

CITI Technical Report 00-7

Analyzing the Overload Behavior of a Simple Web Server

Niels Provos, University of Michigan
<provos@citi.umich.edu>

Chuck Lever, AOL-Netscape, Incorporated

<chuckl@netscape.com>

Stephen Tweedie, Red Hat Software
<sct@redhat.com>

ABSTRACT

Linux introduces POSIX Real Time signals to report I/O activity on multiple
connections with more scalability than traditional models. In this paper we ex-
plore ways of improving the scalability and performance of POSIX RT signals
even more by measuring system call latency and by creating bulk system calls
that can deliver multiple signals at once.

August 24, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

This document was written as part of the Linux Scalability Project. The work described in this paper was supported

via grants from the Sun-Netscape Alliance, Intel, Dell, and IBM. For more information, see our home page.

If you have comments or suggestions, email <linux-scalability@citi.umich.edu>

Copyright © 2000 by the Regents of the University of Michigan, and by AOL-Netscape Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.

Analyzing the Overload Behavior of a Simple Web Server

Niels Provos, University of Michigan
<provos@citi.umich.edu>

Chuck Lever, AOL-Netscape, Incorporated

<chuckl@netscape.com>

Stephen Tweedie, Red Hat Software
<sct@redhat.com>

1. Introduction

Experts on network server architecture have argued
that servers making use of I/O completion events are
more scalable than today’s servers [2, 3, 5]. In Linux,
POSIX Real-Time (RT) signals can deliver I/O com-
pletion events. Unlike traditional UNIX signals, RT
signals carry a data payload, such as a specific file
descriptor that just completed. Signals with a payload
can enable network server applications to respond
immediately to network requests, as if they were
event-driven. An added benefit of RT signals is that
they can be queued in the kernel and delivered to an
application one at a time, in order, leaving an applica-
tion free to pick up I/O completion events when con-
venient.

The RT signal queue is a limited resource. When it is
exhausted, the kernel signals an application to switch
to polling, which delivers multiple completion events
at once. Even when no signal queue overflow hap-
pens, however, RT signals may have inherent limita-
tions due to the number of system calls needed to
manage events on a single connection. This number
may not be critical if the queue remains short, for
instance while server workload is easily handled.
When the server becomes loaded, the signal queue
can cause system call overhead to dominate server
processing, with the result that events are forced to
wait a long time in the signal queue.

Linux has been carefully designed so that system
calls are not much more expensive than library calls.
There are no more cache effects for a system call than
there are for a library call, and few virtual memory
effects because the kernel appears in every process’s
address space. However, added security checks dur-
ing system calls and hardware overhead caused by
crossing protection domains make it expedient to
avoid multiple system calls when fewer will do.

Process switching is still comparatively expensive,
often resulting in TLB flushes and virtual memory
overhead. If a system call must sleep, it increases the
likelihood that the kernel will switch to a different
process. By lowering the number of system calls re-
quired to accomplish a given task, we reduce the like-
lihood of harm to an application’s cache resident set.

Improving the scalability and reducing the overhead
of often-used system calls has a direct impact on the
scalability of network servers [1, 4]. Reducing wait
time for blocking system calls gives multithreaded
server applications more control over when and
where requested work is done. Combining several
functions into fewer system calls has the same effect.

In this paper, we continue work begun in “Scalable
Network I/O for Linux” by Provos, et al. [9]. We
measure the effects of system call latency on the
performance and scalability of a simple web server
based on an RT signal event model. Of special inter-
est is the way server applications gather pending RT
signals. Today applications use sigwaitinfo() to
dequeue pending signals one at a time. We create a
new interface, called sigtimedwait4(), that is ca-
pable of delivering multiple signals to an application
at once.

We use phhttpd as our web server. Phhttpd is a
static-content caching front end for full-service web
servers such as Apache [8]. Brown created phhttpd
to demonstrate the POSIX RT signal mechanism,
added to Linux during the 2.1 development series and
completed during the 2.3 series [2]. We drive our test
server with httperf [6]. An added client creates
high-latency, low-bandwidth connections, as in
Banga and Druschel [7].

Section 2 introduces POSIX Real-Time signals and
describes how server designers can employ them. It
also documents the phhttpd web server. Section 3
motivates the creation of our new system call. We

Provos, Lever, & Tweedie

 - 2 -

describe our benchmark in Section 4, and discuss the
results of the benchmark in Section 5. We conclude in
Section 6.

2. POSIX Real-Time Signals and the phhttpd
Web Server

In this section, we introduce POSIX Real-Time signals
(RT signals), and provide an example of their use in a
network server.

2.1 Using SIGIO with non-blocking sockets

To understand how RT signals provide an event noti-
fication mechanism, we must first understand how
signals drive I/O in a server application. We recapitu-
late Stevens’ illustration of signal-driven I/O here
[10].

An application follows these steps to enable signal-
driven I/O:

1. The application assigns a SIGIO signal han-
dler with signal() or sigaction().

2. The application creates a new socket via
socket() or accept().

3. The application assigns an owner pid, usually
its own pid, to the new socket with
fcntl(fd, F_SETOWN, newpid). The
owner then receives signals for this file de-
scriptor.

4. The application enables non-blocking I/O on
the socket with fcntl(fd, F_SETFL,

O_ASYNC).

5. The application responds to signals either with
its signal handler, or by masking these signals
and picking them up synchronously with sig-
waitinfo().

The kernel raises SIGIO for a variety of reasons:

• A connection request has completed on a lis-
tening socket.

• A disconnect request has been initiated.

• A disconnect request has completed.

• Half of a connection has been shut down.

• Data has arrived on a socket.

• A write operation has completed.

• An out-of-band error has occurred.

When using old-style signal handlers, this mechanism
has no way to inform an application which of these

conditions occurred. POSIX defines the siginfo_t
struct (see FIG. 1), which, when used with the sig-
waitinfo() system call, supplies a signal reason
code that distinguishes among the conditions listed
above. Detailed signal information is also available
for new-style signal handlers, as defined by the latest
POSIX specification [15].

This mechanism cannot say what file descriptor
caused the signal, thus it is not useful for servers that
manage more than one TCP socket at a time. Since its
inception, it has been used successfully only with
UDP-based servers [10].

2.2 POSIX Real-Time signals

POSIX Real-Time signals provide a more complete
event notification system by allowing an application
to associate signals with specific file descriptors. For
example, an application can assign signal numbers
larger than SIGRTMIN to specific open file descrip-
tors using fcntl(fd, F_SETSIG, signum). The
kernel raises the assigned signal whenever there is
new data to be read, a write operation completes, the
remote end of the connection closes, and so on, as
with the basic SIGIO model described in the previous
section.

Unlike normal signals, however, RT signals can
queue in the kernel. If a normal signal occurs more
than once before the kernel can deliver it to an appli-
cation, the kernel delivers only one instance of that
signal. Other instances of the same signal are
dropped. However, RT signals are placed in a FIFO
queue, creating a stream of event notifications that
can drive an application’s response to incoming re-
quests. Typically, to avoid complexity and race condi-
tions, and to take advantage of the information avail-
able in siginfo_t structures, applications mask the
chosen RT signals during normal operation. An appli-
cation uses sigwaitinfo() or sigtimedwait()
to pick up pending signals synchronously from the
RT signal queue.

The kernel must generate a separate indication if it
cannot queue an RT signal, for example, if the RT
signal queue overflows, or kernel resources are tem-
porarily exhausted. The kernel raises the normal sig-
nal SIGIO if this occurs. If a server uses RT signals
to monitor incoming network activity, it must clear
the RT signal queue and use another mechanism such
as poll() to discover remaining pending activity
when SIGIO is raised.

Finally, RT signals can deliver a payload. Sigwait-
info() returns a siginfo_t struct (see FIG. 1) for
each signal. The _fd and _band fields in this struc-

 Analyzing Web Server Overload

 - 3 -

ture contain the same information as the fd and re-
vents fields in a pollfd struct (see FIG. 2).

struct siginfo {
 int si_signo;
 int si_errno;
 int si_code;
 union {
 /* other members elided */
 struct {
 int _band;
 int _fd;
 } _sigpoll;
 } _sifields;
} siginfo_t;

Figure 1. Simplified siginfo_t struct.

struct pollfd {
int fd;
short events;
short revents;

};

Figure 2. Standard pollfd struct

2.2.1 Mixing threads and RT signals

According to the GNU info documentation that ac-
companies glibc, threads and signals can be mixed
reliably by blocking all signals in all threads, and
picking them up using one of the system calls from
the sigwait() family [16].

POSIX semantics for signal delivery do not guarantee
that threads waiting in sigwait() will receive par-
ticular signals. According to the standard, an external
signal is addressed to the whole process (the collec-
tion of all threads), which then delivers it to one par-
ticular thread. The thread that actually receives the
signal is any thread that does not currently block the
signal. Thus, only one thread in a process should wait
for normal signals while all others should block them.

In Linux, however, each thread is a kernel process
with its own PID, so external signals are always di-
rected to one particular thread. If, for instance, an-
other thread is blocked in sigwait() on that signal,
it will not be restarted.

This is an important element of the design of servers
using an RT signals-based event core. All normal
signals should be blocked and handled by one thread.
On Linux, other threads may handle RT signals on
file descriptors, because file descriptors are “owned”
by a specific thread. The kernel will always direct
signals for that file descriptor to its owner.

2.2.2 Handling a socket close operation

Signals queued before an application closes a connec-
tion will remain on the RT signal queue, and must be
processed and/or ignored by applications. For in-
stance, when a socket closes, a server application
may receive previously queued read or write events
before it picks up the close event, causing it to at-
tempt inappropriate operations on the closed socket.

When a socket is closed on the remote end, the local
kernel queues a POLL_HUP event to indicate the re-
mote hang-up. POLL_IN signals occurring earlier in
the event stream usually cause an application to read
a socket, and when it does in this case, it receives an
EOF. Applications that close sockets when they re-
ceive POLL_HUP must ignore any later signals for that
socket. Likewise, applications must be prepared for
reads to fail at any time, and not depend only on RT
signals to manage socket state.

Because RT signals queue unlike normal signals,
server applications cannot treat these signals as inter-
rupts. The kernel can immediately re-use a freshly
closed file descriptor, confusing an application that
then processes (rather than ignores) POLL_IN signals
queued by previous operations on an old socket with
the same file descriptor number. This introduces to
the unwary application designer significant vulner-
abilities to race conditions.

2.3 Using RT Signals in a Web Server

Phhttpd is a static-content caching front end for
full-service web servers such as Apache [2, 8]. Brown
created phhttpd to demonstrate the POSIX RT signal
mechanism, added to the Linux kernel during the
2.1.x kernel development series and completed dur-
ing the 2.3.x series. We describe it here to document
its features and design, and to help motivate the de-
sign of sigtimedwait4(). Our discussion focuses
on how phhttpd makes use of RT signals.

2.3.1 Assigning RT signal numbers

Even though a unique signal number could be as-
signed to each file descriptor, phhttpd uses one RT
signal number for all file descriptors in all threads for
two reasons.

1. Lowest numbered RT signals are delivered
first. If all signals use the same number, the
kernel always delivers RT signals in the order
in which they arrive.

2. There is no standard library interface for mul-
tithreaded applications to allocate signal num-
bers atomically. Allocating a single number

Provos, Lever, & Tweedie

 - 4 -

once during startup and giving the same num-
ber to all threads alleviates this problem.

2.3.2 Threading model

Phhttpd operates with one or more worker threads
that handle RT signals. Additionally, an extra thread
is created for managing logs. A separate thread pre-
populates the file data cache, if requested.

Instead of handling incoming requests with signals,
phhttpd may use polling threads instead. Usually,
though, phhttpd creates a set of RT signal worker
threads, and a matching set of polling threads known
as sibling threads. The purpose of sibling threads is
described later.

Each RT signal worker thread masks off the file de-
scriptor signal, then iterates, picking up each RT sig-
nal via sigwaitinfo() and processing it, one at a
time. To reduce system call rate, phhttpd read()s
on a new connection as soon as it has accept()ed it.
Often, on high-bandwidth connections, data is ready
to be read as soon as a connection is accept()ed.
Phhttpd reads this data and sends a response imme-
diately to prevent another trip through the “event”
loop, reducing the negative cache effects of handling
other work in between the accept and the read opera-
tions.

Because the read operation is non-blocking, it fails
with EAGAIN if data is not immediately present. The
thread proceeds normally back to the “event” loop in
this case to wait for data to become available on the
socket.

2.3.3 Load balancing

When more than one thread is available, a simple
load balancing scheme passes listening sockets
among the threads by reassigning the listener’s owner
via fcntl(fd, F_SETOWN, newpid). After a
thread accepts an incoming connection, it passes its
listener to the next worker thread in the chain of
worker threads. This mechanism requires that each
thread have a unique pid, a property of the Linux
threading model.

2.3.4 Caching responses

Because phhttpd is not a full-service web server, it
must identify requests as those it can handle itself, or
those it must pass off to its backing server. Local files
that phhttpd can access are cached by mapping
them and storing the map information in a hash,
along with a pre-formed http response. When a
cached file is requested, phhttpd sends the cached

response via write() along with the mapped file
data.

Logic exists to handle the request via sendfile()
instead. In the long run, this may be more efficient
for several reasons. First, there is a limited amount of
address space per process. This limits the total num-
ber of cached bytes, especially because these bytes
share the address space with the pre-formed re-
sponses, hash information, heap and stack space, and
program text. Using sendfile() allows data to be
cached in extended memory (memory addressed
higher than one or two gigabytes). Next, as the num-
ber of mapped objects grows, mapping a new object
takes longer. On Linux, finding an unused area of an
address space requires at least one search that is lin-
ear in the number of mapped objects in that address
space. Finally, creating these maps requires expensive
page table and TLB flush operations that can hurt
system-wide performance, especially on SMP hard-
ware.

2.3.5 Queue overflow recovery

The original phhttpd web server recovered from
signal queue overflow by passing all file descriptors
owned by a signal handling worker thread to a pre-
existing poll-based worker thread, known as its sib-
ling. The sibling then cleans up the signal queue,
polls over all the file descriptors, processes remaining
work, and passes all the file descriptors back to the
original signal worker thread.

On a server handling perhaps thousands of connec-
tions, this creates considerable overhead during a
period when the server is already overloaded. We
modified the queue overflow handler to reduce this
overhead. The server now handles signal queue over-
flow in the same thread as the RT signal handler; sib-
ling threads are no longer needed. This modification
appears in phhttpd version 0.1.2. It is still neces-
sary, however, to build a fresh poll_fd array com-
pletely during overflow processing. This overhead
slows the server during overflow processing, but can
be reduced by maintaining the poll_fd array con-
currently with signal processing.

RT signal queue overflow is probably not as rare as
some would like. Some kernel designs have a single
maximum queue size for the entire system. If any
aberrant application stops picking up its RT signals
(the thread that picks up RT signals may cause a
segmentation fault, for example, while the rest of the
application continues to run), the system-wide signal
queue will fill. All other applications on the system
that use RT signals will eventually be unable to pro-

 Analyzing Web Server Overload

 - 5 -

ceed without recovering from a queue overflow, even
though they are not the cause of it.

It is well known that Linux is not a real-time operat-
ing system, and that unbounded latencies sometimes
occur. Application design may also prohibit a latency
upper bound guarantee. These latencies can delay RT
signals, causing the queue to grow long enough that
recovery is required even when servers are fast
enough to handle heavy loads under normal circum-
stances.

3. New interface: sigtimedwait4()

To reduce system call overhead and remove a poten-
tial source of unnecessary system calls, we’d like the
kernel to deliver more than one signal per system
call. One mechanism to do this is implemented in the
poll() system call. The application provides a
buffer for a vector of results. The system call returns
the number of results it stored in the buffer, or an
error.

Our new system call interface combines the multiple
result delivery of poll() with the efficiency of
POSIX RT signals. The interface prototype appears in
FIG. 3.

int sigtimedwait4(const sigset_t *set,
 siginfo_t *infos, int nsiginfos,
 const struct timespec *timeout);

Figure 3. sigtimedwait4() prototype

Like its cousin sigtimedwait(), sigtimed-

wait4() provides the kernel with a set of signals in
which it is interested, and a timeout value that is used
when no signals are immediately ready for delivery.
The kernel selects queued pending signals from the
signal set specified by set, and returns them in the
array of siginfo_t structures specified by infos
and nsiginfos.

Providing a buffer with enough room for only one
siginfo_t struct forces sigtimedwait4() to be-
have almost like sigtimedwait(). The only differ-
ence is that specifying a negative timeout value
causes sigtimedwait4() to behave like sigwait-
info(). The same negative timeout instead causes an
error return from sigtimedwait().

Retrieving more than one single signal at a time has
important benefits. First and most obviously, it re-
duces the average number of transitions between user
space and kernel space required to process a single
server request. Second, it reduces the number of
times per signal the per-task signal spinlock is ac-
quired and released. This improves concurrency and

reduces cache ping-ponging on SMP hardware.
Third, it amortizes the cost of verifying the user’s
result buffer, although some believe this is insignifi-
cant. Finally, it allows a single pass through the signal
queue for all pending signals that can be returned,
instead of a pass for each pending signal.

The sigtimedwait4() system call enables efficient
server implementations by allowing the server to
“compress” signals- if it sees multiple read signals on
a socket, for instance, it can empty that socket’s read
buffer just once.

The sys_rt_sigtimedwait() function is a moder-
ate CPU consumer in our benchmarks, according to
the results of kernel EIP histograms. About three
fifths of the time spent in the function occurs in the
second critical section in FIG. 4.

spin_lock_irq(¤t->sigmask_lock);
sig = dequeue_signal(&these, &info);
if (!sig) {
 sigset_t oldblocked = current-
>blocked;
 sigandsets(¤t->blocked,
 ¤t->blocked,
&these);
 recalc_sigpending(current);
 spin_unlock_irq(¤t->
 sigmask_lock);

 timeout = MAX_SCHEDULE_TIMEOUT;
 if (uts)
 timeout = (timespec_to_jiffies(&ts)
 + (ts.tv_sec || ts.tv_nsec));

 current->state = TASK_INTERRUPTIBLE;
 timeout = schedule_timeout(timeout);

 spin_lock_irq(¤t->sigmask_lock);
 sig = dequeue_signal(&these, &info);
 current->blocked = oldblocked;
 recalc_sigpending(current);
}
spin_unlock_irq(¤t->sigmask_lock);

Figure 4. This excerpt of the
sys_rt_sigtimedwait() kernel function
shows two critical sections. The most CPU time
is consumed in the second critical section.

The dequeue_signal() function contains some
complexity that we can amortize across the total
number of dequeued signals. This function walks
through the list of queued signals looking for the sig-
nal described in info. If we have a list of signals to
dequeue, we can walk the signal queue once picking
up all the signals we want.

Provos, Lever, & Tweedie

 - 6 -

4. Benchmark description

In this section, we measure and report several aspects
of server performance.

Our test harness consists of two machines running
Linux connected via a 100 Mb/s Ethernet switch. The
workload is driven by an Intel SC450NX with four
500MHZ Xeon Pentium III processors (512Kb of L2
cache each), 512Mb of RAM, and a pair of
SYMBIOS 53C896 SCSI controllers managing sev-
eral LVD 10KRPM drives. Our web server runs on
custom-built hardware equipped with a single
400MHZ AMD K6-2 processor, 64Mb of RAM, and a
single 8G 7.2KRPM IDE drive. The server hardware
is small so that we can easily drive the server into
overload. We also want to eliminate any SMP effects
on our server, so it has only a single CPU.

Our benchmark configuration contains only a single
client host and a single server host, which makes the
simulated workload less realistic. However, our
benchmark results are strictly for comparing relative
performance among our implementations. We believe
the results also give an indication of real-world server
performance.

A web server’s static performance naturally depends
on the size distribution of requested documents. Lar-
ger documents cause sockets and their corresponding
file descriptors to remain active over a longer time
period. As a result the web server and kernel have to
examine a larger set of descriptors, making the amor-
tized cost of polling on a single file descriptor larger.
In our tests, we request a 1 Kbyte document, a typical
index.html file from the monkey.org web site.

4.1 Offered load

Scalability is especially critical to modern network
service when serving many high-latency connections.
Most clients are connected to the Internet via high-
latency connections, such as modems, whereas serv-
ers are usually connected to the Internet via a few
high bandwidth, low-latency connections. This cre-
ates resource contention on servers because connec-
tions to high-latency clients are relatively long-lived,
tying up server resources. They also induce a bursty
and unpredictable interrupt load on the server [7].

Most web server benchmarks don’t simulate high-
latency connections, which appear to cause difficult-
to-handle load on real-world servers [5]. We’ve added
an extra client that runs in conjunction with the
httperf benchmark to simulate these slower con-
nections to examine the effects of our improvements
on more realistic server workloads [6]. This client

program opens a connection, but does not complete
an http request. To keep the number of high-latency
clients constant, these clients reopen their connection
if the server times them out.

In previous work, we noticed server performance
change as the number of inactive connections varied
[9]. As a result of this work, one of the authors modi-
fied phhttpd to correct this problem. The latest ver-
sion of phhttpd (0.1.2 as of this writing) does not
show significant performance degradation as the
number of inactive connections increases. Therefore,
the benchmark results we present here show perform-
ance with no extra inactive connections.

There are several system limitations that influence
our benchmark procedures. There are only a limited
number of file descriptors available for single proc-
esses; httperf assumes that the maximum is 1024.
We modified httperf to cope dynamically with a
large number of file descriptors. Additionally, be-
cause we use only a single client and server in our
test harness, we can have only about 60,000 open
sockets at a single point in time. When a socket
closes it enters the TIMEWAIT state for sixty sec-
onds, so we must avoid reaching the port number
limitation. We therefore run each benchmark for
35,000 connections, and then wait for all sockets to
leave the TIMEWAIT state before we continue with
the next benchmark run. In the following tests, we
run httperf with 4096 file descriptors, and
phhttpd with five thousand file descriptors.

4.2 Execution Profiling

To assess our modifications to the kernel, we use the
EIP sampler built in to the Linux kernel. This sampler
checks the value of the instruction pointer (EIP regis-
ter) at fixed intervals, and populates a hash table with
the number of samples it finds at particular addresses.
Each bucket in the hash table reports the results of a
four-byte range of instruction addresses.

A user-level program later extracts the hash data and
creates a histogram of CPU time matched against the
kernel’s symbol table. The resulting histogram dem-
onstrates which routines are most heavily used, and
how efficiently they are implemented. The granularity
of the histogram allows us to see not only which
functions are heavily used, but also where the most
time is spent in each function.

 Analyzing Web Server Overload

 - 7 -

5. Results and Discussion

In this section we present the results of our bench-
marks, and describe some new features that our new
system call API enables.

5.1 Basic performance and scalability results

As described previously, our web server is a single
processor host running a Linux 2.2.16 kernel modi-
fied to include our implementation of sigtimed-
wait4(). The web server application is phhttpd ver-
sion 0.1.2. We compare an unmodified version with a
version modified to use sigtimedwait4(). Our
benchmark driver is a modified version of httperf
0.6 running on a four-processor host.

Our first test compares the scalability of unmodified
phhttpd using sigwaitinfo() to collect one sig-
nal at a time with the scalability of phhttpd using
sigtimedwait4() to collect many signals at once.
The modified version of phhttpd picks up as many
as 500 signals at once during this test.

Graphs 1 and 2 show that picking up more than one
RT signal at a time gains little. Only minor changes
in behavior occur when varying the maximum num-
ber of signals that can be picked up at once. The
maximum throughput attained during the test in-
creases slightly.

This result suggests that the largest system call bot-
tleneck is not where we first assumed. Picking up
signals appears to be an insignificant part of server
overhead. We hypothesize that responding to re-
quests, rather than picking them up, is where the
server spends most of its effort.

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

re
pl

y
ra

te

targeted request rate

sigwaitinfo

Graph 1. Scalability of the phhttpd web
server. This graph shows how a single threaded
phhttpd web server scales as request rate in-
creases. The axes are in units of requests per sec-
ond.

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

re
pl

y
ra

te

targeted request rate

sigtimedwait4

Graph 2. Scalability of phhttpd using sig-
timedwait4(). The signal buffer size was five
hundred signals, meaning that the web server
could pick up as many as five hundred events at a
time. Compared to Graph 1, there is little im-
provement.

5.2 Improving overload performance

While the graphs for sigtimedwait4() and sig-
waitinfo() look disappointingly similar,
sigtimedwait4() provides new information that
we can leverage to improve server scalability.

Mogul, et al., refer to “receive livelock,” a condition
where a server is not deadlocked, but makes no for-
ward progress on any of its scheduled tasks [12]. This
is a condition that is typical of overloaded interrupt-
driven servers: the server appears to be running flat
out, but is not responding to client requests. In gen-
eral, receive livelock occurs because processing a
request to completion takes longer than the time be-
tween requests.

Mogul’s study finds that dropping requests as early as
possible results in more request completions on over-
loaded servers. While the study recommends drop-
ping requests in the hardware interrupt level or net-
work protocol stack, we instead implement this
scheme at the application level. When the web server
becomes overloaded, it resets incoming connections
instead of processing the requests.

To determine that a server is overloaded, we use a
weighted load average, essentially the same as the
TCP round trip time estimator [11, 13, 14]. Our new
sigtimedwait4() system call returns as many sig-
nals as can fit in the provided buffer. The number of
signals returned each time phhttpd invokes sig-
timedwait4() is averaged over time. When the load

Provos, Lever, & Tweedie

 - 8 -

average exceeds a predetermined value, the server
begins rejecting requests.

Instead of dropping requests at the application level,
using the listen backlog might allow the kernel to
drop connections even before the application be-
comes involved in handling a request. Once the back-
log overflows, the server’s kernel can refuse connec-
tions, not even passing connection requests to the
server application, further reducing the workload the
web server experiences. However, this solution does
not handle bursty request traffic gracefully. A moving
average such as the RTT estimator smoothes out tem-
porary traffic excesses, providing a better indicator of
server workload over time.

The smoothing function is computed after each
invocation of sigtimedwait4(). The number of
signals picked up by sigtimedwait4() is one of
the function’s parameters:

1)1(−−+= tt AvgSAvg αα

where S is the number of signals picked up by the
most recent invocation of sigtimedwait4(); Avg is
the moving load average; α is the gain value, control-
ling how much the current signal count influences the
load average; and t is time.

In our implementation, phhttpd picks up a maxi-
mum of 23 signals. If Avg exceeds 18, phhttpd be-
gins resetting incoming connections. Experimentation
and the following reasoning influenced the selection
of these values. As the server picks up fewer signals
at once, the sample rate is higher but the sample
quantum is smaller. Only picking up one signal, for
example, means we’re either overloaded, or we’re
not. This doesn’t give a good indication of the
server’s load. As we increase the signal buffer size,
the sample rate goes down (it takes longer before the
server calls sigtimedwait4() again), but the sam-
ple quantum improves. At some point, the sample rate
becomes too slow to adequately detect and handle
overload. That is, if we pick up five hundred signals
at once, the server either handles or rejects connec-
tions for all five hundred signals.

The gain value determines how quickly the server
reacts to full signal buffers (our “overload” condi-
tion). When the gain value approaches 1, the server
begins resetting connections almost immediately dur-
ing bursts of requests. Reducing the gain value allows
the server to ride out smaller request bursts. If it is
too small, the server may fail to detect overload, re-
sulting in early performance degradation. We found
that a gain value of 0.3 was the best compromise be-

tween smooth response to traffic bursts and overload
reaction time.

Graphs 3 and 4 reveal an improvement in overload
behavior when an overloaded server resets connec-
tions immediately instead of trying to fulfill the re-
quests. Server performance levels off then declines
slowly, rather than dropping sharply. In addition,
connection error rate is considerably lower.

1000

1200

1400

1600

1800

2000

1000 1200 1400 1600 1800 2000

re
pl

y
ra

te

targeted request rate

sigtimedwait4 smoothed 0.3

Graph 3. Scalability of phhttpd with aver-
aged load limiting. Overload behavior improves
considerably over the earlier runs, which suggests
that formulating and sending responses present
much greater overhead for the server than han-
dling incoming signals.

0

20

40

60

80

100

1000 1200 1400 1600 1800 2000

er
ro

rs
 in

 p
er

ce
nt

targeted request rate

sigtimedwait4 smoothed 0.3
sigtimedwait4

sigwaitinfo

Graph 4. Error rate of phhttpd with aver-
aged load limiting. When the server drops con-
nections on purpose, it actually reduces its error
rate.

 Analyzing Web Server Overload

 - 9 -

6. Conclusions and Future Work

Using sigtimedwait4() enables a new way to
throttle web server behavior during overload. By
choosing to reset connections rather than respond to
incoming requests, our modified web server survives
considerable overload scenarios without encountering
receive livelock. The sigtimedwait4() system call
also enables additional efficiency: by gathering sig-
nals in bulk, a server application can “compress” sig-
nals. For instance, if the server sees multiple read
signals on a socket, it can empty that socket’s read
buffer just once.

Further, we demonstrate that more work is done dur-
ing request processing than in handling and dispatch-
ing incoming signals. Lowering signal processing
overhead in the Linux kernel has little effect on server
performance, but reducing request processing over-
head in the web server produces a significant change
in server behavior.

It remains to be seen whether this request processing
latency is due to:

• accepting incoming connections (accept()
and read() system calls)

• writing the response (nonblocking write()
system call and accompanying data copy
operations)

• managing the cache (server-level hash table
lookup and mmap() system call)

• some unforeseen problem.

Even though sending the response back to clients
requires a copy operation, it is otherwise nonblock-
ing. Finding the response in the server’s cache should
also be fast, especially considering the cache in our
test contains only a single document. Thus we believe
future work in this area should focus on the perform-
ance of the system calls and server logic that accept
and perform the initial read on incoming connections.

This paper considers server performance with a sin-
gle thread on a single processor to simplify our test
environment. We should also study how RT signals
behave on SMP architectures. Key factors influencing
SMP performance and scalability include thread
scheduling policies, the cache-friendliness of the ker-
nel implementation of RT signals, and how well the
web server balances load among its worker threads.

6.1. Acknowledgements

The authors thank Peter Honeyman and Andy
Adamson for their guidance. We also thank the re-
viewers for their comments. Special thanks go to

Zach Brown for his insights, and to Intel Corporation
for equipment loans.

7. References

[1] G. Banga and J. C. Mogul, “Scalable Kernel Perform-
ance for Internet Servers Under Realistic Load,” Proceed-
ings of the USENIX Annual Technical Conference, June
1998.

[2] Z. Brown, phhttpd, www.zabbo.net/phhttpd,
November 1999.

[3] Signal driven IO (thread), linux-kernel mailing list,
November 1999.

[4] G. Banga. P. Druschel. J. C. Mogul. “Better Operating
System Features for Faster Network Servers,” SIGMETRICS
Workshop on Internet Server Performance, June 1998.

[5] J. C. Hu, I. Pyarali, D. C. Schmidt, “Measuring the
Impact of Event Dispatching and Concurrency Models on
Web Server Performance Over High-Speed Networks,”
Proceedings of the 2nd IEEE Global Internet Conference,
November 1997.

[6] D. Mosberger and T. Jin, “httperf – A Tool for Measur-
ing Web Server Performance,” SIGMETRICS Workshop on
Internet Server Performance, June 1998.

[7] G. Banga and P. Druschel, “Measuring the Capacity of
a Web Server,” Proceedings of the USENIX Symposium on
Internet Technologies and Systems, December 1997.

[8] Apache Server, The Apache Software Foundation.
www.apache.org.

[9] N. Provos and C. Lever, “Scalable Network I/O in
Linux,” Proceedings of the USENIX Technical Conference,
FREENIX track, June 2000.

[10] W. Richard Stevens, UNIX Network Programming,
Volume I: Networking APIs: Sockets and XTI, 2nd edition,
Prentice Hall, 1998.

[11] W. Richard Stevens, TCP/IP Illustrated, Volume 1: The
Protocols, pp. 299-309, Addison Wesley professional
computing series, 1994.

[12] J. C. Mogul, K. K. Ramakrishnan, "Eliminating Re-
ceive Livelock in an Interrupt-driven Kernel," Proceedings
of USENIX Technical Conference, January 1996.

[13] P. Karn and C. Partridge, “Improving Round-Trip
Time Estimates in Reliable Transport Protocols,” Computer
Communication Review, pp. 2-7, vol. 17, no. 5, August
1987.

Provos, Lever, & Tweedie

 - 10 -

[14] V. Jacobson, “Congestion Avoidance and Control,”
Computer Communication Review, pp. 314-329, vol. 18,
no. 4, August 1988.

[15] 1003.1b-1993 POSIX – Part 1: API C Language – Real-
Time Extensions (ANSI/IEEE), 1993. ISBN 1-55937-375-
X.

[16] GNU info documentation for glibc.

Appendix A: Man page for sigtimedwait4()

SIGTIMEDWAIT4(2) Linux Programmer's Manual SIGTIMEDWAIT4(2)

NAME
 sigtimedwait4 - wait for queued signals

SYNOPSIS
 #include <signal.h>

 int sigtimedwait4(const sigset_t *set, siginfo_t *infos,
 int nsiginfos, const struct timespec *timeout);

 typedef struct siginfo {
 int si_signo; /* signal from signal.h */
 int si_code; /* code from above */
 ...
 int si_value;
 ...
 } siginfo_t;

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* and nanoseconds */
 };
DESCRIPTION
 sigtimedwait4() selects queued pending signals from the set
 specified by set, and returns them in the array of
 siginfo_t structs specified by infos and nsiginfos.
 When multiple signals are pending, the lowest numbered ones
 are selected. The selection order between realtime and non-
 realtime signals, or between multiple pending non-realtime
 signals, is unspecified.

 sigtimedwait4() suspends itself for the time interval
 specified in the timespec structure referenced by timeout.
 If timeout is zero-valued, or no timespec struct is
 specified, and if none of the signals specified by set is
 pending, then sigtimedwait4() returns immediately with the
 error EAGAIN. If timeout contains a negative value, an
 infinite timeout is specified.

 If no signal in set is pending at the time of the call,
 sigtimedwait4() suspends the calling process until one or
 more signals in set become pending, until it is inter-
 rupted by an unblocked, caught signal, or until the timeout
 specified by the timespec structure pointed to by
 timeout expires.

 If, while sigtimedwait4() is waiting, a signal occurs which
 is eligible for delivery (i.e., not blocked by the process
 signal mask), that signal is handled asynchronously and
 the wait is interrupted.

 If infos is non-NULL, sigtimedwait4() returns as many
 queued signals as are ready and will fit in the array
 specified by infos. In each siginfo_t struct, the selected
 signal number is stored in si_signo, and the cause of the

 Analyzing Web Server Overload

 - 11 -

 signal is stored in the si_code. If a payload is queued with
 the signal, the payload value is stored in si_value.

 If the value of si_code is SI_NOINFO, only the si_signo
 member of a siginfo_t struct is meaningful, and the value of
 all other members of that siginfo_t struct is unspecified.

 If no further signals are queued for the selected signal,
 the pending indication for that signal is reset.

RETURN VALUES
 sigtimedwait4() returns the count of siginfo_t structs it
 was able to store in the buffer specified by infos and
 nsiginfos. Otherwise, the function returns -1 and sets
 errno to indicate any error condition.

ERRORS
 EINTR The wait was interrupted by an unblocked, caught
 signal.

 ENOSYS sigtimedwait4() is not supported by this
 implementation.

 EAGAIN No signal specified by set was delivered within
 the specified timeout period.

 EINVAL timeout specified a tv_nsec value less than 0 or
 greater than 1,000,000,000.

 EFAULT The array of siginfo_t structs specified by
 infos and nsiginfos was not contained in the
 calling program's address space.

CONFORMING TO
 Linux

AVAILABILITY
 The sigtimedwait4() system call was introduced in Linux
 2.4.

SEE ALSO
 time(2), sigqueue(2), sigtimedwait(2), sigwaitinfo(2)

Linux 2.4.0 Last change: 23 August 2000 1

