
networking layer to accelerate static content
delivery

• Providing a secure interface for generating
simple dynamic content quickly from within the
kernel

• Providing a rich interface for user-level web
applications to generate complex dynamic
content in a user-level context

Molnar predicts it will be easy to adapt TUX’s high
performance architecture to other operating systems,
network protocols, and applications [4].

In this paper we describe the TUX web server
architecture, modifications included in the TUX
Linux kernel patch, and how they affect kernel
operation and web server performance. We cover its
basic features in Section 2. Following sections
discuss specific areas of its design, including its event
and threading models, and its architectural
motivations. Those interested in performance
comparisons should consult the SPEC report [3].

2. Basic Features
TUX serves files directly out of locally accessible file
systems, including files in ext2, NFS, and DOS FAT
file systems mounted under the server’s document
root. It provides a simple and secure programming
interface, called HTTPAPI, that supports generating
content dynamically in kernel modules. The interface
allows C language kernel modules easily to access
files and other resources from within the kernel
environment.

Lever, Eriksen, Molloy

 - 2 -

TUX triggers external CGIs via HTTPAPI. An
external CGI is a script that generates dynamic
content from outside the kernel, usually started via a
fork/exec pair in traditional web servers. The
HTTPAPI dynamic interface provides enough
functionality to exec scripts with stdin and stdout
set up as sockets connected to the client. The logic to
start external CGIs is an example of how to use
HTTPAPI, and is included with the TUX patch. See
net/http/extcgi.c for details.

CGI scripts may also be triggered by user-level
activity. This is referred to as a user-level CGI. The
new http() system call (see below) allows user
processes to interact with the kernel web server.

2.1 Protocol support

TUX supports the basic functions of HTTP version
1.0 and 1.1. It directly supports the Cookie: and
Connection: fields. Everything else that is optional
in the HTTP specification is ignored [10].
Specifically, it ignores optional headers such as
Last-Modified-Time: so it does not support
efficient client-side and proxy caching yet.

TUX does not need another in-kernel server such as
khttpd, nor does it require a backing server such as
Apache [11, 5]. It handles server-side includes
correctly to support SPECweb99 dynamic content
benchmarking. Optionally, however, a backing server
can handle any request TUX doesn’t recognize, such
as when it can’t parse HTTP header information in an
incoming request. Headers it doesn’t recognize as
required or optional will cause the parser to pass the
request to a backing server via a fast socket
redirection mechanism. No modifications to the
backing server are required to handle the redirected
requests. The backing server must run on the same
system as TUX.

2.2 Configuring TUX

Configuration starts with the kernel build process.
After applying the patch, new options appear in the
kernel’s build configuration menu program allowing
selection of several TUX build-time options. The
options appear in the “Networking options” submenu
when “TCP/IP Networking” is enabled. TUX build
options include:

• Threaded linUX HTTP layer (TUX) – this
enables the following options, and causes the
kernel build process to compile in the TUX code
base. Specifying a module here rather than
building it in disables the following options.

Addition of this feature is controlled by the
CONFIG_HTTP macro.

• CAD and CAD2 modules – this enables the
inclusion of support for the SPECweb99 CAD
dynamic application via trusted HTTPAPI
modules (HTTPAPI is described in further detail
later in this report). Addition of this feature is
controlled by the CONFIG_HTTP_CAD macro.

• External CGI module – this enables support for
starting CGI programs from within the kernel. It
can be either built in to the kernel or be built as a
separate kernel module. Addition of this feature
is controlled by the CONFIG_HTTP_EXTCGI
macro.

• debug TUX – this enables debugging traps and
extra kernel log output for monitoring TUX
during operation. This featured is enabled by
defining the CONFIG_HTTP_DEBUG macro.

Dynamic configuration of the server is available via
Linux’s sysctl mechanism. This provides a group
of files in the /proc file system that, when read, report
the values of kernel variables, and when written into,
modify variables in the kernel address space.

Configurable parameters include:

• Document root – where the root directory for
exported web documents resides. The default
value is /var/www/http.

• Log file – where the server’s log file resides. The
default value is /var/log/http.

• Starting and stopping web service – writing a
one into /proc/sys/net/http/stop causes web
service to stop. Restarting and unloading are
currently unsupported.

• Redirect port – which port the backing server is
listening to. The default value is port 8080.

• Logging – whether the web server is writing log
output to its log. The default is not to write log
output.

• Kernel logging – whether the web server is
writing verbose debugging output into the
kernel’s log. The default is not to write log
output.

• Reporting thread count – configures how many
web server threads will start next time web
service is started.

• Listening port – which port the TUX web server
is listening to. The default value is port 80.

 TUX web server

 - 3 -

• Maximum connections – how many connections
the web server will maintain with clients at once.
The default value is 10,000 connections, but this
parameter is currently ignored.

• Maximum backlog – how many connections can
wait in the server’s listen backlog queue before
new connection requests are refused. The default
value is 2048 connections.

• Keepalive timeout – how many seconds to keep
connections with no activity alive. The default
value is not to maintain a connection keepalive
timer.

• Maximum cached file size – how large a file can
be maintained in the web server’s cache. The
default value is 100,000 bytes. This prevents a
single streaming media file from consuming the
entire web object cache.

• Mode of forbidden files – configures a file mode
mask that forbids files to be accessed. The
default is not to deny any file modes.

• Mode of allowed files – configures a file mode
mask that allows files to be accessed. The default
is to allow access to files that are readable by
“others.”

• Mode of user-space modules – configures a file
mode mask that allows user-space modules to be
executed. The default is to allow execution of
user-space modules that are executable by
“user.” The setuid and setgid bits are also
required for user-space modules.

• Mode of external CGI modules – configures a
file mode mask that allows external CGI
modules to be executed. The default is to allow
external CGI modules to be executed if any
execute bit is set. Execution of external CGI
modules requires the kernel to be built with that
option enabled (see above).

• Enable input and output packet delay timers –
how long to delay packets in the network layer.
The default value is not to delay packets.

• Disable extra sk_buff copy operations –
whether to use sk_buff copy operations for
multi-fragment network buffers. The default is to
use the old mechanism, which copies the buffer.

Server logs are generated in binary format. TUX’s
designers feel that writing logs in a binary format
saves I/O bandwidth and disk space over writing
human-readable logs in W3C ASCII format. Each log

record contains all information that can be referenced
from an http_req_t struct.

Worker threads share a common ring buffer for
writing log entries. The entries are padded to cache
line boundaries, ensuring no false cache line sharing
between threads on separate CPUs. A separate thread
flushes log buffers every second or when 95% full. If
the buffer fills entirely, worker threads block until
existing log data is written to disk. These limits are
compile-time constants, and cannot be changed
during server operation.

2.3 User-level access to the kernel’s HTTP
layer

User processes drive TUX servers. The TUX patch
adds a new system call, http(), which provides an
interface between user-level activities and kernel-
provided network functions. User processes identify
themselves as web service threads, and then use the
http() system call as an up-call mechanism to
accept work from the kernel. These threads also act
as the main listener threads for scheduling work
within TUX.

At this time there doesn’t appear to be any access
control logic built into this system call.

The caller specifies one of the following actions:

Startup or shutdown – start or stop web services
exported via the TUX server in the kernel.

Register or unregister modules – add and remove
kernel modules from the list of available in-kernel
dynamic content generation modules.

Start or stop listener threads – start another listener
thread or stop an existing listener thread, including
self.

Set date in outgoing headers – set the text-format
date that appears in the Date: header in outgoing
responses.

Pass through the thread’s housekeeping event loop –
check work queues, then sleep until something
interesting happens. This allows http() to function
as an up-call to pass work from the kernel up to the
user-level.

Finish a request – write a log entry if necessary and
make ready for the next event.

Prime the cache – be sure the requested object is in
the cache. This schedules a read operation, if
necessary.

Lever, Eriksen, Molloy

 - 4 -

Read an object’s data – read data from an object
represented by a URL into a user-level address space.

Send an object’s data to a client – transmit data from
an object represented by a URL to a client.
typedef struct user_req_s {
 int http_version;
 int http_method;
 int sock;
 int bytes_sent;
 int http_status;
 unsigned int client_host;
 unsigned int objectlen;
 char query[MAX_URI_LEN];
 char *object_addr;
 char objectname[MAX_URI_LEN];
 int module_index;
 char
modulename[MAX_MODULENAME_LEN];
 char post_data[MAX_POST_DATA];
 char new_date[DATE_LEN];

 int cookies_len;
 char cookies[MAX_COOKIE_LEN];

 int event;
 int thread_nr;
 void *id;
 void *private;
} user_req_t;

Figure 1. User API request object.

This structure is exposed to user-level applications,
and is one argument of the http() system call. The
structure passes information into the system call, and
also acts as a buffer for return values.

2.4 Availability and code readiness

TUX is available as a patch to Linux kernel version
2.4.0-test8, however the patch doesn’t apply directly
to this kernel version. The patch applies to a variant
of a pre-release version of 2.4.0-test8 that Molnar
was working on when he generated this patch. We
applied the patch to 2.4.0-test8 and modified the
net/core/dev.c file by hand to compile the kernel.

The TUX patch contains optimizations to some
network device drivers that increases buffer size,
fine-tunes PCI bus management and error-checking,
aligns important data structures to first-level CPU
cache line boundaries, and provides instruction-level
locking for better SMP behavior. These changes are
not specific to TUX’s functionality.

Support for Intel 32-bit processors is obvious in the
patch. It is not clear whether TUX has been tested or
runs on other Linux-supported hardware platforms.

TUX is not feature-complete at the time of this
writing. Support is incomplete for virtual hosting,
response headers that provide information for

efficient proxy caching, and byte range transfers. In
addition, because it applies only to development
versions of the Linux kernel, we surmise that it has
not reached production-readiness.

TUX is available from Red Hat as part of their
Enterprise 7.0 distribution. The patch, with a few
minor changes, has been incorporated into the kernel
provided with 7.0, and now includes documentation
in SGML format, and all the user-level pieces. It is
Red Hat’s usual policy to include any patches they
make to the kernel source with the distribution.

You can find information on the TUX web server,
including documentation and the source code for the
user-level pieces here:

http://www.redhat.com/products/software/

linux/tux/

3. Accelerating Static Content
Copying data and calculating checksums on outgoing
network packets are possibly the two most expensive
operations in serving static web content already in
memory. A typical method to reduce these expenses
is to cache outgoing responses on the server in the
hope that another client will request the same object
again soon.

To keep cached checksum values valid, data must be
cached in kernel network buffers (known in Linux as
sk_buffs) rather than as file system data or in some
application level cache. TUX accomplishes this by
adding references to cached data to the kernel data
structures that represent in-core inodes.

3.1 Managing network buffer fragmentation
and reuse

The Linux kernel uses sk_buff structures to manage
data that is going to and from network devices. Metz
discusses the differences between BSD-style mbufs
and Linux sk_buffs [7].

The TUX patch improves the ability of the Linux
networking layer to manage dynamically changing
sk_buffs. Hagino documents several mbuf
fragmentation issues he found while implementing
IPv6 and IPsec on 4.4BSD [6]. Generally these
buffers become fragmented due to sophisticated
protocol processing, which requires unpredictable
changes to a buffer’s length while it is being prepared
for transport.

 TUX web server

 - 5 -

Molnar introduces a new data structure, called
skb_frag_t, to manage buffer fragmentation and
allow scatter/gather I/O using sk_buffs.
struct skb_frag_struct {
 unsigned int csum;
 int size;
 struct page *page;
 int page_offset;

 void (*frag_done)
 (struct sk_buff *skb,
 skb_frag_t *frag);
 void *data;
 void *private;
};

Figure 2. Data type for managing buffer fragments.

Every sk_buff now points to up to four buffer
fragments. Each fragment can be as large as the
system page size (4096 bytes on Intel processors).
The checksum for each fragment is maintained
independently, so the server can reuse fragments
without recomputing the checksum of each fragment.

This data structure refers to cached checksum data:
struct csumcache_struct {
 int size;
 int packet_size;
 skb_frag_t *array;
};

Figure 3. Simplified checksum cache object

The size field contains the number of packets in the
fragment array pointed to by the array field. A
csumcache_struct can point to an arbitrary
number of buffer fragments, unlike a normal
sk_buff, thus allowing efficient manipulation of the
length and contents of arbitrarily complex network
buffers, similar to aggregates in IO-Lite [12].

This also allows portions of a response to be cached
and checksummed independently. When constructing
a response to a client request, the server need only
pull together previously cached portions and add their
checksums. Scatter/gather I/O obviates an additional
copy operation.

TUX maintains response headers and server-side
include data in separate buffer fragments. Processing
a server-side include splits a single fragment into
three. Otherwise file data fragments are up to a page
(4096 bytes on ia32) in length. This means buffer
fragments can pull file data directly out of the page
cache without an extra copy operation.

3.2 Linking URLs to cached data

A URL object is created in lookup_urlo() to bind
an in-core inode to data cached in the checksum

cache. There is no separate URL object cache; TUX
looks up URL objects by searching the directory
entry cache for appropriately named file objects.

The directory entry cache is managed via a hash table
whose size is determined by the physical memory
size of the hardware where Linux is running.
Generally entries in the cache are not reclaimed – the
cache is allowed to grow while there is still free
memory. As memory becomes constrained, the
system page allocator invokes a cache pruning
operation that removes least recently used entries
from the directory entry cache. Pruning a directory
entry can also remove an in-core inode and any
related data in the page cache.
struct urlobject_struct {
 csumcache_t *csumc;
 struct inode *inode;
 atomic_t users;
 struct list_head
 secondary_pending;
 int header_len;
 int body_len;
 int filelen;
 int SSI;
 tcapi_template_t *tcapi;
 atomic_t csumcs_created;
 struct address_space_operations
 *real_aops;
};

Figure 4. Kernel-level cache object.

The tcapi field identifies a dynamic trusted module
by defining its entry points and properties. HTTPAPI
templates are described later in this report.

Linux uses an address_space structure to denote
the set of mappings between an inode’s data pages
and one or more process address spaces. This
structure also contains a vector of virtual functions
for moving an inode’s data into and out of the
system’s page cache. These functions include
readpage, writepage, sync_page,
prepare_write, commit_write, and bmap.

Address-space operations are replaced for inodes that
represent cached web server objects. The old
operations vector is maintained in the URL object in
the real_aops field. The old operations vector is
restored when TUX removes its last reference to an
inode.

The new virtual functions act as a wrapper around the
original address space map operations. For the most
part, the wrapper functions perform only error
checking and argument marshalling.

The readpage wrapper is more sophisticated,
however. It directly links the checksum cache to the

Lever, Eriksen, Molloy

 - 6 -

inode’s data in the page cache. Whenever a read
request occurs, the relevant data pages are mapped
into the kernel’s address space and copied into the
checksum cache data structure (see Figure 3)
associated with the inode via its URL object.

In summary, TUX provides a new set of data
structures that allow it to cache partial and complete
responses, with checksum, in the kernel’s network
layer. Cached web objects are managed as a part of
the kernel’s LRU directory entry cache.

4. Accelerating Dynamic Content
TUX accelerates dynamic content generation by
providing two new interfaces. The user-level
interface, the new http() system call, is described
earlier. This section describes the kernel-level
interface.

4.1 The HTTP dynamic API

TUX provides an interface, called HTTPAPI that
supports the generation of dynamic content by trusted
kernel modules. This interface is described in the file
net/http/HTTPAPI.txt, and is summarized here. This
dynamic API is intended for simple, oft-used requests
with few security issues. Complex and slow requests
should be handled in user-space.

These modules are invoked using a special URL of
the form:

http://server.your.domain/module?argument

where module is the unique name of the dynamic
module to be invoked, and argument is a text
argument passed by the server to the module.

Every HTTP trusted dynamic module defines a
tcapi template, which defines entry points and
module properties. The template looks like this:
struct tcapi_template_s {
 char *vfs_name;
 char *version;
 int (*query) (http_req_t *req);
 int (*send_reply)
 (http_req_t *req);
 int (*log) (http_req_t *req,
 char *log_buffer);
 void (*finish) (http_req_t *req);
};

Figure 5. Dynamic module API template.

The vfs_name field refers to the unique name of the
module. The version field refers to a string that
names the version of the interface supported by the
module, usually “TUX 1.0”.

The other four fields are virtual functions
implemented in each module. The server invokes the
query function to handle a new request from a client.
Modules can return a filename in the http_req_t
struct that is then transmitted to the requesting client
by the server. Otherwise, if the send_reply function
pointer is not NULL, the server invokes it to generate
a response. Module-specific log messages can be
generated by the log function. When the server
closes a connection, it invokes the finish function.

The interface makes available several other structures
for use by module programmers. These are opaque
descriptors that refer to files, URIs, pages, file system
directory entries, and the server’s document root.

A limited system-call-like API is also provided to
simplify module programming. This allows modules
to safely open, close, look up, read, write, and mmap
files under the server’s document root, send buffers
or files directly to clients, retrieve file sizes and
modification times, allocate and free “heap” memory,
manipulate mutexes, exec new threads, sleep without
blocking the kernel, or retrieve the client’s IP
address.

When cloning a thread to run a CGI, the kernel sets
the thread’s privileges to be nothing.

A separate interface, called http_miss_req, is
available to trusted modules that wish to initiate an
I/O operation to fill a cache slot. This can pre-fetch
an object, or can schedule an asynchronous read if a
cache look-up operation fails. When the I/O
operation completes, an I/O thread queues the request
onto one of the requesting thread’s output queues,
and wakes the thread.

Examples of trusted dynamic modules are included in
the patch. These are the CAD and CAD2 modules
that implement the CAD dynamic application
required in the SPECweb99 benchmark. These
applications are normally implemented in Perl, but
SPECweb99 rules allow these applications to be
rewritten. It is likely that simply rewriting such a
script in C has an enormous impact on benchmark
performance.

If a trusted module causes a program interrupt, the
kernel stops the interrupting thread and prints a
diagnostic on the system console. This is referred to
as an “oops.” Generally a system can continue
functioning after this occurs, but sometimes a thread
may have acquired a lock or other system resource
that will cause the system eventually to crash or
otherwise melt down.

 TUX web server

 - 7 -

In summary, HTTPAPI is a kernel module
programming interface that supports the generation
of dynamic content by trusted kernel modules. It
provides a miniature system call-like interface that
can fork, exec, manage file data, populate the web
object cache asynchronously, or manage network
connections. A kernel module that uses the HTTPAPI
interface invokes external CGI scripts.

5. Threading Model
TUX uses a scheme similar to the FLASH web server
to handle cached requests quickly via an event-driven
mechanism, while managing any necessary disk I/O
asynchronously in separate threads [8].

5.1 I/O threads

There are two thread pools. The first pool of threads
is referred to as the IO, or cache-miss thread pool.
These threads populate the cache asynchronously at
the behest of listener threads. The number of cache-
miss threads is a compile-time constant, currently 10
(a better number might be a multiple of the number
of CPUs configured in the system). All cache-miss
threads are created when the web server is initialized
(system restart). There is no provision for starting or
stopping these threads during normal operation,
although they do respect signals.

Cache fill requests are queued onto a single global
list via HTTPAPI’s http_miss_req() interface. All
cache-miss threads try to pull work off this list until it
is empty, at which point they sleep. Queuing items
onto this list causes a single sleeping cache-miss
thread to be awakened (wake-one semantics avoid a
thundering herd).

TUX is supposed to balance load dynamically among
IO threads, based on the number of requests they
have pending. We haven’t found logic to do this,
possibly NYI.

There are two types of cache miss: a primary cache
miss is one that TUX can fill by reading the
requested object directly into its web object cache; a
secondary cache miss is one where TUX has
identified the request as one that it can’t fulfill itself,
so it passes the request to its backing server via
socket redirection.

5.2 Fast threads

The other thread pool is referred to as fast, or listener
threads. These threads handle responses that are
already cached. There can be at most 16 such threads.

Fast threads are created when an otherwise normal
user-level process invokes the http() system call
and identifies itself as a TUX thread. A per-thread
context area is anchored in the process’s task
structure. The thread field points back to the task
struct where this object is anchored. The
threadinfo objects are statically allocated in a
contiguous array. The cpu field contains an integer
that represents the number of the preferred CPU for
this thread.

The userspace_req field is filled in with a user-
space request that will be processed by this thread.

Becoming a fast thread relies on the used

semaphore to prevent race conditions. A started
thread (that is, one that has become TUX thread)
contains a 1 in the started field. When stopping, a
thread waits for connections to finish by adding itself
to the wait_stop waitqueue via the stop field.
struct http_threadinfo
{
 http_req_t *userspace_req;
 int started;
 struct semaphore used;
 struct task_struct *thread;
 wait_queue_t wait_event
 [CONFIG_HTTP_NUMSOCKETS];
 wait_queue_t stop;
 int pid;

 int nr_requests;
 struct list_head all_requests;

 int nr_free_requests;
 spinlock_t free_requests_lock;
 struct list_head free_requests;

 spinlock_t input_lock;
 struct list_head input_pending;

 spinlock_t userspace_lock;
 struct list_head
 userspace_pending;

 spinlock_t output_lock;
 struct list_head output_pending;

 spinlock_t redirect_lock;
 struct list_head
 redirect_pending;

 struct list_head finish_pending;

 struct socket *listen
 [CONFIG_HTTP_NUMSOCKETS];
 int listen_cloned
 [CONFIG_HTTP_NUMSOCKETS];

 char * output_buffer;
 int cpu;
 unsigned int __padding[16];
};

Figure 6. TUX per-thread context structure.

Lever, Eriksen, Molloy

 - 8 -

Each thread can listen on up to four sockets at a time.
Listener socket structures are anchored in the listen
field. Multiple threads listening on the same socket
set the appropriate entry in listen_cloned to
prevent multiple closes of the same socket upon
shutdown.

The output_buffer field anchors a 256-page
buffer that is only used by the CAD module in the
current version of TUX. The buffer will likely be
used for sendfile-style requests.

The lists and locks manage request flow in TUX. A
detailed discussion follows in the next section.

There are a relatively large number of locks per
thread. This is an attempt at reducing lock contention
on SMP hardware. It’s not clear whether the design
started with a small number of locks, and observed
contention prompted an increase, or whether the
design included so many locks at the outset.

In summary, user-level threads call into the kernel to
pick up new work. If they can’t respond to a request
immediately with a cached response, they queue the
request to be handled by the I/O threads.

6. Event Model
In this section we describe how TUX achieves a true
network-event driven dispatching model.

Linux sockets each have their own waitqueue.
Threads can use a socket’s wait queue to wait for
events occurring on that socket; more than one thread
can wait for a socket at any given time.

Threads waiting on a listener socket are queued on
the socket’s waitqueue. These threads have put
themselves to sleep, yielding to other threads. When
the network layer detects a new connection request
for the listener, it will awaken any threads on the
listener socket’s wait queue via a socket call-back.

6.1 Socket callbacks

A socket callback is a virtual function that the kernel
network stack invokes to signal a socket state change
to higher-level modules. TCP sockets generally use
the default socket callbacks that wake sleeping
processes and generate appropriate user-level POSIX
signals.

• sock_def_wakeup() – signals a generic socket
state change.

• sock_def_error_report() – signals that
some in-band or out-of-band error occurred on
the socket.

• sock_def_readable() – signals that data is
available to be read from the socket.

• sock_def_write_space() – signals that
buffer space is available for more write
operations.

• sock_def_destruct() – invoked to release
any protocol-specific storage before a sock data
structure is freed.

Threads normally sleep on waitqueues while waiting
for something interesting to happen. When work on
an existing connection arrives, the kernel removes the
threads from the associated socket’s wait queue and
the default readable callback (sock_def_readable
for regular TCP sockets) is invoked.

For sockets that TUX uses, the socket callbacks are
replaced with new functions implemented by TUX.
The old function pointers are saved in case the socket
is redirected, in which case the old function pointers
are restored before the redirection completes.

idle_event() is invoked from these callbacks
when a socket changes state. It adds incoming
requests to a thread’s input queue. In this way, the
network layer drives the web server’s work by
waking up its threads whenever something needs to
be done. Molnar inserted idle_event() into both
the default socket callbacks and into the TUX socket
callbacks. We’re not certain why it is needed in both
places.

TUX bypasses normal accept() processing. Work
is moved directly from the listener socket’s queue to
the thread’s input request queue. Comments in the
code suggest there is some inefficiency in the current
Linux accept() implementation that is avoided by
TUX’s new connection accept logic.

6.2 Redirecting connections to the backing
server

The main event loop for fast threads visits the
redirection queue during each pass. Thus each fast
thread is responsible for handling its own redirection
requests.

Tux places the socket to be handed off directly onto
the backing server’s accept queue. It uses the backing
server’s port number to look up its listen queue.
Currently, the backing server must run on the same
host with TUX.

 TUX web server

 - 9 -

TUX replaces a socket’s callback functions with
functions that are specific to the TUX HTTP layer. If
a socket is redirected, these functions are replaced
again with the normal TCP layer callback functions.

6.3 Request scheduling

Each thread manages several queues of requests.
Request structures are more than half a page, so when
a request structure is released, it is saved on a per-
thread free list and re-used.

Each thread has seven scheduling queues, anchored
in the thread’s threadinfo object described in the
previous section.

• All requests – Whenever a new request structure
is allocated, it goes on this list. In-use request
structures are always on this queue; they may or
may not be on one of the other work queues.

• Free requests – When a request is finished, the
request structure can be re-used. Reusable
structures are placed on this list; in-use request
structures never appear in this list.

• Input requests – Requests waiting for incoming
work from a client are placed on this list. When a
connection is accepted, accept_requests()
creates a new request and adds it to the input
queue. When a socket state change occurs on a
HTTP connection, idle_event() adds the
request associated with the socket to this queue.

• User space requests – User-level work is queued
here by the http() system call.

• Output requests – When a thread requests that a
response be returned to a client, that request is
queued on this list.

• Redirection requests – When TUX decides it
cannot handle a request it sets the request’s
redirect_secondary field, causing the event
scheduler to queue the request on this list.

• Finishing – This queue does not appear to be
used.

When a user-level TUX thread calls into the kernel
specifying the HTTP_ACTION_EVENTLOOP
action, the thread enters its main event loop. The
event loop tries to accept new connections by calling
accept_requests(), checks for work on the
thread’s five active request queues, then checks for
pending signals. The loop finishes by checking if
other parts of the kernel want to preempt the thread.
If the thread isn’t preempted, it will loop to pick up

more work; otherwise it invokes the scheduler so
other threads can run. If there is no more work, it will
sleep.

In several areas, TUX tries to fulfill a client request
as soon as possible. During accept processing in
accept_requests(), TUX attempts to respond
immediately to client requests which have already
arrived in their entirety. In addition, when parsing
headers, TUX can immediately redirect or queue an
output request in response to a client request.

In summary, all HTTP sockets are associated with a
thread when they are created via TUX’s special
connection accept logic. Incoming work on a socket
is queued onto a thread’s input request queue by
special socket callbacks invoked from the kernel’s
network layer. When the thread passes through its
main event loop, it parses the input request and
requeues the request according to the work that needs
to be done.

7. VM Modifications
Some modifications to the kernel’s memory
management functions were necessary to increase the
amount of real and virtual memory available to TUX.
Web serving can be a memory-intensive operation.

7.1 Size of kernel address space increased

Normally, the Linux kernel shares the top 1G of
process address space with all processes on the
system. On systems with 4G of physical
addressability, this provides 3G address spaces for
each process. The division of kernel space and
address space is controlled by a compile-time
constant. The TUX patch lowers this constant to
increase the kernel’s address space size to 3G. This
allows more cached data to be addressable inside the
kernel.

7.2 System cache reaping

Molnar added several changes to the directory entry
cache, the quota cache, and the inode cache logic to
make them more selective about where and when to
recycle cache items. The authors do not believe these
changes are related to the operation of TUX.

An additional interface was added to the page cache
to allow TUX to start flushing pages for files that are
very large. This is used to maintain a cap on the size
of cached files, and also for flushing log data.

TUX wraps the kernel’s generic memory allocator in
a function called http_kmalloc() which is used

Lever, Eriksen, Molloy

 - 10 -

internally by TUX and trusted dynamic modules. In
addition to allocating memory, this function recovers
from short-term memory shortages by directly
pruning the inode and directory entry caches. This is
special behavior copied from logic that runs in the
system swap daemon and the system page allocator.

As you may recall, the directory entry cache is used
to cache web objects. By pressuring this cache when
http_kmalloc() discovers a memory shortage,
TUX is controlling the web object cache size with
direct feedback.

7.3 Atomic directory entry cache lookups

The directory entry cache normally populates its own
cache when an entry lookup request fails. TUX adds
an option to the directory entry lookup interface to
request a lookup operation that examines the cache
and returns if no matching entry is found. This way
TUX won’t block if it uses the directory entry cache,
and can populate the missing cache item itself using
its own asynchronous I/O mechanism.

User-level applications also get access to this new
style of lookup. A new option for open(),
O_ATOMICLOOKUP, specifies that the lookup
operation should not block.

7.4 Other miscellaneous changes

In this subsection we list several minor changes
included with the TUX patch. These are changes that
improve system scalability and performance in
general.

The interface that manages inodes with zero
reference counts, known as iput(), is now split into
two interfaces. One places a reusable inode at front of
the inode cache’s reuse queue, the other at the tail of
the queue. This allows parts of the kernel to specify
that an inode should be recycled immediately, for
example, when the file it represented is deleted, to
save room in the inode cache for other inodes that
represent files that may be reused in the near future.

The kernel’s mechanism to put information into the
system log and onto the system console is printk().
The TUX patch increases the size of the printk log
buffer by eight times. This is intended as a debugging
aid, but will also help system scalability as faster
systems generate log data at a higher rate.

In Linux’s page cache and disk quota cache,
reclamation goals control how many pages and quota
structures are reclaimed when system memory is
exhausted. The TUX patch raises these goals so that

more pages and quota structures are reclaimed during
each reclamation pass through these caches.

Linux divides physical memory into several zones,
such as DMA-only pages, or pages that are above 4G.
Each zone is balanced on a priority basis when
system memory is exhausted. The DMA zone is
smallest, yet is important for I/O requests, so it is
balanced carefully. The TUX patch eliminates the
zone balancing priorities for memory above 4G. This
probably has few effects on the zone-balancing
algorithm.

Active disk requests in the Linux kernel are queued
on an asynchronous request queue. Periodically,
Linux will run down this queue to force the disk
devices to begin working on outstanding requests.
The TUX patch makes the Linux scheduler more
aggressive about flushing the active disk request
queue. Threads invoke the schedule() function
when putting themselves to sleep. This change causes
most calls to schedule() to flush the queue of
asynchronous disk requests. The old scheduler never
touched the active disk request queue.

To improve the efficiency of sending packets out onto
the network, the network layer must wait
appropriately for the outgoing message to be
complete. The MSG_NO_PUSH option, added by the
TUX patch, can cause the network layer to hold onto
an outgoing packet rather than aggressively push it
onto the network. This allows packets to be built in
stages, and it allows separate packets to be sent
together in a single network write operation.

The Linux network layer uses a hash table to manage
incoming TCP connections that are in early stages of
connection. The TUX patch increases the size of this
hash table eight-fold to help reduce the length of the
hash chains in this table when a large number of
incoming connections arrive concurrently.

The TUX patch also increases the maximum backlog
of unprocessed incoming network packets by three
orders of magnitude. Up to 300,000 packets can wait
for processing before the protocol-independent
networking logic begins dropping packets.

TUX raises the default listen backlog for large
machines from 1024 to 4096.

In summary, the TUX patch modifies basic kernel
VM functions to facilitate its use (reuse) of the
directory entry cache. It also increases the size of the
kernel’s portion of the virtual address space.

 TUX web server

 - 11 -

8. Conclusions and Future Efforts
The TUX web server gains considerable performance
and scalability improvements by moving oft-used
web server functionality closer to the kernel’s
networking stack. By driving web service directly
with incoming network events, and by keeping
cached data in the network layer, TUX can respond to
web clients faster than more traditional web servers.

TUX supports some advanced features, such as
server-side includes, a dynamic content API in the
kernel, and SMP scalability. However, TUX is still
missing functionality. It doesn’t work well with proxy
caches, lacks support for virtual hosting, and is
missing some needed security checking in the user-
level interface.

Some of TUX’s architectural ideas are significant and
can be directly useful in other operating systems.
However, the specific design of the Linux networking
stack (i.e. socket callbacks) allows an event-driven
HTTP handler in a way that may be less portable than
other design concepts.

TUX is a large and complex set of modifications to
the Linux kernel. In order to gauge the effectiveness
of some of its design features, the TUX patch should
be broken apart into smaller parts that can be studied
more scientifically. For instance, careful analysis of
network buffer manipulations might demonstrate
areas for improvement, or prove the method is
valuable for other types of network servers.

Rigorous security analysis of the http() system call
and the new HTTPAPI is necessary before
determining that such an architecture is appropriate
for high-performance and secure installations.

Finally, a lock contention study might show that TUX
performs well with fewer locks. Linux spin locks are
designed for low instruction count in the case where
the lock isn’t already held. However, extra locks
result in cache line sharing in SMP configurations,
which slows memory traffic for all work on the
system.

8.1 Acknowledgements

Special thanks go to Peter Honeyman and Andy
Adamson at U-M, and to Will Morris at iPlanet.
Special thanks to Niels Provos for ideas and
encouragement.

9. References
1. W. Richard Stevens, Advanced Programming in the

UNIX Environment, Addison-Wesley Publishing Co.,
Copyright 1992. ISBN 0-201-56317-7.

2. Ingo Molnar, “TUX web server 1.0,”
people.redhat.com/mingo/tux-2.4.0-test8-

C4 .

3. “Second Quarter 2000 SPECweb99 Results,”
www.spec.org/osg/web99/results/res2000q2/

4. Ingo Molnar, “Answers from Planet TUX: Ingo
Molnar Responds,” Slashdot, July 20,2000,
slashdot.org/interviews/00/07/20/

1440204.shtml .

5. Apache Server, The Apache Software Foundation.
www.apache.org

6. Jun-ichiro itojun Hagino, “Mbuf Issues in 4.4BSD
IPv6 Support—Experiences from KAME IPv6/IPsec
Implementation,” Proceedings of the FREENIX track,
2000 USENIX Technical Conference, June 2000.

7. Craig Metz, “Porting Kernel Code to Four BSDs and
Linux,” Proceedings of the FREENIX track, 1999
USENIX Technical Conference, June 1999.

8. Vivek S. Pai, Peter Druschel, Willy Zwaenepoel,
“Flash: An Efficient and Portable Web Server,”
Proceedings of the 1999 USENIX Technical Conference,
June 1999.

9. Internet Information Services 5.0 Programmer’s
Guide: ISAPI Reference, MSDN Online Library,
Copyright 2000, Microsoft Corporation.

10. J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, Hypertext Transfer Protocol --
HTTP/1.1, RFC 2616, June 1999.

11. Arjan van de Ven, “khttpd: Linux HTTP Accelerator,”
http://www.fenrus.demon.nl/

12. V. S. Pai, P. Druschel, W. Zwaenepoel, “IO-Lite: A
unified I/O buffering and caching system,” ACM
Transactions on Computer Systems, Vol. 18, No. 1,
pp.37-66, February 2000.

	An analysis of the TUX web server

