CITT Technical Report 00-6
Secure Internet Smartcards

Naomaru Itoi
Tomoko Fukuzawa
Peter Honeyman

Program in Smartcard Technology
http://www.citi.umich.edu/projects/smartcard/

Abstract

In this paper, we describe middleware that (1) enables secure communication between
a host and a remote smartcard and (2) provides a unique name, regardless of card
location.

Smartcards have traditionally been isolated from computer networks, communicat-
ing exclusively with the host computers to which they are attached through a serial
port. This era is ending, in part due to the flexibility and programmability of Java-
Cards. Researchers are beginning to communicate with smartcards using Internet
protocols.

This work extends the Internet infrastructure to allow secure access to remote
smartcards, communicating encrypted payloads over UDP/IP. Session key establish-
ment uses a PIN-based encrypted key exchange called SPEKE.

We describe two applications that use this infrastructure, Kerberos and SSH, discuss
performance and security concerns, and highlight the security and convenience benefits
of using Internet smartcards for personal key storage and cryptography.

August 24, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Secure Internet Smartcards

Secure Internet Smartcards

Naomaru Itoi
Tomoko Fukuzewa
Peter Honeyman

1 Introduction

Smartcards have long been used as tamper-
resistant extensions to computers via exclusive
access to a serial port. Smartcard applica-
tions, such as authentication systems [1, 12]
and payment methods [6, 14], generally assume
that smartcards and the applications that use
them are on the same host. Current research is
changing this situation by developing systems
that use smartcards as remote servers [19, 20].
Extending the use of smartcards in this way
removes the restriction that the smartcard al-
ways has to be on the same machine as the user.
This can prove quite useful in some cases.

Consider a typical office, in which a user
has several personal workstations providing di-
verse applications and services. If smartcards
are used to enhance the security of such ser-
vices as Kerberos authentication [22], SSH [24],
or PGP digital signatures [26], a user is forced to
install smartcard readers on all her computers
and move cards around as her tasks demand.

We suggest a different scenario, in which
smartcard functionality can be accessed from
computers other than the one to which it is di-
rectly attached. Naturally, this poses some new
security challenges, but also offers some inter-
esting possibilities, such as keeping a smartcard
itself physically secure in a locked room. In this
case, a user is never able to use his smartcard
without a way to access it remotely.

PC/SC-Lite [3] is among the more sophis-
ticated card managers, in that it allows appli-
cations to access card readers on remote hosts.
However, there are a few drawbacks to PC/SC-
Lite. First, it does not encrypt data in transit
between the smartcard and the remote host,
and thus exposes potentially sensitive commu-
nication to Internet eavesdroppers. Second, the
name of a smartcard depends on its location:
a smartcard is identified by the host’s domain

name and a serial port on that host. If a card
moves from one host to another or if the reader
is moved to a different serial port, the smart-
card’s name becomes invalid.

In this paper, we describe a system that
enables secure communication between a host
and a remote smartcard and provides a unique
name, regardless of card location. Our solution
is based on adapting the smartcard web server
developed at CITI [20] by adding UDP support
and a protocol for secure, authenticated remote
communication.

The building blocks of our system are listed
below.

e A smartcard is given a (long-lived) do-
main name.

e A UDP/IP stack is implemented as a Ja-
vaCard applet.

e The Simple Password Erponential Key
Ezchange protocol (SPEKE) [13] is used
to establish a session key between the re-
mote user’s host and the smartcard. Sub-
sequent communication is encrypted with
the session key.

e Kerberos and SSH clients are modified to
communicate securely with an IP-based
service that provides their key manage-
ment and cryptographic needs.

Our middleware and sample applications
demonstrate the convenience of the system and
offer a development infrastructure for similar
applications.

We assume that readers have a certain
amount of knowledge about smartcards. Those
who are not familiar with smartcard terminol-
ogy are advised to consult the book by Guthery
and Jurgensen [9].

2 Design

In this section, we describe the goals of our
system and the decisions we made to achieve
those goals.

2.1 Location independent naming

One of a smartcard’s essential features is mobil-
ity. A smartcard owner can carry it around and
use it at different locations. For maximum con-
venience, the name of the smartcard should not
change when the smartcard moves; otherwise,
the owner has to assign and remember multi-
ple names. This can be a significant burden for
the owner. Identifying a smartcard with DNS
solves this problem by providing a smartcard
with a location-independent name.

We assign a unique, durable, Internet do-
main name [17] to each card. The Internet
domain name service (DNS) maps the domain
name to an IP address. This assumes deploy-
ment of secure, dynamic DNS [23] or mobile IP
[18].

By way of an example, the smartcard used
in developing this project is always called
aya.citi.umich.edu, no matter which work-
station it is attached to.

2.2 Transport layer

Because an IP stack for JavaCard has been al-
ready developed in our lab [20], it is natural
for us to choose UDP or TCP for data trans-
mission. TCP has many advantages over UDP,
namely: reliable, sequenced, error-free commu-
nication. Nonetheless, we elected to implement
UDP because it is much simpler than TCP and
has a smaller “footprint”, essential for the lim-
ited hardware resources available on a smart-
card. These limitations force CITI’s TCP im-
plementation to be less than complete, e.g., it
does not retransmit dropped packets because
smartcards lack an internal timer. The simplic-

Itoi, Fukuzawa, and Honeyman

ity of UDP allows a more complete, standards-
compliant implementation.

2.3 Security

Smartcard-based systems usually assume that
the connection between a host and a smartcard
reader is secure. This assumption is reasonable
when the smartcard is attached to the local
host over a serial line, which is hard to snoop
or otherwise tamper with. The assumption no
longer holds when part of the connection be-
tween a smartcard and a user’s host is the In-
ternet, which is generally an insecure medium.
Consequently, our security goals require estab-
lishment of a secure channel between a host and
a remote smartcard.

A secure channel has the following three
properties: authenticity, secrecy, and integrity
[4]. Our system achieves the first two prop-
erties by employing SPEKE, a secure key ex-
change protocol [13]. SPEKE establishes a ses-
sion key for channel encryption while at the
same time authenticating both parties with a
shared secret.

We did not implement cryptographically se-
cure integrity checking, or even UDP check-
sum in this implementation; at this time we
find checksum calculation to be too time con-
suming for our applications. Our experience so
far indicates that the lack of integrity checking
does not have a detrimental impact on reliable
communication. Implementing integrity check-
ing would address one type of denial-of-service
attack, but many others remain available to a
powerful adversary in control of network traffic.

2.4 Alternatives to SPEKE

There are several alternatives to SPEKE, each
with significant disadvantages.

e No encryption

All messages are transmitted in the clear.
This allows an adversary to eavesdrop and

Secure Internet Smartcards

obtain all communication between the user
and her smartcard.

e Sending a PIN

The user sends a cleartext PIN to the
Internet-attached smartcard and the card
verifies it. This achieves authenticity, but

allows an adversary to eavesdrop and steal
the PIN.

e Encrypt with PIN

A PIN can be used as a session key to

encrypt the messages between the smart-

card and the user’s host. This achieves

both authenticity and secrecy because it

requires the parties to know the secret

PIN. However, this is vulnerable to off-

line guessing attacks: when a message

contains identifiable strings, such as ASCII
text or IP headers, an adversary can ob-

tain the ciphertext and try all possible

(exhaustive search) or likely (dictionary

attack) PINs to decrypt the encrypted

message. If a meaningful sequence of plain-
text characters is uncovered, the PIN is

revealed.

e Diffie-Hellman

Diffie-Hellman key exchange (DH) can es-
tablish a session key between two parties
[5]. However, it does not achieve authen-
ticity, and is vulnerable to a man-in-the-
middle attack [21].

e Encrypted Key Exchange

Encrypted Key Exchange (EKE) [2] achieves

both authenticity and secrecy and blunts
the DH man-in-the-middle attacks by clev-
erly using a shared secret, even one that
is susceptible to off-line attacks.

EKE’s patent holders did not not offer us
permission to use the protocol.

e Open Key Exchange

Open Key Exchange (OKE) [15] achieves
the same goals as EKE and is not patented.
Moreover, OKE is accompanied by a rig-
orous mathematical proof of its security
properties. However, the protocol is fairly
complicated and expensive, requiring mod-
ular multiplication, modular division, and

three different hash functions; none of these
is supported in the Schlumberger Cyber-
flex Access smartcard that we use.

2.5 SPEKE protocol

We settled on SPEKE, which achieves the same
goals as EKE and OKE and can be implemented
with resources available on smartcards. David
Jablon generously permitted us to use SPEKE
for non-commercial purposes.

SPEKE is a key exchange protocol based
on Diffie-Hellman. SPEKE differs from DH
mainly by using a shared secret to derive the
base, instead of publishing the base in the ini-
tial exchange. This feature defeats the well-
known man-in-the-middle attack on DH by forc-
ing both parties to prove knowledge of a shared
secret.

SPEKE computes the DH base by mapping
the PIN to a base of prime order that is ex-
ponentiated by a random element. Without
knowledge of the random exponent, an adver-
sary is forced to compute the discrete log in
order to gain information about the base; this
is believed to be computationally prohibitive.

Because SPEKE does not use the shared se-
cret to encrypt messages, it also avoids expos-
ing plaintext/ciphertext pairs to off-line guess-
ing attacks. SPEKE thus offers the essential
properties we need to establish a secure chan-
nel.

The existence of a shared secret is reason-
able for a system using smartcards: it is com-
mon practice to protect data in a smartcard
with a personal identification number (PIN),
which is a shared secret between the user and
the smartcard. We return to this issue in Sec-
tion 5.2.

Figure 1 summarizes the SPEKE protocol.
The first stage of SPEKE uses the shared secret
and DH to establish a session key. The session
key may optionally be verified in the second
stage by exchanging random challenges. Ker-

4 Itoi, Fukuzawa, and Honeyman
S a secret shared between Alice and Bob
p a prime number used as DH modulus
f(9) a function that converts S into a suitable DH base
R4, Rp random numbers chosen by Alice and Bob
Ca,Cg random challenges chosen by Alice and Bob
K a session key generated as a result of SPEKE
h(z) a one-way hash function, such as SHA1

A — B: x Alice sends z to Bob

DH Stage

Step 1.

Step 2.

Step 3.

Step 4.

Verification (optional)
Step 5.

Step 6.

Step 7.

Step 8.

Alice picks random number Cy4
Bob picks random number Cp
Alice verifies Cy

Bob verifies Cp

Alice computes Q4 = f(S)B4 modp A — B: Qa
Bob computes @p = f(S5)f2 mod p
Alice computes K = h(Q%* mod p)
Bob computes K = h(QﬁB mod p)

B — A: QB

A — B: EK(CA)
B — A: EK(CA,CB)
A— B: EK(CB)

Figure 1: SPEKE protocol

beros and SSH are self-authenticating, so we
omit consideration of this step in the remain-
der of this paper.

Figure 2 illustrates our design. f(S) is pre-
computed and stored on the card. The host
and the smartcard exchange two request/reply
pairs, initiated by a connection request from
the host. This signals the smartcard to gener-
ate its first message while a user is entering her
PIN, possibly achieving some overlap.

Host 1 conn req Smartcard
Conpute QA Conpute B
T & Send QB
2 QA Conput e
Send QA T ——, session key
Comput 2" conn ok

session key ° ~————

Figure 2: SPEKE implemented with

smartcard

3 Implementation

3.1 Overview

Figure 3 illustrates the overview of our system.
“Application” is a Kerberos or SSH client in
our implementation. We modified off-the-shelf
implementations of Kerberos and SSH to move
their key management and cryptographic needs
to a remote smartcard.

The Kerberos client uses the remote smart-
card to unseal a DES-encrypted ticket grant-
ing ticket (TGT). The SSH client uses the re-
mote smartcard to digitally sign a challenge
presented by an SSH server. Viewed from a
high level, these applications have similar needs,
although they use vastly different base tech-
nologies.

The Kerberos or SSH client first establishes
a session key with the remote smartcard us-
ing SPEKE, then exchanges messages with the
smartcard to use its services. The messages
are encrypted with the session key generated
by SPEKE and transmitted by UDP/IP.

Secure Internet Smartcards

Smartcard’ s
Wor kst ati on

tunnel daenon

@User
User’s

Wor kst ati on

plication

Ap
@ SPEKE | i brary

4

(2)

UDP on | P
protected by SPEKE

Application class

SPEKE cl ass
UDP/ | P cl ass

Figure 3: Implementation Overview

A daemon on the smartcard’s host receives
IP packets destined for the smartcard and for-
wards them to the smartcard through a “tun-
nel”, which provides for proper framing of IP
payloads in ISO 7816 Application Protocol Data
Units (APDUs) [8].

Upon arrival of a message, the smartcard’s
UDP/IP class strips off the IP and UDP head-
ers, and passes the datagram to the application
class, which handles the request. The smart-
card also has a SPEKE class, which plays the
smartcard’s part in session key establishment
and message encryption.

We use DES for the encryption algorithm.
The length of the modulus p is 1024-bit. The
size of exponents R4 and Rp is 128-bit. Smaller
exponents were tested, but did not significantly
affect performance. Larger exponents would
not improve security, given that we are using
DES. The (public) modulus is a safe prime that
is hard-coded on both ends. The base, derived
from the shared secret, is precomputed on the
card. Exponents and challenges are randomly
generated in every session.

The host-side program was developed on
Sun OS 5.6, and has been ported to Linux 2.2.
The tunneling host runs OpenBSD 2.7 and has
a Todos card reader attached. The card-side

applet is written for the Schlumberger Cyber-
flex Access JavaCard. The Kerberos client is
based on MIT distribution version 5-1.0.5, and
SSH is based on SSH-1.2.27.

3.2 Component details

The system is divided into five components:
host-side application, host-side SPEKE library,
tunnel daemon, card-side application and card-
side SPEKE library. This section details each
component.

Host-side application

The host-side application is a program that pro-
vides service to a smartcard user. Our demon-

stration applications are Kerberos and SSH clients.

In the remainder of this section, we describe the
Kerberos implementation; SSH has the same
basic issues.

The Kerberos client is a modified kinit pro-
gram, which carries out user authentication with
the Kerberos Key Distribution Center (KDC)
using a user’s key stored in a smartcard. This
kinit is similar to the one developed at CITI

Itoi, Fukuzawa, and Honeyman

#define MAXDATASIZE 220 /% 248 - IP & UDP header length */
#define SPEKE_HDR_SIZE 3*sizeof (unsigned char)

typedef struct speke_t {

unsigned char ver, msgid, len, data[MAXDATASIZE - SPEKE_HDR_SIZE];

} speke_t;

ver stores a constant (0x10) indicating the SPEKE protocol.

msgid identifies the type of a message.

Possible values of msgid are

MSG_CONNECT, MSG_QB, MSG_QA, MSG_CHALLENGE_A, MSG_CHALLENGE_AB,
MSG_CHALLENGE B, MSG_REQUEST and MSG_REPLY.

len is the length of data contained in the packet. Cyberflex DES methods
require the data length to be a multiple of 8 bytes so the data may need
to be padded. len indicates the logical length of the data.

data is the data to be transmitted

Figure 4: SPEKE data structure

for Kerberos/smartcard integration using a lo-
cal smartcard [12], except that it uses UDP /IP
to communicate with a smartcard on a remote

host instead of communicating conventional APDUs

over a serial port to a locally-attached reader.
Where the earlier smartcard-enabled kinit uses
CITD’s sc7816 communication library [20], the
implementation described here uses our SPEKE
library.

The Kerberos client follows three steps to
receive the service from the smartcard: (1) es-
tablish a session key, (2) get a principal name x
key number table from the smartcard, and (3)
use the smartcard to decrypt the reply from the
KDC. The first step is accomplished by calling
speke_connect (). The others use speke_send ()
and speke recv().

Here is an example of calls to the SPEKE
library. speke is a data structure that stores
the context of a SPEKE session. sockfd is a
socket descriptor used to communicate with a
smartcard.

/* key establishment */
speke_open (&speke, sockfd, hostname,
SERV_PORT) ;

/* send 2 bytes to card */
n = speke_send (&speke, sockfd, bufr, 2);

/* receive up to 256 bytes from card */

n = speke_recv (&speke, sockfd, bufr, 256);

SPEKE library

This host-side library implements the SPEKE
key exchange protocol and exports procedures
for connection establishment, connection de-
struction, and data transmission. The roles of
these functions are summarized below.

speke_open asks the user for a PIN and estab-
lishes a session key using SPEKE

speke_send encrypts and sends data to the card

speke recv receives and decrypts data from
the card

speke_close destroys the session key

The SPEKE library uses UDP/IP for data
transport. All the SPEKE packets sent and

Secure Internet Smartcards

received by the SPEKE library are UDP data-
grams, with the format depicted in Figure 4.

SPEKE uses several cryptographic opera-
tions, such as DES, modular exponentiation,
and SHA1. The host-side SPEKE library in-
cludes three libraries to enable these operations:
a DES library (libdes-4.01) by Eric Young [25],
the GNU Multiple Precision Arithmetic Library
[7], and the CTC library [16].

Tunnel daemon

The tunnel daemon is the only component that
runs on the smartcard’s host computer. The
job of the tunnel daemon is to encapsulate IP
packets into APDUs, which smartcards under-
stand. The routing table of the smartcard’s
host is configured so that the tunnel daemon
receives packets directed to the smartcard’s IP
address.

When the tunnel daemon receives an IP packet,
it prepends a 5-byte APDU header to it, and
sends the APDU to the smartcard using CITIT’s
sc7816 library. If a reply packet is available
from the smartcard, the tunnel daemon issues
a get-response APDU to the smartcard.

After receiving a response packet from the
card, the tunnel daemon strips the APDU header
and transmits the payload to the address spec-
ified in the IP header. Beyond this, tunnel dae-
mon operation does not depend on the IP pay-
load; it merely attaches and strips APDU head-
ers and routes IP packets between the network
and a serial device.

Card-side application

The remaining three components run on the
smartcard. The highest level component among
them is a card-side application program that
provides application-specific services. For ex-
ample, the Kerberos application decrypts a mes-
sage that is encrypted with a user’s symmetric
key; the SSH application encrypts a random
challenge with a private RSA key.

Thanks to the object oriented style of pro-
gramming supported by JavaCards and to the
SPEKE class taking care of the details of key
exchange and message secrecy, all an applica-
tion class has to do for communication is to
inherit the SPEKE class and issue send () and
recv() methods. An example follows:

public class KrbSpeke extends UdpSpeke {
public void process(APDU apdu) {
short len = recv(apdu);
if (len >= 0) {
len = kerberos_process (apdu, len);
send (apdu, len);
}
}
}

SPEKE class

The next layer on the smartcard is the SPEKE
class. Similar to the host-side SPEKE library,
the SPEKE class implements the SPEKE key
exchange protocol and exports methods for data
transmission. The API consists of two meth-
ods, send () and recv():

recv parses a packet. If the packet contains
a message for key exchange, this method
creates an appropriate packet and sends
it out. Otherwise (i.e., if the packet car-
ries data), it decrypts the data and passes
it to the application class.

send encrypts a message and sends it.
The SPEKE class inherits the UDP class.

public class UdpSpeke extends Udp7816 {
void send (APDU apdu, short len);
short recv (APDU apdu);

}

UDP/IP class

The last component is the UDP/IP class, which
processes UDP/IP datagrams. This is built on

CITTI’s smartcard IP stack. For incoming pack-
ets, the recv() method strips off UDP and IP
headers and hands the data to the upper layer,
in our case, the SPEKE class. Packets trans-
mitted in the other direction are handled by
the send() method, which adds UDP and IP
headers to a message and sends it out of the
smartcard.

4 Performance

In this section, we discuss performance. This
system is not fast. Therefore, we focus on high-
lighting system bottlenecks, and discuss how
performance can be improved.

Performance evaluation was carried out on
two workstations in our LAN. The user’s work-
station is Linux 2.2 on a 400 MHz Pentium,
and the smartcard’s workstation is OpenBSD
2.7 on a 400 MHz Pentium. The smartcard
is attached to the workstation with a Litronic
PC-3 reader communicating at 115 Kbps.

4.1 Execution time

The table shows the execution time of Kerberos
and SSH client programs using our SPEKE li-
brary. The performance results of clients that
use local smartcards and the sc7816 library are
shown for comparison. All times are reported
in seconds and are the average of five time tri-
als. Variance is negligible.

remote local
Kerberos 12.8 3.33
SSH 12.6 3.43

The remote versions are much slower than
the local ones. The difference is due largely to
two factors: setting up SPEKE and the cost of
encrypting and decrypting payloads. The next
section focuses on these two factors.

Itoi, Fukuzawa, and Honeyman

4.2 Details

In this section, we discuss execution of the Ker-
beros client. Our observations also apply to the
SSH client.

The events in the Kerberos client are listed
below in chronological order. All times are re-
ported in seconds and are the average of five
time trials. Variance is negligible.

time events

0.00 kinit start
0.02 SPEKE connect start

0.03 Host send SPEKE1 (connect request)

0.03 Host send SPEKE2 (Q4)
2.07 Host recv SPEKE]1 (@)
3.56 Host recv SPEKE2 (connect ok)
3.56 get_key num start
5.88 get_keynum finish
5.88 decrypt ticket start
9.93 decrypt ticket finish
9.93 decrypt ticket start
12.80 decrypt ticket finish
12.80 kinit end

Data to be decrypted is divided into two
blocks and sent separately because, at 224 bytes,
a Kerberos ticket is too large for a smartcard
to decrypt at once.

Within the total 12.80 seconds, time for us-
ing smartcard dominates, taking 12.78 seconds.
This is not surprising: it takes 2 — 4 seconds to
exchange a pair of request-reply packets, and
there are five such pairs:

request type time
SPEKE]1 (— connect request, + Qp) 2.04
SPEKE2 (— @4, + connect ok) 1.49
get_key_num request (+ princ table) 2.33
decrypt block 1 (— data, « data) 4.06
decrypt block 2 (— data, « data) 2.87

Now we analyze the message exchange bot-
tleneck. Processing a request is divided into
five phases.

e time spent in the smartcard

e [P communication between user’s host and

Secure Internet Smartcards

A - B: Eg(P)

S a secret shared between Alice and Bob

P a public key generated by Alice

K a session key generated as a result of EKE

A — B: x Alice sends x to Bob

Step 1. Alice generates P, encrypts it with S

Step 2. Bob obtains P, generates K, computes Eg(Ep(K))

B — A: Es(Ep(K))

Figure 5: EKE protocol key exchange. The optional verification step is not shown.

smartcard’s host
e overhead of the tunnel daemon

e 5c7816 library overhead

4.3 EKE measurement

Although we cannot use it in our projects be-

e communication between smartcard and smart- cause of a patent issue, we implemented and
card’s host. (This includes time for get-responBieasured EKE to satisfy our curiosity. EKE is

APDU.)

Using the first message, SPEKE]1, as a sam-
ple, we measure the following events. All times
are reported in seconds and are the average of
five time trials. Variance is negligible.

event time
IP + tunnel + sc7816 0.00
in-the-card 1.83
card communication 0.21
Total 2.04

Execution time in the smartcard dominates
the other parts with a ratio of 9:1. Crypto-
graphic operations, such as modular exponen-
tiation by an RSA method, DES, and random
number generation, are the main reasons that
it takes so much time in the smartcard. Signif-
icant improvement in performance of our sys-
tem is impossible without a faster smartcard
or a protocol that is less computationally de-
manding.

Card communication time can be reduced
with the T=1 protocol instead of T=0. With
T=0, a get-response APDU is necessary to
obtain data returned from a smartcard in ad-
dition to a service request APDU. With T=1,
the smartcard returns data immediately after
a request is made, eliminating the overhead of
the get-response APDU. The Cyberflex Ac-
cess smartcards we use do not support T=1.

a simple and well-known protocol. The EKE
protocol, described in Figure 5, is implemented
with one pair of messages and optional verifica-
tion. Like our SPEKE implementation, we ini-
tiate EKE with a connection request, which al-
lows the smartcard to overlap its random num-
ber generation with the host’s key pair gener-
ation and PIN input. The first message, EKE1,
requests connection. The smartcard starts gen-
erating random numbers after receiving it. The
second message, EKE2, implements steps 1 and
2.

A chronological event list is shown below.
EKE takes 4.47 seconds to complete connec-
tion establishment, compared to 3.56 seconds
for SPEKE.

time events

0.00 EKE connect start

0.01 Host send EKE1 (connect request)
1.43 Host send EKE2 (Eg(P))

4.45 Host recv EKE2 (Eg(Ep(K))
4.47 EKE connect ok

Time taken for each message pair is as fol-
lows.

request type time

EKE1 (— connect request, < NULL) 0.83
EKE2 (= Es(P), + Es(Ep(K))) 2.95

Although EKE is simpler than SPEKE, the
time required to generate a key pair on the host

10

Itoi, Fukuzawa, and Honeyman

(approximately 1.5 sec) hurts performance. Moore’s freely available on the CITI smartcard web page.

law influences key generation time, but this is
moderated by the fact that faster computers
demand longer keys, which take longer to gen-
erate. On the whole, though, we expect key
generation time to improve with new genera-
tions of microprocessors.

5 Discussion

In this section, we summarize the advantages of
using Internet-attached smartcards and discuss
security considerations.

5.1 Summary

The following four aspects highlight the value
of this work.

Useful and necessary. Last year, we imple-
mented and deployed our sc7816 version of the
smartcard-integrated Kerberos to staff at CITI.
CITTI staff frequently use a lot of different work-
stations. It quickly became clear that accessing
a smartcard remotely would extend the benefit
of smartcard-enabled Kerberos to all our com-
puters while saving us from having to install a
reader on each of them.

The first application of smartcard IP for
personal usage. We find smartcards very ef-
fective when used as personal security devices
connected to the Internet. Our work is the first

implementation of such a system (that we know
of).

Standard API. Our protocols are built on
UDP and IP, universally accepted communica-
tion standards. We hope to positively influence
today’s smartcard API woe: many smartcard
APIs are proposed, but none has established
dominance, forcing developers to learn API af-
ter APL.

Development framework. Our system en-
ables developers to implement IP-based smart-
card applications easily. Our source code is

5.2 Security considerations

In this section, we consider two potential vul-
nerabilities that could compromise the security
of Internet smartcard: host compromise and
online attack. Regarding the former, entering a
PIN or pass phrase on a workstation is always
fraught with vulnerabilities should the work-
station be compromised. Most workstations do
not provide a “trusted path” from the keyboard
to a secure application.

As for the latter, Jablon suggests a number
of methods that can be used to prevent infor-
mation leakage in SPEKE (and EKE) [13]; al-
though we have not implemented all of these,
we would find it prudent to do so before fully
deploying secure Internet smartcards.

Following Jablon’s suggestions, we feel con-
fident that SPEKE can effectively blunt off-line
guessing attacks on the PIN. However, on-line
attack remains a potent threat. An on-line at-
tack would proceed as follows. Each candi-
date PIN can be used by an adversary to es-
tablish a secure channel. Subsequent use of
the channel either reveals a cleartext Kerberos
TGT (or properly signed SSH nonce) or ran-
dom garbage. Eventually, the adversary will
try the correct PIN and defeat the PIN-based
security of the system.

In our system, we use four-digit PINs. If
we assume that a session can be completed in
five seconds, then the entire space of potential
PINs can be tested by on on-line adversary in
50,000 seconds, less than a day if the card is
kept online.

To blunt this sort of attack, we suggest a
counter on the card that keeps track of failed
attempts to complete a Kerberos or SSH ses-
sion. However, this presents an obvious denial-
of-service attack, so we are considering adding
an administrative interface that uses a strong
key to allow the counter to be reset remotely.

Secure Internet Smartcards

Alternatively, the PIN space could be ex-
panded; a seven-digit PIN would require over
a year of continuous testing to search the en-
tire space. The S/KEY one-time password sys-
tem [10, 11] represents random keys by select-
ing short phrases made up of taken from a 2,048
word dictionary, e.g., “WAIT POD LIMA.” Each
word contributes 11 bits to the size of the search
space; a three-word phrase would require cen-
turies to search the entire space.

6 Conclusion

We designed and implemented an Internet-standards

compliant middleware infrastructure that pro-
vides secure access to remote smartcards, and
built two demonstration applications on it. The
performance of the system reflects the perfor-
mance realities of today’s smartcards. Yet, we
find the infrastructure useful, and anticipate
that it will enable many new types of smart-
card applications.

7 Acknowledgment

This work extends Jim Rees’ pioneering imple-
mentation of Internet protocols on a smartcard.
We thank Dug Song, Niels Provos, Wolfgang
Ley, Gasper Carson, and Angelos Keromytis
for valuable discussions. David Jablon kindly
allowed us to use the SPEKE protocol.

This work was partially supported by a re-
search grant from Schlumberger, Inc.

References

[1] Bastiaan Bakker. Mutual authentication
with smart cards. In USENIX Workshop
on Smartcard Technology, Chicago, May
1999.

[2] Steven M. Bellovin and Michael Mer-
ritt. Encrypted key exchange: Password-
based protocols secure against dictionary

11

attacks. In IEEE Computer Society Sym-
posium on Research in Security and Pri-
vacy, pages 72-84, Oakland, May 1992.

[3] David Corcoran. MUSCLE: Movement for
the use of smart cards in a Linux environ-
ment. www.linuxnet.com.

[4] Dorothy Denning. Cryptography and Data
Security. Addison-Wesley, 1983.

[5] W. Diffie and M. E. Hellman. New di-
rections in cryptography. In IEEE Trans.
Inform. Theory, volume IT-22(6), pages
644-654, Nov 1976.

[6] Europay, MasterCard, and Visa. EMV’96:
Integrated circuit card application speci-
fication for payment systems, June 1996.
www.mastercard. com/emv.

[7] GNU multiple precision arithmetic library.
WWW . SWOX . com/gmp.

[8] S. Guthery, Y. Baudoin, J. Posegga, and
J. Rees. IP and ARP over ISO 7816-3 (In-
ternet Draft), February 2000.

[9] Scott B. Guthery and Timothy M. Ju-
rgensen. Smart Card Developer’s Kit.
MacMillan Technical Publishing, Indi-
anapolis, December 1997.

[10] N. Haller. The s/key one-time password
system, RFC 1760, Feb. 1995.

[11] N. Haller and C. Metz. A one-time pass-
word system, RFC 1938, May 1996.

[12] Naomaru Itoi and Peter Honeyman.
Smartcard integration with Kerberos V5.
In USENIX Workshop on Smartcard Tech-
nology, Chicago, May 1999.

[13] David P. Jablon. Strong password-only au-
thenticated key exchange. ACM Computer
Communications Review, October 1996.

[14] Secure Electronic Transaction LLC. SET
standard technical specifications, 1999.
WWw.setco.org .

[15] Stephan Lucks. Open Key Exchange: How
to defeat dictionary attacks without en-
crypting public keys. In Security Protocol
Workshop ’97, Ecole Normale Superieure,
April 1997.

12

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Tan Miller and Mr. Tines. CTC library.

www.bifroest.demon.co.uk/ctc/.

Paul Mockapetris. Domain names - con-
cepts and facilities, STD 13, RFC 1034,
Nov. 1987.

C. Perkins. IP mobility support. RFC
2002, October 1996.

Joachim Posegga and Scott Guthery. How
to turn a GSM SIM into a web server. In
CARDIS 2000, Bristol, September 2000.

Jim Rees and Peter Honeyman. Webcard:
A Java Card web server. In CARDIS 2000,
Bristol, September 2000.

Bruce Schneier. Applied Cryptography.
John Wiley & Sons, 2nd edition, 1996.

Jennifer G. Steiner, Clifford Neuman, and
Jeffrey 1. Schiller. Kerberos: An authen-
tication service for open network systems.
In Winter 1988 USENIX Conference, Dal-
las, February 1988.

P. Vixie, S. Thomson, Y. Rekhter, and
J. Bound. Dynamic updates in the do-
main name system (DNS update). RFC
2136, April 1997.

Tatu Ylonen. Ssh — secure login connec-
tions over the internet. In 6th USENIX
Unix Security Symposium, July 1996.

Eric Young. libdes DES library. ftp://
ftp.psy.uq.oz.au/pub/Crypto/DES.

Philip R. Zimmermann. The Official PGP
User’s Guide. MIT Press, 1995.

Itoi, Fukuzawa, and Honeyman

