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ABSTRACT 
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connections with more scalability than traditional models. In this paper we ex-
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even more by measuring system call latency and by creating bulk system calls 
that can deliver multiple signals at once. 
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1. Introduction 

Experts on network server architecture have argued 
that servers making use of I/O completion events are 
more scalable than today’s servers [2, 3, 5]. In Linux, 
POSIX Real-Time (RT) signals can deliver I/O com-
pletion events. Unlike traditional UNIX signals, RT 
signals carry a data payload, such as a specific file 
descriptor that just completed. Signals with a payload 
can enable network server applications to respond 
immediately to network requests, as if they were 
event-driven. An added benefit of RT signals is that 
they can be queued in the kernel and delivered to an 
application one at a time, in order, leaving an applica-
tion free to pick up I/O completion events when con-
venient. 

The RT signal queue is a limited resource. When it is 
exhausted, the kernel signals an application to switch 
to polling, which delivers multiple completion events 
at once. Even when no signal queue overflow hap-
pens, however, RT signals may have inherent limita-
tions due to the number of system calls needed to 
manage events on a single connection. This number 
may not be critical if the queue remains short, for 
instance while server workload is easily handled. 
When the server becomes loaded, the signal queue 
can cause system call overhead to dominate server 
processing, with the result that events are forced to 
wait a long time in the signal queue. 

Linux has been carefully designed so that system 
calls are not much more expensive than library calls. 
There are no more cache effects for a system call than 
there are for a library call, and few virtual memory 
effects because the kernel appears in every process’s 
address space. However, added security checks dur-
ing system calls and hardware overhead caused by 
crossing protection domains make it expedient to 
avoid multiple system calls when fewer will do. 

Process switching is still comparatively expensive, 
often resulting in TLB flushes and virtual memory 
overhead. If a system call must sleep, it increases the 
likelihood that the kernel will switch to a different 
process. By lowering the number of system calls re-
quired to accomplish a given task, we reduce the like-
lihood of harm to an application’s cache resident set. 

Improving the scalability and reducing the overhead 
of often-used system calls has a direct impact on the 
scalability of network servers [1, 4]. Reducing wait 
time for blocking system calls gives multithreaded 
server applications more control over when and 
where requested work is done. Combining several 
functions into fewer system calls has the same effect. 

In this paper, we continue work begun in “Scalable 
Network I/O for Linux” by Provos, et al. [9]. We 
measure the effects of system call latency on the 
performance and scalability of a simple web server 
based on an RT signal event model. Of special inter-
est is the way server applications gather pending RT 
signals. Today applications use sigwaitinfo() to 
dequeue pending signals one at a time. We create a 
new interface, called sigtimedwait4(), that is ca-
pable of delivering multiple signals to an application 
at once. 

We use phhttpd as our web server. Phhttpd is a 
static-content caching front end for full-service web 
servers such as Apache [8]. Brown created phhttpd 
to demonstrate the POSIX RT signal mechanism, 
added to Linux during the 2.1 development series and 
completed during the 2.3 series [2]. We drive our test 
server with httperf [6]. An added client creates 
high-latency, low-bandwidth connections, as in 
Banga and Druschel [7]. 

Section 2 introduces POSIX Real-Time signals and 
describes how server designers can employ them. It 
also documents the phhttpd web server. Section 3 
motivates the creation of our new system call. We 
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describe our benchmark in Section 4, and discuss the 
results of the benchmark in Section 5. We conclude in 
Section 6. 

2. POSIX Real-Time Signals and the phhttpd 
Web Server 

In this section, we introduce POSIX Real-Time signals 
(RT signals), and provide an example of their use in a 
network server. 

2.1 Using SIGIO with non-blocking sockets 

To understand how RT signals provide an event noti-
fication mechanism, we must first understand how 
signals drive I/O in a server application. We recapitu-
late Stevens’ illustration of signal-driven I/O here 
[10]. 

An application follows these steps to enable signal-
driven I/O: 

1. The application assigns a SIGIO signal han-
dler with signal() or sigaction(). 

2. The application creates a new socket via 
socket() or accept(). 

3. The application assigns an owner pid, usually 
its own pid, to the new socket with 
fcntl(fd, F_SETOWN, newpid). The 
owner then receives signals for this file de-
scriptor. 

4. The application enables non-blocking I/O on 
the socket with fcntl(fd, F_SETFL, 

O_ASYNC). 

5. The application responds to signals either with 
its signal handler, or by masking these signals 
and picking them up synchronously with sig-
waitinfo(). 

The kernel raises SIGIO for a variety of reasons: 

• A connection request has completed on a lis-
tening socket. 

• A disconnect request has been initiated. 

• A disconnect request has completed. 

• Half of a connection has been shut down. 

• Data has arrived on a socket. 

• A write operation has completed. 

• An out-of-band error has occurred. 

When using old-style signal handlers, this mechanism 
has no way to inform an application which of these 

conditions occurred. POSIX defines the siginfo_t 
struct (see FIG. 1), which, when used with the sig-
waitinfo() system call, supplies a signal reason 
code that distinguishes among the conditions listed 
above. Detailed signal information is also available 
for new-style signal handlers, as defined by the latest 
POSIX specification [15]. 

This mechanism cannot say what file descriptor 
caused the signal, thus it is not useful for servers that 
manage more than one TCP socket at a time. Since its 
inception, it has been used successfully only with 
UDP-based servers [10]. 

2.2 POSIX Real-Time signals 

POSIX Real-Time signals provide a more complete 
event notification system by allowing an application 
to associate signals with specific file descriptors. For 
example, an application can assign signal numbers 
larger than SIGRTMIN to specific open file descrip-
tors using fcntl(fd, F_SETSIG, signum). The 
kernel raises the assigned signal whenever there is 
new data to be read, a write operation completes, the 
remote end of the connection closes, and so on, as 
with the basic SIGIO model described in the previous 
section. 

Unlike normal signals, however, RT signals can 
queue in the kernel. If a normal signal occurs more 
than once before the kernel can deliver it to an appli-
cation, the kernel delivers only one instance of that 
signal. Other instances of the same signal are 
dropped. However, RT signals are placed in a FIFO 
queue, creating a stream of event notifications that 
can drive an application’s response to incoming re-
quests. Typically, to avoid complexity and race condi-
tions, and to take advantage of the information avail-
able in siginfo_t structures, applications mask the 
chosen RT signals during normal operation. An appli-
cation uses sigwaitinfo() or sigtimedwait() 
to pick up pending signals synchronously from the 
RT signal queue. 

The kernel must generate a separate indication if it 
cannot queue an RT signal, for example, if the RT 
signal queue overflows, or kernel resources are tem-
porarily exhausted. The kernel raises the normal sig-
nal SIGIO if this occurs. If a server uses RT signals 
to monitor incoming network activity, it must clear 
the RT signal queue and use another mechanism such 
as poll() to discover remaining pending activity 
when SIGIO is raised. 

Finally, RT signals can deliver a payload. Sigwait-
info() returns a siginfo_t struct (see FIG. 1) for 
each signal. The _fd and _band fields in this struc-
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ture contain the same information as the fd and re-
vents fields in a pollfd struct (see FIG. 2). 

struct siginfo { 
 int si_signo; 
 int si_errno; 
 int si_code; 
 union { 
  /* other members elided */ 
  struct { 
   int _band; 
   int _fd; 
  } _sigpoll; 
 } _sifields; 
} siginfo_t; 

Figure 1. Simplified siginfo_t struct. 

struct pollfd { 
int fd; 
short events; 
short revents; 

}; 

Figure 2. Standard pollfd struct 

2.2.1 Mixing threads and RT signals 

According to the GNU info documentation that ac-
companies glibc, threads and signals can be mixed 
reliably by blocking all signals in all threads, and 
picking them up using one of the system calls from 
the sigwait() family [16]. 

POSIX semantics for signal delivery do not guarantee 
that threads waiting in sigwait() will receive par-
ticular signals. According to the standard, an external 
signal is addressed to the whole process (the collec-
tion of all threads), which then delivers it to one par-
ticular thread. The thread that actually receives the 
signal is any thread that does not currently block the 
signal. Thus, only one thread in a process should wait 
for normal signals while all others should block them. 

In Linux, however, each thread is a kernel process 
with its own PID, so external signals are always di-
rected to one particular thread. If, for instance, an-
other thread is blocked in sigwait() on that signal, 
it will not be restarted. 

This is an important element of the design of servers 
using an RT signals-based event core. All normal 
signals should be blocked and handled by one thread. 
On Linux, other threads may handle RT signals on 
file descriptors, because file descriptors are “owned” 
by a specific thread. The kernel will always direct 
signals for that file descriptor to its owner. 

2.2.2 Handling a socket close operation 

Signals queued before an application closes a connec-
tion will remain on the RT signal queue, and must be 
processed and/or ignored by applications. For in-
stance, when a socket closes, a server application 
may receive previously queued read or write events 
before it picks up the close event, causing it to at-
tempt inappropriate operations on the closed socket. 

When a socket is closed on the remote end, the local 
kernel queues a POLL_HUP event to indicate the re-
mote hang-up. POLL_IN signals occurring earlier in 
the event stream usually cause an application to read 
a socket, and when it does in this case, it receives an 
EOF. Applications that close sockets when they re-
ceive POLL_HUP must ignore any later signals for that 
socket. Likewise, applications must be prepared for 
reads to fail at any time, and not depend only on RT 
signals to manage socket state. 

Because RT signals queue unlike normal signals, 
server applications cannot treat these signals as inter-
rupts. The kernel can immediately re-use a freshly 
closed file descriptor, confusing an application that 
then processes (rather than ignores) POLL_IN signals 
queued by previous operations on an old socket with 
the same file descriptor number. This introduces to 
the unwary application designer significant vulner-
abilities to race conditions. 

2.3 Using RT Signals in a Web Server 

Phhttpd is a static-content caching front end for 
full-service web servers such as Apache [2, 8]. Brown 
created phhttpd to demonstrate the POSIX RT signal 
mechanism, added to the Linux kernel during the 
2.1.x kernel development series and completed dur-
ing the 2.3.x series. We describe it here to document 
its features and design, and to help motivate the de-
sign of sigtimedwait4(). Our discussion focuses 
on how phhttpd makes use of RT signals. 

2.3.1 Assigning RT signal numbers 

Even though a unique signal number could be as-
signed to each file descriptor, phhttpd uses one RT 
signal number for all file descriptors in all threads for 
two reasons. 

1. Lowest numbered RT signals are delivered 
first. If all signals use the same number, the 
kernel always delivers RT signals in the order 
in which they arrive. 

2. There is no standard library interface for mul-
tithreaded applications to allocate signal num-
bers atomically. Allocating a single number 
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once during startup and giving the same num-
ber to all threads alleviates this problem. 

2.3.2 Threading model 

Phhttpd operates with one or more worker threads 
that handle RT signals. Additionally, an extra thread 
is created for managing logs. A separate thread pre-
populates the file data cache, if requested. 

Instead of handling incoming requests with signals, 
phhttpd may use polling threads instead. Usually, 
though, phhttpd creates a set of RT signal worker 
threads, and a matching set of polling threads known 
as sibling threads. The purpose of sibling threads is 
described later. 

Each RT signal worker thread masks off the file de-
scriptor signal, then iterates, picking up each RT sig-
nal via sigwaitinfo() and processing it, one at a 
time. To reduce system call rate, phhttpd read()s 
on a new connection as soon as it has accept()ed it. 
Often, on high-bandwidth connections, data is ready 
to be read as soon as a connection is accept()ed. 
Phhttpd reads this data and sends a response imme-
diately to prevent another trip through the “event” 
loop, reducing the negative cache effects of handling 
other work in between the accept and the read opera-
tions. 

Because the read operation is non-blocking, it fails 
with EAGAIN if data is not immediately present. The 
thread proceeds normally back to the “event” loop in 
this case to wait for data to become available on the 
socket. 

2.3.3 Load balancing 

When more than one thread is available, a simple 
load balancing scheme passes listening sockets 
among the threads by reassigning the listener’s owner 
via fcntl(fd, F_SETOWN, newpid). After a 
thread accepts an incoming connection, it passes its 
listener to the next worker thread in the chain of 
worker threads. This mechanism requires that each 
thread have a unique pid, a property of the Linux 
threading model. 

2.3.4 Caching responses 

Because phhttpd is not a full-service web server, it 
must identify requests as those it can handle itself, or 
those it must pass off to its backing server. Local files 
that phhttpd can access are cached by mapping 
them and storing the map information in a hash, 
along with a pre-formed http response. When a 
cached file is requested, phhttpd sends the cached 

response via write() along with the mapped file 
data. 

Logic exists to handle the request via sendfile() 
instead. In the long run, this may be more efficient 
for several reasons. First, there is a limited amount of 
address space per process. This limits the total num-
ber of cached bytes, especially because these bytes 
share the address space with the pre-formed re-
sponses, hash information, heap and stack space, and 
program text. Using sendfile() allows data to be 
cached in extended memory (memory addressed 
higher than one or two gigabytes). Next, as the num-
ber of mapped objects grows, mapping a new object 
takes longer. On Linux, finding an unused area of an 
address space requires at least one search that is lin-
ear in the number of mapped objects in that address 
space. Finally, creating these maps requires expensive 
page table and TLB flush operations that can hurt 
system-wide performance, especially on SMP hard-
ware. 

2.3.5 Queue overflow recovery 

The original phhttpd web server recovered from 
signal queue overflow by passing all file descriptors 
owned by a signal handling worker thread to a pre-
existing poll-based worker thread, known as its sib-
ling. The sibling then cleans up the signal queue, 
polls over all the file descriptors, processes remaining 
work, and passes all the file descriptors back to the 
original signal worker thread. 

On a server handling perhaps thousands of connec-
tions, this creates considerable overhead during a 
period when the server is already overloaded. We 
modified the queue overflow handler to reduce this 
overhead. The server now handles signal queue over-
flow in the same thread as the RT signal handler; sib-
ling threads are no longer needed. This modification 
appears in phhttpd version 0.1.2. It is still neces-
sary, however, to build a fresh poll_fd array com-
pletely during overflow processing. This overhead 
slows the server during overflow processing, but can 
be reduced by maintaining the poll_fd array con-
currently with signal processing. 

RT signal queue overflow is probably not as rare as 
some would like. Some kernel designs have a single 
maximum queue size for the entire system. If any 
aberrant application stops picking up its RT signals 
(the thread that picks up RT signals may cause a 
segmentation fault, for example, while the rest of the 
application continues to run), the system-wide signal 
queue will fill. All other applications on the system 
that use RT signals will eventually be unable to pro-
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ceed without recovering from a queue overflow, even 
though they are not the cause of it. 

It is well known that Linux is not a real-time operat-
ing system, and that unbounded latencies sometimes 
occur. Application design may also prohibit a latency 
upper bound guarantee. These latencies can delay RT 
signals, causing the queue to grow long enough that 
recovery is required even when servers are fast 
enough to handle heavy loads under normal circum-
stances. 

3. New interface: sigtimedwait4() 

To reduce system call overhead and remove a poten-
tial source of unnecessary system calls, we’d like the 
kernel to deliver more than one signal per system 
call. One mechanism to do this is implemented in the 
poll() system call. The application provides a 
buffer for a vector of results. The system call returns 
the number of results it stored in the buffer, or an 
error. 

Our new system call interface combines the multiple 
result delivery of poll() with the efficiency of 
POSIX RT signals. The interface prototype appears in 
FIG. 3. 

int sigtimedwait4(const sigset_t *set, 
 siginfo_t *infos, int nsiginfos, 
 const struct timespec *timeout); 

Figure 3. sigtimedwait4() prototype 

Like its cousin sigtimedwait(), sigtimed-

wait4() provides the kernel with a set of signals in 
which it is interested, and a timeout value that is used 
when no signals are immediately ready for delivery. 
The kernel selects queued pending signals from the 
signal set specified by set, and returns them in the 
array of siginfo_t structures specified by infos 
and nsiginfos. 

Providing a buffer with enough room for only one 
siginfo_t struct forces sigtimedwait4() to be-
have almost like sigtimedwait(). The only differ-
ence is that specifying a negative timeout value 
causes sigtimedwait4() to behave like sigwait-
info(). The same negative timeout instead causes an 
error return from sigtimedwait(). 

Retrieving more than one single signal at a time has 
important benefits. First and most obviously, it re-
duces the average number of transitions between user 
space and kernel space required to process a single 
server request. Second, it reduces the number of 
times per signal the per-task signal spinlock is ac-
quired and released. This improves concurrency and 

reduces cache ping-ponging on SMP hardware. 
Third, it amortizes the cost of verifying the user’s 
result buffer, although some believe this is insignifi-
cant. Finally, it allows a single pass through the signal 
queue for all pending signals that can be returned, 
instead of a pass for each pending signal. 

The sigtimedwait4() system call enables efficient 
server implementations by allowing the server to 
“compress” signals- if it sees multiple read signals on 
a socket, for instance, it can empty that socket’s read 
buffer just once. 

The sys_rt_sigtimedwait() function is a moder-
ate CPU consumer in our benchmarks, according to 
the results of kernel EIP histograms. About three 
fifths of the time spent in the function occurs in the 
second critical section in FIG. 4. 

spin_lock_irq(&current->sigmask_lock); 
sig = dequeue_signal(&these, &info); 
if (!sig) { 
  sigset_t oldblocked = current-
>blocked; 
  sigandsets(&current->blocked, 
              &current->blocked, 
&these); 
  recalc_sigpending(current); 
  spin_unlock_irq(&current-> 
                         sigmask_lock); 
 
  timeout = MAX_SCHEDULE_TIMEOUT; 
  if (uts) 
    timeout = (timespec_to_jiffies(&ts) 
           + (ts.tv_sec || ts.tv_nsec)); 
 
  current->state = TASK_INTERRUPTIBLE; 
  timeout = schedule_timeout(timeout); 
 
  spin_lock_irq(&current->sigmask_lock); 
  sig = dequeue_signal(&these, &info); 
  current->blocked = oldblocked; 
  recalc_sigpending(current); 
} 
spin_unlock_irq(&current->sigmask_lock); 
 

Figure 4. This excerpt of the 
sys_rt_sigtimedwait() kernel function 
shows two critical sections. The most CPU time 
is consumed in the second critical section. 

The dequeue_signal() function contains some 
complexity that we can amortize across the total 
number of dequeued signals. This function walks 
through the list of queued signals looking for the sig-
nal described in info. If we have a list of signals to 
dequeue, we can walk the signal queue once picking 
up all the signals we want. 
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4. Benchmark description 

In this section, we measure and report several aspects 
of server performance. 

Our test harness consists of two machines running 
Linux connected via a 100 Mb/s Ethernet switch. The 
workload is driven by an Intel SC450NX with four 
500MHZ Xeon Pentium III processors (512Kb of L2 
cache each), 512Mb of RAM, and a pair of 
SYMBIOS 53C896 SCSI controllers managing sev-
eral LVD 10KRPM drives. Our web server runs on 
custom-built hardware equipped with a single 
400MHZ AMD K6-2 processor, 64Mb of RAM, and a 
single 8G 7.2KRPM IDE drive. The server hardware 
is small so that we can easily drive the server into 
overload. We also want to eliminate any SMP effects 
on our server, so it has only a single CPU. 

Our benchmark configuration contains only a single 
client host and a single server host, which makes the 
simulated workload less realistic. However, our 
benchmark results are strictly for comparing relative 
performance among our implementations. We believe 
the results also give an indication of real-world server 
performance. 

A web server’s static performance naturally depends 
on the size distribution of requested documents. Lar-
ger documents cause sockets and their corresponding 
file descriptors to remain active over a longer time 
period. As a result the web server and kernel have to 
examine a larger set of descriptors, making the amor-
tized cost of polling on a single file descriptor larger. 
In our tests, we request a 1 Kbyte document, a typical 
index.html file from the monkey.org web site. 

4.1 Offered load 

Scalability is especially critical to modern network 
service when serving many high-latency connections. 
Most clients are connected to the Internet via high-
latency connections, such as modems, whereas serv-
ers are usually connected to the Internet via a few 
high bandwidth, low-latency connections. This cre-
ates resource contention on servers because connec-
tions to high-latency clients are relatively long-lived, 
tying up server resources. They also induce a bursty 
and unpredictable interrupt load on the server [7]. 

Most web server benchmarks don’t simulate high-
latency connections, which appear to cause difficult-
to-handle load on real-world servers [5]. We’ve added 
an extra client that runs in conjunction with the 
httperf benchmark to simulate these slower con-
nections to examine the effects of our improvements 
on more realistic server workloads [6]. This client 

program opens a connection, but does not complete 
an http request. To keep the number of high-latency 
clients constant, these clients reopen their connection 
if the server times them out. 

In previous work, we noticed server performance 
change as the number of inactive connections varied 
[9]. As a result of this work, one of the authors modi-
fied phhttpd to correct this problem. The latest ver-
sion of phhttpd (0.1.2 as of this writing) does not 
show significant performance degradation as the 
number of inactive connections increases. Therefore, 
the benchmark results we present here show perform-
ance with no extra inactive connections. 

There are several system limitations that influence 
our benchmark procedures. There are only a limited 
number of file descriptors available for single proc-
esses; httperf assumes that the maximum is 1024. 
We modified httperf to cope dynamically with a 
large number of file descriptors. Additionally, be-
cause we use only a single client and server in our 
test harness, we can have only about 60,000 open 
sockets at a single point in time. When a socket 
closes it enters the TIMEWAIT state for sixty sec-
onds, so we must avoid reaching the port number 
limitation. We therefore run each benchmark for 
35,000 connections, and then wait for all sockets to 
leave the TIMEWAIT state before we continue with 
the next benchmark run. In the following tests, we 
run httperf with 4096 file descriptors, and 
phhttpd with five thousand file descriptors. 

4.2 Execution Profiling 

To assess our modifications to the kernel, we use the 
EIP sampler built in to the Linux kernel. This sampler 
checks the value of the instruction pointer (EIP regis-
ter) at fixed intervals, and populates a hash table with 
the number of samples it finds at particular addresses. 
Each bucket in the hash table reports the results of a 
four-byte range of instruction addresses. 

A user-level program later extracts the hash data and 
creates a histogram of CPU time matched against the 
kernel’s symbol table. The resulting histogram dem-
onstrates which routines are most heavily used, and 
how efficiently they are implemented. The granularity 
of the histogram allows us to see not only which 
functions are heavily used, but also where the most 
time is spent in each function. 
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5. Results and Discussion 

In this section we present the results of our bench-
marks, and describe some new features that our new 
system call API enables. 

5.1 Basic performance and scalability results 

As described previously, our web server is a single 
processor host running a Linux 2.2.16 kernel modi-
fied to include our implementation of sigtimed-
wait4(). The web server application is phhttpd ver-
sion 0.1.2. We compare an unmodified version with a 
version modified to use sigtimedwait4(). Our 
benchmark driver is a modified version of httperf 
0.6 running on a four-processor host. 

Our first test compares the scalability of unmodified 
phhttpd using sigwaitinfo() to collect one sig-
nal at a time with the scalability of phhttpd using 
sigtimedwait4() to collect many signals at once. 
The modified version of phhttpd picks up as many 
as 500 signals at once during this test. 

Graphs 1 and 2 show that picking up more than one 
RT signal at a time gains little. Only minor changes 
in behavior occur when varying the maximum num-
ber of signals that can be picked up at once. The 
maximum throughput attained during the test in-
creases slightly. 

This result suggests that the largest system call bot-
tleneck is not where we first assumed. Picking up 
signals appears to be an insignificant part of server 
overhead. We hypothesize that responding to re-
quests, rather than picking them up, is where the 
server spends most of its effort. 
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Graph 1. Scalability of the phhttpd web 
server. This graph shows how a single threaded 
phhttpd web server scales as request rate in-
creases. The axes are in units of requests per sec-
ond. 
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Graph 2. Scalability of phhttpd using sig-
timedwait4(). The signal buffer size was five 
hundred signals, meaning that the web server 
could pick up as many as five hundred events at a 
time. Compared to Graph 1, there is little im-
provement. 

5.2 Improving overload performance 

While the graphs for sigtimedwait4() and sig-
waitinfo() look disappointingly similar, 
sigtimedwait4() provides new information that 
we can leverage to improve server scalability. 

Mogul, et al., refer to “receive livelock,” a condition 
where a server is not deadlocked, but makes no for-
ward progress on any of its scheduled tasks [12]. This 
is a condition that is typical of overloaded interrupt-
driven servers: the server appears to be running flat 
out, but is not responding to client requests. In gen-
eral, receive livelock occurs because processing a 
request to completion takes longer than the time be-
tween requests. 

Mogul’s study finds that dropping requests as early as 
possible results in more request completions on over-
loaded servers. While the study recommends drop-
ping requests in the hardware interrupt level or net-
work protocol stack, we instead implement this 
scheme at the application level. When the web server 
becomes overloaded, it resets incoming connections 
instead of processing the requests. 

To determine that a server is overloaded, we use a 
weighted load average, essentially the same as the 
TCP round trip time estimator [11, 13, 14]. Our new 
sigtimedwait4() system call returns as many sig-
nals as can fit in the provided buffer. The number of 
signals returned each time phhttpd invokes sig-
timedwait4() is averaged over time. When the load 
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average exceeds a predetermined value, the server 
begins rejecting requests. 

Instead of dropping requests at the application level, 
using the listen backlog might allow the kernel to 
drop connections even before the application be-
comes involved in handling a request. Once the back-
log overflows, the server’s kernel can refuse connec-
tions, not even passing connection requests to the 
server application, further reducing the workload the 
web server experiences. However, this solution does 
not handle bursty request traffic gracefully. A moving 
average such as the RTT estimator smoothes out tem-
porary traffic excesses, providing a better indicator of 
server workload over time. 

The smoothing function is computed after each 
invocation of sigtimedwait4(). The number of 
signals picked up by sigtimedwait4() is one of 
the function’s parameters: 

1)1( −−+= tt AvgSAvg αα  

where S is the number of signals picked up by the 
most recent invocation of sigtimedwait4(); Avg is 
the moving load average; α is the gain value, control-
ling how much the current signal count influences the 
load average; and t is time. 

In our implementation, phhttpd picks up a maxi-
mum of 23 signals. If Avg exceeds 18, phhttpd be-
gins resetting incoming connections. Experimentation 
and the following reasoning influenced the selection 
of these values. As the server picks up fewer signals 
at once, the sample rate is higher but the sample 
quantum is smaller. Only picking up one signal, for 
example, means we’re either overloaded, or we’re 
not. This doesn’t give a good indication of the 
server’s load. As we increase the signal buffer size, 
the sample rate goes down (it takes longer before the 
server calls sigtimedwait4() again), but the sam-
ple quantum improves. At some point, the sample rate 
becomes too slow to adequately detect and handle 
overload. That is, if we pick up five hundred signals 
at once, the server either handles or rejects connec-
tions for all five hundred signals. 

The gain value determines how quickly the server 
reacts to full signal buffers (our “overload” condi-
tion). When the gain value approaches 1, the server 
begins resetting connections almost immediately dur-
ing bursts of requests. Reducing the gain value allows 
the server to ride out smaller request bursts. If it is 
too small, the server may fail to detect overload, re-
sulting in early performance degradation. We found 
that a gain value of 0.3 was the best compromise be-

tween smooth response to traffic bursts and overload 
reaction time. 

Graphs 3 and 4 reveal an improvement in overload 
behavior when an overloaded server resets connec-
tions immediately instead of trying to fulfill the re-
quests. Server performance levels off then declines 
slowly, rather than dropping sharply. In addition, 
connection error rate is considerably lower. 
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Graph 3. Scalability of phhttpd with aver-
aged load limiting. Overload behavior improves 
considerably over the earlier runs, which suggests 
that formulating and sending responses present 
much greater overhead for the server than han-
dling incoming signals. 
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Graph 4. Error rate of phhttpd with aver-
aged load limiting. When the server drops con-
nections on purpose, it actually reduces its error 
rate. 
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6. Conclusions and Future Work 

Using sigtimedwait4() enables a new way to 
throttle web server behavior during overload. By 
choosing to reset connections rather than respond to 
incoming requests, our modified web server survives 
considerable overload scenarios without encountering 
receive livelock. The sigtimedwait4() system call 
also enables additional efficiency: by gathering sig-
nals in bulk, a server application can “compress” sig-
nals. For instance, if the server sees multiple read 
signals on a socket, it can empty that socket’s read 
buffer just once. 

Further, we demonstrate that more work is done dur-
ing request processing than in handling and dispatch-
ing incoming signals. Lowering signal processing 
overhead in the Linux kernel has little effect on server 
performance, but reducing request processing over-
head in the web server produces a significant change 
in server behavior. 

It remains to be seen whether this request processing 
latency is due to: 

• accepting incoming connections (accept() 
and read() system calls) 

• writing the response (nonblocking write() 
system call and accompanying data copy 
operations) 

• managing the cache (server-level hash table 
lookup and mmap() system call) 

• some unforeseen problem. 

Even though sending the response back to clients 
requires a copy operation, it is otherwise nonblock-
ing. Finding the response in the server’s cache should 
also be fast, especially considering the cache in our 
test contains only a single document. Thus we believe 
future work in this area should focus on the perform-
ance of the system calls and server logic that accept 
and perform the initial read on incoming connections. 

This paper considers server performance with a sin-
gle thread on a single processor to simplify our test 
environment. We should also study how RT signals 
behave on SMP architectures. Key factors influencing 
SMP performance and scalability include thread 
scheduling policies, the cache-friendliness of the ker-
nel implementation of RT signals, and how well the 
web server balances load among its worker threads. 
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Appendix A: Man page for sigtimedwait4() 

SIGTIMEDWAIT4(2)        Linux Programmer's Manual       SIGTIMEDWAIT4(2) 
 
NAME 
     sigtimedwait4 - wait for queued signals 
 
SYNOPSIS 
     #include <signal.h> 
 
     int sigtimedwait4(const sigset_t *set, siginfo_t *infos, 
           int nsiginfos, const struct timespec *timeout); 
 
     typedef struct siginfo { 
        int            si_signo; /* signal from signal.h */ 
        int            si_code;  /* code from above      */ 
      ... 
        int            si_value; 
      ... 
     } siginfo_t; 
 
     struct timespec { 
        time_t         tv_sec;   /* seconds */ 
        long           tv_nsec;  /* and nanoseconds */ 
     }; 
DESCRIPTION 
     sigtimedwait4() selects queued pending signals from the  set 
     specified by  set,  and   returns   them  in  the  array  of 
     siginfo_t structs   specified   by   infos   and  nsiginfos. 
     When multiple signals are pending,  the lowest numbered ones 
     are selected.  The selection order between realtime and non- 
     realtime signals, or between multiple  pending  non-realtime 
     signals, is unspecified. 
 
     sigtimedwait4() suspends  itself  for  the   time   interval 
     specified in the timespec  structure  referenced by timeout. 
     If  timeout  is  zero-valued,   or  no  timespec  struct  is 
     specified, and if none of  the  signals  specified by set is 
     pending, then sigtimedwait4()  returns  immediately with the 
     error EAGAIN.   If  timeout   contains  a negative value, an 
     infinite timeout is specified. 
 
     If no signal in set is pending  at  the time  of  the  call, 
     sigtimedwait4() suspends  the  calling  process until one or 
     more signals  in  set  become  pending,  until  it is inter- 
     rupted by an unblocked, caught signal,  or until the timeout 
     specified   by   the   timespec   structure  pointed  to  by 
     timeout expires. 
 
     If, while sigtimedwait4() is waiting, a signal  occurs which 
     is eligible for delivery (i.e., not blocked by  the  process 
     signal mask), that  signal  is  handled  asynchronously  and 
     the wait is interrupted. 
 
     If  infos  is  non-NULL,  sigtimedwait4()  returns  as  many 
     queued signals  as  are  ready  and  will  fit  in the array 
     specified by infos. In  each  siginfo_t struct, the selected 
     signal number is stored in si_signo,  and the cause  of  the 
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     signal is stored in the si_code. If a payload is queued with 
     the signal, the payload value is stored in si_value. 
 
     If the value  of  si_code  is  SI_NOINFO,  only the si_signo 
     member of a siginfo_t struct is meaningful, and the value of 
     all other members of that siginfo_t struct is unspecified. 
 
     If no further signals are queued for  the  selected  signal, 
     the pending indication for that signal is reset. 
 
RETURN VALUES 
     sigtimedwait4() returns  the  count  of siginfo_t structs it 
     was able to store  in  the  buffer  specified  by  infos and 
     nsiginfos.   Otherwise,  the  function  returns  -1 and sets 
     errno to indicate any error condition. 
 
ERRORS 
     EINTR     The wait was interrupted by an  unblocked,  caught 
               signal. 
 
     ENOSYS    sigtimedwait4()   is   not   supported   by   this 
               implementation. 
 
     EAGAIN    No signal specified  by  set was delivered  within 
               the specified timeout period. 
 
     EINVAL    timeout specified a  tv_nsec  value less than 0 or 
               greater than 1,000,000,000. 
 
     EFAULT    The  array  of  siginfo_t   structs  specified  by 
               infos and  nsiginfos  was  not  contained  in  the 
               calling program's address space. 
 
CONFORMING TO 
     Linux 
 
AVAILABILITY 
     The  sigtimedwait4() system call  was  introduced  in  Linux 
     2.4. 
 
SEE ALSO 
     time(2), sigqueue(2), sigtimedwait(2), sigwaitinfo(2) 
 
Linux 2.4.0        Last change: 23 August 2000                  1 


