

CITI Technical Report 00-5

malloc() Performance in a Multithreaded Linux Environment

Chuck Lever, Sun-Netscape Alliance
<chuckl@netscape.com>

David Boreham, Sun-Netscape Alliance

<dboreham@netscape.com>

ABSTRACT

Network servers make special demands that other types of applications may not
make on memory allocators. We describe a simple malloc() microbenchmark suite
that tests the ability of malloc() to divide its work efficiently among multiple
threads and processors. The purpose of this suite is to determine the suitability of an
operating system’s heap allocator for use with network servers running in an SMP
environment.

May 2, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

This document was written as part of the Linux Scalability Project. The work described in this paper was supported

via grants from the Sun-Netscape Alliance, Intel, Dell, and IBM. For more information, see our home page.

If you have comments or suggestions, email <linux-scalability@citi.umich.edu>

Copyright © 2000 by the Regents of the University of Michigan, and by AOL-Netscape Inc. All rights reserved.
Trademarked material referenced in this document is copyright by its respective owner.

 - 1 -

malloc() Performance in a Multithreaded Linux Environment

Chuck Lever, Sun-Netscape Alliance
<chuckl@netscape.com>

David Boreham, Sun-Netscape Alliance

<dboreham@netscape.com>

1. Introduction

Modern network servers often employ multithreading
to leverage multi-CPU hardware and to increase I/O
concurrency. As network services scale to tens of
thousands of clients per server, they depend on the
ability of the underlying operating system and ven-
dor-provided library routines to support multithread-
ing efficiently.

The application-level memory allocator, or heap allo-
cator, is a system API that must scale well with the
number of application threads and the number of
processors in the system. Known in UNIX as mal-

loc() , the heap allocator makes use of several im-
portant system facilities, including mutex locking and
virtual memory page allocation. Analyzing the per-
formance of malloc() in a multithreaded and multi-
CPU environment can provide important information
about potential system inefficiency. Finding ways to
improve the performance of malloc() can benefit
the performance of any sophisticated multithreaded
application, such as network servers.

Network servers make special demands that other
types of applications may not make on memory allo-
cators [5]. In this report we describe a simple mal-

loc() microbenchmark suite that drives multi-
threaded loads to test the ability of malloc() to di-
vide its work efficiently among multiple threads and
processors. The purpose of this suite is to determine
the suitability of an operating system’s heap allocator
for use with network servers running in an SMP envi-
ronment. We discuss initial results of the bench-
marks, and show that malloc() performance is im-
portant to overall network server scalability.

2. Motivation for studying malloc()

Larson and Krishnan give a good general description
of network server applications and specifically, how
they interact with a system’s heap allocator [5]. Net-
work servers are generally large long-running appli-
cations that employ multithreading and asynchronous
I/O. They handle many small requests on behalf of
client applications connected via a network such as
TCP/IP, maintain some amount of state per connected
client, and are often required to maintain low latency,
high data throughput, and predictable response time.
Unlike most test applications used in traditional
memory allocator studies [8], network servers experi-
ence a potentially unbounded input set of unpredict-
able requests rather than a finite input set.

The iPlanet directory server product is typical of
many network server applications. It is a single multi-
threaded process that handles concurrent requests
from many clients connected via TCP/IP. This soft-
ware is often deployed on SMP hardware to take ad-
vantage of the potential scalability of multiple proc-
essors.

Using non-intrusive program counter sampling tools,
iPlanet developers profiled a directory server running
under several standard operating systems on four-
processor machines. A typical workload in this envi-
ronment causes classic lock contention symptoms
when more than one processor is enabled, such as:

o Decrease in application performance,

o Increase in kernel mode time, and

o Significant time spent in the thread scheduler and
in the operating system’s low level lock code

Further investigation indicated that the principle
source of contention is the heap allocator. The direc-
tory server employs the operating system’s per-
process heap, which vendors often make thread-safe

This paper will appear in the FREENIX track Proceed-
ings of the USENIX Annual Technical Conference, San
Diego, CA, June 2000.

Lever & Boreham

 - 2 -

by adding a single lock to protect heap allocation
logic.

Several alternative solutions were proposed.

1. Re-write the server to avoid making heavy use of
the heap. After picking low hanging fruit, pro-
gress became very slow and many new bugs
were introduced due to increased complexity.

2. Implement per-thread storage within the server.
This technique had been used with success in
other iPlanet server products. However those
products had been designed from scratch with
per-thread storage. It would be very costly to re-
write a large existing application to use this
technique.

3. Replace the operating system’s heap allocator
with an implementation that has more reasonable
behavior in a multithreaded environment. This
allows the server’s code base to remain un-
changed, offering considerable savings in time
and stability compared with other options.

The directory server development team prototyped
and tested option 3. The performance improvement
exceeded a factor of six on four-processor hardware.
Subsequently a commercially developed heap alloca-
tor with enhancements to eliminate lock contention
was integrated into the final version of the product.

To further this effort we have created a set of simple,
portable benchmark programs to assess the scalability
of an operating system’s heap allocator as it interacts
with low-level operating system facilities. We focus
on simple benchmarks that treat each allocator as a
black box, rather than use more complex trace-driven
allocator simulations. Our tests are not meant to be
scientific measurements of allocator performance, but
rather to provide only an indication of relative accep-
tibility. In our experience, simple benchmarks can
uncover basic architectural limitations that make an
allocator inappropriate for use with network server
applications. Furthermore, simple benchmarks are
generally more portable.

Traditional analysis of heap allocators has focused on
efficient use of space and minimal CPU overhead [7].
Our study instead tests three areas of heap allocator
behavior related to good performance and scalability
of multithreaded network servers on multiprocessor
hardware:

1. Multithread scalability

As we add physical processors and threads, heap con-
tention has direct impact on network server scalabil-
ity. Our first benchmark starts several threads that
request and free memory from the heap allocator. On

multiprocessor hardware, an ideal allocator would
show linear speed-up for as many threads as there are
processors in the system.

It is well known that synchonization primitives add
significant overhead to lightweight algorithms such
as heap allocators. Berger and Blumofe claim that a
single lock added to the allocator can slow it down by
as much as 50% on modern hardware [1].

2. Unbounded memory consumption

Allocating memory in one thread and freeing the
same object in a different thread can cause some heap
allocators to abandon areas of memory. We’d like to
measure how much normal allocator operation frag-
ments the heap over time. This test specifically tar-
gets memory fragmentation caused by the allocator
running in a multithreaded environment, rather than
by pathological application behavior.

Note that this is not a traditional way to analyze mal-

loc() ’s heap fragmentation. Many implementers
have focused on space efficiency; i.e. the ability of an
allocator to provide the greatest number of allocated
objects for a given amount of virtual address space.
In fact, for network servers, it is acceptable to allow
some space or time inefficiency in trade for other
benefits, such as reduced heap fragmentation over
time. This means a multithreaded network server can
run for longer periods without exhausting its memory
space due to orphaned memory.

3. Cache-conscious data placement

Grunwald has shown the performance advantages of
a cache-friendly allocator on modern SMP hardware
[3]. In other words, the heap allocator can help re-
duce the effects of false cache line sharing and im-
prove effective memory bandwidth by assigning ob-
ject addresses with the specific characteristics of the
CPU caches in mind. This is relevant to single proc-
essor hardware as well as SMP servers because mod-
ern CPUs rely more than ever on a memory hierarchy
to bridge the gap between processor and memory
speeds.

Careful placement of heap-allocated objects can also
result in a lower application page fault rate. While the
cost of cache misses has increased significantly as
processor speeds outpace memory speeds, the impact
of page faults on application performance has be-
come even worse for similar reasons.

One of the most effective ways to reduce an applica-
tion’s page fault rate is to use a space-efficient heap
allocator. However space-efficiency may not provide
the highest cache-friendliness [4]. Another effective
way to reduce page faults is to add more memory to
the system. It is often more difficult to expand the

 Multithreaded malloc()

 - 3 -

size of CPU caches. Also, microprocessor cache de-
signs are generally made less efficient (worse cache
hit rate) by size and cost requirements. Cache-
conscious libraries and application code offer one
way to maximize the benefits of the CPU caches.

A heap allocator can employ two mechanisms to in-
crease the effectiveness of the CPU caches and re-
duce false sharing that can cause wasted memory
bandwidth on SMP hardware. First, a heap object
shared among threads should never share a cache line
with another heap object. Even small objects should
reside in their own cache line, if practical. Wilson,
and Johnstone et al., show that most modern alloca-
tors cause little real fragmentation beyond that caused
by aligning objects to large address boundaries, so
larger alignments may be a practical approach to re-
ducing false sharing among CPU caches [7, 4].

Second, the allocator should take as much advantage
of temporal locality as possible. Gunwald postulates
that objects allocated at the same time tend to be used
and then freed together [3]. We expect this behavior
to be especially relevant for thread memory alloca-
tion.

3. A look at glibc’s malloc()

The study described in this paper was initiated as
iPlanet developers were in the process of porting the
iPlanet directory and messaging servers to Linux.
Given their experience with heap allocators in other
operating systems, they wanted to know how Linux’s
allocator compared to others. In this section we ex-
amine the Linux application-level heap allocator in
detail.

Modern distributions of Linux use glibc version 2.0
and 2.1 as their C library. Glibc’s implementors have
adopted Gloger’s ptmalloc as the glibc implementa-
tion of malloc() [2]. Ptmalloc has many desirable
properties, including multiple heaps to reduce conten-
tion among threads sharing a single C library invoca-
tion.

Ptmalloc, based on Doug Lea’s original implementa-
tion of malloc() [6], had several goals, including
improved portability, space and time utilization, and
added tunable parameters to control allocation behav-
ior. Gloger’s update to Lea’s original retains these
desirable behaviors, adds good multithreading behav-
ior, and features several nice debugging extensions.
The C library is built on most Linux distributions
with debugging extensions and tunability disabled, so
it is necessary to rebuild the C library or pre-load a
separate version of malloc() in order to take advan-
tage of these features. Alternatively, an application

can invoke mallopt(3) to enable some of these
features.

Ptmalloc maintains a linked list of subheaps. To re-
duce lock contention, ptmalloc searchs for the first
unlocked subheap and grabs memory from it to fulfill
a malloc() request. If ptmalloc doesn’t find an
unlocked heap, it creates a new one. This is a simple
way to grow the number of subheaps as appropriate
without adding complicated schemes for hashing on
thread or processor ID, or maintaining workload sta-
tistics. However, there is no facility to shrink the sub-
heap list and nothing stops the heap list from growing
without bound. There are some (not infrequent)
pathological cases where a producer thread allocates
objects so often that it causes freeing threads to re-
lease objects into other subheaps, resulting in un-
bounded heap growth.

Ptmalloc makes use of both mmap() and sbrk()
when allocating heap arenas. Malloc() uses sbrk()
for allocation requests smaller than 32 pages, and
mmap() for allocation requests larger than 32 pages.
In general these system calls are essentially the same
under the covers. Both use anonymous maps to pro-
vide large pageable areas of virtual memory to proc-
esses. Sbrk() can allocate only a fraction of the full
virtual address space, however: sbrk() is not smart
enough to allocate around pre-existing mappings,
such as system libraries, that may appear in the mid-
dle of the address space. Later versions (post 2.1.3)
of glibc have special logic to retry an arena allocation
with mmap() if sbrk() fails. Kernel functions that
use sbrk() , such as dynamic library loading, can
also stop working if the application fills up its virtual
address space.

Possible ways to help performance in this area in-
clude optimizing the allocation of anonymous maps
and reducing and amortizing the overhead of these
system calls by having malloc() allocate subheaps
in larger chunks. We have already provided a version
of sbrk() for the Linux kernel that removes acquisi-
tion of the global kernel lock in most paths (see
mm/mmap.c in Linux kernel versions 2.3.5 through
2.3.7). This allows sbrk() to outperform mmap() of
anonymous pages in the general case. In addition,
making sbrk() work more flexibly when a process’s
virtual address space becomes fragmented improves
malloc() performance for applications like network
servers and large databases that allocate large quanti-
ties of small objects. Finally, improving the mecha-
nism by which the kernel memory manager locates
free areas in a process’s virtual address space would
provide significant benefits as address spaces become
crowded with heap and text areas, and maps.

Lever & Boreham

 - 4 -

4. Benchmark description

There are three microbenchmarks in this suite., each
exploring a different set of heap allocator characteris-
tics.

o Benchmark 1 examines the heap allocator’s abil-
ity to use multiple threads and processors effi-
ciently.

o Benchmark 2 focuses on the heap allocator’s
ability to prevent orphaned objects and fragmen-
tation due to multiple heaps.

o Benchmark 3 tests the heap allocator’s ability to
reduce false cache line sharing (cache ping-
ponging) on SMP hardware.

All benchmark programs are available on the project
website.

4.1. Benchmark 1

We created a simple multithreaded program that in-
vokes malloc() and free() in a loop, and times
the results. To measure the effects of multithreading
on heap accesses, we compare the results of running
this program on a single process with the results of
two processes running this program on a dual proces-
sor, and one process running this test in two threads
on a dual processor. This tells us how well malloc()
scales with multiple threads accessing the same li-
brary and heaps.

We expect that, if a malloc() implementation is
efficient, the two thread run will work as hard as the
two process run. If it’s not efficient, the two process
run may perform well, but the two thread run will
perform badly. Typically we’ve found that in a poorly
performing implementation, a high context switch
count as a result of contention for mutexes protecting
the heap and other shared resources wastes a substan-
tial amount of kernel time.

We are also interested in the behavior of malloc()
and the system on which it’s running as we increase
the number of threads past the number of physical
CPUs present in the system. Many researchers con-
jecture that the most efficient way to run heavily
loaded servers is to keep the ratio of busy threads to
physical CPUs as close to 1:1 as possible. We’d like
to know the penalty as the ratio increases.

For each test, the benchmark makes 10 million bal-
anced malloc() and free() requests, for the fol-
lowing reasons:

1. Increasing the sample size increases the statisti-
cal significance of the average results.

2. Running the test over a longer time allows
elapsed time measurements with greater preci-
sion because short timings are hard to measure
precisely.

3. Start-up costs (e.g. library initialization) are am-
ortized over a larger number of requests, and
thus disappear into the noise.

4.2. Benchmark 2

While many multithreaded applications use and free
heap-allocated objects in the same thread, network
servers sometimes free heap-allocated memory in a
different thread than it was allocated. Larson and
Krishnan have simulated this behavior with a bench-
mark that we use here in a simplified form [5]. The
original benchmark uses a uniform random distribu-
tion of request sizes, but we use a single request size.
This simplifies the benchmark logic and the interpre-
tation of the results [9]. Also server applications tend
to use only a few request sizes [4]. Larson’s goal was
to create multiple stresses on allocators, but we sim-
ply want to force the allocator to leak memory.

Our single thread benchmark starts by allocating a
fixed number of objects from the heap, saving their
addresses in an array. The array is passed to a freshly
created thread, whose job is to replace a random sub-
set of the originally allocated objects one at a time,
create a new thread, then pass the array to it and exit.
Each new thread is referred to as a “round.” After
each run completes we record the number of minor
page faults, which is proportional to the number of
pages required by the allocator during the benchmark
run. Linux records a minor page fault for each page
allocated with sbrk() .

The multithread benchmark is much the same, except
there are several threads concurrently replacing ob-
jects and creating new threads. In this way, threads
obtain storage allocated in another thread, and must
operate on this storage while the heap is under con-
tention; these are the two conditions necessary to
cause heap leakage. We observe this indirectly with
the “minor page fault” statistic returned by the time
command.

Notice that each thread replaces a single object at a
time. This fixes the total amount of heap in use dur-
ing a benchmark run between mn and m(n-1) ob-
jects, where m is the number of threads and n is the
fixed number of pre-allocated objects. Now it is clear
why we use a fixed instead of a randomly distributed
object size. Because the benchmark fixes the total
amount of heap storage in use at any given time, a
perfect allocator should produce the same number of
minor page faults for each run. Real allocators, how-

 Multithreaded malloc()

 - 5 -

ever, show a wide variation in their final heap size
because of heap leakage.

4.3. Benchmark 3

This benchmark tests how well the heap allocator
places data (i.e., chooses addresses for data objects)
with regard to CPU cache efficiency on multiproces-
sor machines. If heap objects smaller than a cache
line are placed in the same cache line, or if two ob-
jects overlap in a single cache line, the cache line will
“ping-pong” between processor caches if the objects
are modified by concurrent threads running on differ-
ent processors.

Cache behavior is difficult to measure. Other studies
in this area often use trace-driven simulations and
synthetic allocators to discover cache behavior [3].
This is because applications can use heap objects in a
variety of ways, blurring the impact and causes of
cache misses and page faults.

Our goal is to create a simple, portable benchmark
that indicates whether cache ping-ponging may result
from heap allocated objects shared between multiple
threads. To test for false sharing, we allocate n k-
sized objects, where n is a number less than or equal
to the number of physical processors in the system,
and k is a number close to the cache line size of the
system’s CPUs. We pass one allocated object to each
of n threads. Each thread then writes into its object a
fixed number of times. The thread writes at the front
and the back of the object, in case the object overlaps
cache lines. We then wait for all threads to finish,
recording the elapsed time for all threads to complete.
We run this test for increasing object sizes.

Note that this basic alignment test does not expose
slow-downs due to cache ping-ponging of variables
internal to malloc() , such as free list data structures
or boundary tags.

5. Specific tests and results

In this section we describe our benchmark measure-
ments, and discuss the results of each test.

5.1. Benchmark 1 results and discussion

This basic test compares the performance of two
threads sharing the same C library with the perform-
ance of two threads using their own separate in-
stances of the C library. As discussed above, we hope
to find out if sharing a C library (and thus “sharing”
the heap) scales as well as using separate instances of
the C library. We find that the shared test performs
almost as well as the independent test, losing only
about 10% of elapsed time. We therefore expect mal-

loc() to scale well as the number of threads sharing
the same C library increases.

The benchmark host for the following tests is a dual
processor 200MHZ Pentium Pro with 128Mb of RAM
and an Intel i440FX mainboard. The operating sys-
tem is Red Hat’s 5.1 Linux, which uses glibc 2.0.61.
We replaced the 5.1 distribution’s kernel with kernel
version 2.2.0-pre4. Gettimeofday() ’s resolution on
this hardware is 2-3 microseconds. During the tests,
the machine was at run level 5, but was otherwise
quiescent.

Our first test simply runs the benchmark five times in
a single thread to show heap performance when it is
not contended. On our hardware, ten million alloca-
tion and release requests for 512 bytes takes an aver-
age of 23.280357 seconds, with a standard deviation
of 0.005543.

The next test compares the run times of two concur-
rent threads that share a heap with the run times of
two concurrent processes that each has their own
heap. Ideally both sets of runs should be the same on
a dual processor machine. Each thread or process
makes 10 million allocation and free requests for 512
bytes each. The averages reported in Table 1 are over
three test runs.

During this test, top showed that both threads were
using between 98% and 99.9% of both CPUs. System
(kernel) time was between 0.7% and 1.1% total.

We now examine the behavior of malloc() as we
increase the number of working threads past the num-
ber of physical CPUs in the system. In this series of
tests, each thread makes 10 million allocate/free
requests for an 8192 byte object. Each reported aver-
age is taken over five benchmark runs.

1 Note that glibc 2.0 and 2.1 use nearly identical versions of
malloc() .

 thread 1, seconds thread 2, seconds
Avg 26.040385,

s=0.013097
26.063408,
s=0.006530

 process 1, seconds process 2, seconds
Avg 23.309635,

s=0.014586
23.314431,
s=0.014267

TABLE 1. Average elapsed time for single heap per proc-
ess versus multiple heaps per process. The two-threaded
single heap test runs almost as fast as the two-process two-
heap test, indicating acceptable heap contention. “s” is the
standard deviation.

Lever & Boreham

 - 6 -

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

el
ap

se
d

se
co

nd
s

concurrent threads

FIGURE 1. Elapsed run-time versus increasing thread
count. Run-time increases with the expected slope as
thread count increases, demonstrating acceptable heap con-
tention on this hardware. Error bars indicate standard de-
viation.

Figure 1 shows that average elapsed time increases
linearly with the number of threads at a constant
slope of m/n, where n is the number of processors (n
= 2 in our case) and m is the number of seconds for a
single thread run (m = 23 seconds in our case).

Lastly we measure the linearity of the relationship we
discovered in the last tests over a much greater num-
ber of threads. This tells us how the library scales
with increasing thread count. This table contains av-
erage elapsed time measurements (in seconds) for
each thread making 10 million requests of 4100 bytes
each.

0

100

200

300

400

500

600

700

800

0 8 16 24 32 40 48 56 64

el
ap

se
d

se
co

nd
s

concurrent threads

FIGURE 2. Elapsed run-time with larger thread count.
On dual processor hardware, increasing thread counts have
little effect on heap contention.

Figure 2 illustrates that the increase in elapsed time is
fairly linear with increasing thread count, for counts
much larger than the number of configured physical
CPUs on the system.

Solaris tests

We ran the same series of tests on Solaris 2.6 (patch
level 105181-16) running on a two CPU 400Mhz Sun
Ultra AX-MP with 2G of RAM. The machine was
otherwise quiescent during these runs.

Single thread timing

Single thread run time for this test averages
6.0535318 seconds, with a standard deviation of
0.0328919.

Two-thread v. Two-process

Each thread or process makes 10 million requests of
512 bytes each. Table 2 shows the results of two
threads running concurrently accessing the same heap
and two processes running concurrently on two inde-
pendent heaps. As before, these averages were ob-
tained over three benchmark runs.

Here we observe massive heap contention. The two-
thread run is almost an order of magnitude worse
than the two-process run. While the Solaris heap al-
locator is the fastest single thread allocator (6 second
runs on 400MHZ UltraSPARC II CPUs versus 10
second runs on 500MHZ Pentium III CPUs, described
below), it clearly does not scale over multiple proces-
sors.

Thread scalability

In this test, each thread makes 10 million requests of
8192 bytes. The averages are over five runs for each
thread count.

 thread 1, seconds thread 2, seconds
Avg 54.272971,

s=1.146125
54.407517,
s=0.833170

 process 1, seconds process 2, seconds
Avg 6.024991,

s=0.018403
6.053607,
s=0.054665

TABLE 2. Average elapsed time for single heap per process
versus multiple heaps per process, Solaris. The shared single
heap test is almost an order of magnitude worse than the test
using separate heaps.

 Multithreaded malloc()

 - 7 -

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

el
ap

se
d

se
co

nd
s

concurrent threads

FIGURE 3. Elapsed run time versus increasing thread
count, Solaris. The slope of this graph far exceeds the
expected slope of 6 seconds divided by 2 processors. Lock
contention is clearly a limiting factor when using a UP
allocator on SMP systems.

Running five threads concurrently on dual processor
Sun hardware appears to be twenty times more ex-
pensive than running a single thread.

Adding more CPUs

In this section, we present results from the same tests
run on a machine with four CPUs running Linux. The
hardware used in these tests is an Intel SC450NX
with 512Mb of RAM and four 500MHZ Xeon Pen-
tium III CPUs with 512Kb of L2 cache each. We
loaded this machine with the Red Hat 6.1 distribu-
tion, and upgraded it’s kernel to 2.2.13. It is other-
wise quiescent during these tests.

Single thread timing

Single thread elapsed run time for this test averages
10.393376 seconds, with a standard deviation of
0.001243.

Two-thread v. Two-process

As before, this test compares the elapsed time of two
threads sharing a heap with the elapsed time of two
processes with independent heaps.

We observe in Table 3 that there is some added ex-
pense to using multiple threads instead of multiple
processes, although it is about 20% on four processor
hardware. While this could be improved, it is not as
bad as an order of magnitude slowdown.

Thread scalability

Each thread makes 10 million requests of 8192 bytes.
Each test is run five times.

0

5

10

15

20

25

30

0 1 2 3 4 5 6

el
ap

se
d

se
co

nd
s

concurrent threads

FIGURE 4. Elapsed run time versus increasing thread
count, 4-way Linux. Scalability on 4 processor hardware is
very good.

Run Time in seconds
1 12.587744
2 12.587753
3 14.862689
4 12.578893
5 12.577891
6 14.844941
7 12.579065
8 12.578305
9 14.841121
10 12.576630
11 12.577823
12 14.836253
13 12.584923
14 12.584535
15 14.856683

TABLE 4. Variance in elapsed run time, 4-way Linux. Note
that most runs have a 12.6 second elapsed time. Only a few
have elapsed time of about 14.8, pushing the average elapsed
time higher. This variance is thought to be due to allocator
variables that are improperly aligned with regard to hardware
caches.

 thread 1,
seconds

thread 2,
seconds

Avg 12.393250,
s=0.000422

12.397936,
s=0.000432

 process 1,
seconds

process 2,
seconds

Avg 10.394361,
s=0.000822

10.395771,
s=0.000890

TABLE 3. Average elapsed time for single heap per
process versus multiple heaps per process, 4-way
Linux. More processors mean slightly more heap conten-
tion. Elapsed time for shared heap test is only 20% slower
than for test using separate heaps.

Lever & Boreham

 - 8 -

Notice that the average elapsed time jumps twice:
once when going from one thread to multiple threads,
and once when there are more threads than there are
physical CPUs in the system.

A closer examination of the raw data for the three-
thread run, shown in Table 4, illustrates an interesting
variance in the elapsed time results. Sometimes the
threads complete in 12.6 seconds, and sometimes
they run for about 14.8 seconds. We see similar vari-
ances in the runs with more threads. These are likely
due to what Larson refers to as cache sloshing. When
allocator variables, such as free list pointers or condi-
tion variables, are poorly placed in memory, they
cause cache lines to bounce between CPU caches. In
this test, this appears to cause sporadic 20% slow-
downs in the runs. We explore this phenomenon fur-
ther in the section describing benchmark 3.

5.2 Benchmark 2 results and discussion

For benchmark 2, our first benchmark system is a
custom-built 400MHZ AMD K6-2 with 64Mb of
RAM. Our system is loaded with the Red Hat 6.0
distribution, running kernel 2.2.14. During these
tests, it is running a normal workstation load consist-
ing of several xterms, a gvim session, and Netscape
Navigator.

We choose 40 bytes as our fixed request size. Other
studies have shown that network servers use only a
few object sizes, and they are in the neighborhood of
40 bytes [4, 5]. Our array contains 10,000 objects per
thread. We vary the number of worker thread recrea-
tions (rounds) from 1 to 8. One round means the main
thread starts worker threads that stop when they are
finished. Two rounds mean the main thread creates
worker threads, which, when they are finished, each
create a new thread, which finish and stop, and so on.

Our first test runs a single thread while increasing the
number of rounds in each run. This test demonstrates
that, when there is no heap contention, memory utili-
zation shows no variation as the memory objects are
passed among threads. It also indicates how much
memory is consumed by a single
pthread_create() so we may subtract that from
later benchmark runs.

Based on our single thread test results, we formulate
a minimum page fault count predictor as follows. A
single thread, single round run that allocates a one
block array requires 14 page faults. Allocating 10,000
blocks per thread requires 127.6 pages (this is 40,000
bytes for each array, and 400,000 bytes for the ob-
jects themselves, plus a constant for memory man-
agement). Finally, each round requires an additional
1.1 pages per thread.

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9

m
in

or
 p

ag
e

fa
ul

ts

number of rounds

single thread

FIGURE 5. Number of rounds vs. number of minor page
faults. For our single thread run, each round (creation of
another thread) requires a single minor page fault over and
above heap management needs. Thus each
pthread_create() requires one extra page in the heap.

Our lower bound page fault count predictor becomes:

mpf lower = 14 + 1.1tr + 127.6t

Where mpf lower is the lower bound minor page fault
count, t is the initial number of threads and r is the
number of test rounds.

The next test increases the number of threads from
one to three to see how multithreading changes the
behavior of the allocator. As before, the test is run
five times for each fixed round count. Average.
,minimum, and maximum minor page fault results are
reported in Figure 6.

We predict page fault count to increase by three (one
for each thread) for each additional test round. In
fact, at the beginning of the series shown in Figure 6,
the minimum page fault count for each run series
starts at 399 and increases by 3 for each additional
round, as predicted. However, large variances in the
number of minor page faults and larger minimum
page fault counts than predicted indicate that some
heap leakage occurs as round count increases.

The relative difference between the minimum and
maximum page fault count in each test ranges be-
tween 25% and 50% of the measured minimum page
fault count. As the number of test rounds increases,
this difference becomes less, suggesting that over
time, bad allocator behavior is mitigated by statistical
opportunity.

 Multithreaded malloc()

 - 9 -

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9

m
in

or
 p

ag
e

fa
ul

ts

number of rounds

average
minimum run
maximum run

FIGURE 6. Number of rounds vs. number of minor page
faults, three thread run. This run shows marked variances
resulting from heap leakage. Heap size grows faster than
we predicted based on what is consumed, per-thread, in the
first test series.

Our final uniprocessor test increases the thread count
to seven. We want to see if increasing thread count
causes larger variations or if they stay the same.

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8 9

m
in

or
 p

ag
e

fa
ul

ts

number of rounds

average
minimum run
maximum run

FIGURE 7. Number of rounds vs. number of minor page
faults, seven thread run. Inter-run heap size variations
appear to decrease with increasing thread count.

Figure 7 shows that while minimum page fault count
is always larger than the predicted lower bound, the
relative difference between minimum and maximum
page fault counts is less in the seven thread run than
in the three thread run, ranging from 9% to 18% of
the minimum page fault count. This suggests that as
workload increases (both thread concurrency and
thread recycling) statistical behavior levels out im-
balances between subheaps.

We try our seven thread run on an Intel SC450NX
with 512Mb of RAM and four 500MHZ Xeon Pen-
tium III CPUs with 512Kb of L2 cache each. We
loaded this machine with the Red Hat 6.1 distribu-
tion, and upgraded it’s kernel to 2.2.14. This test

gives an indication of how heap behavior changes
when there is real thread concurrency. We step up the
number of rounds to force behavior that might expose
itself after a server application has been running over
a long period.

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90

m
in

or
 p

ag
e

fa
ul

t c
ou

nt

number of rounds

average faults
predicted minimum faults

actual minimum faults
actual maximum faults

FIGURE 8. Number of rounds vs. number of minor page
faults, seven threads on four CPUs. The slope of the ac-
tual page fault count follows our predictor function, so the
allocator is behaving reasonably well.

Even on a four processor server, malloc() on Linux
appears to behave well. The minor page fault count
averaged over five runs increases with approximately
the same slope as our predictor function. The actual
values are offset from the predicted values by nearly
a constant. While there is some unpredictability in the
amount of heap required for each test run, the heap
doesn’t appear to grow in an unbounded manner as
the amount of heap activity increases.

5.3 Benchmark 3 results and discussion

Benchmark 3 was run on our Intel SC450NX server
containing four 500MHZ Pentium III CPUs, each
with 512K of Level 2 cache, a typical SMP server
configuration. The benchmark starts one or more
threads that attempt to write into a heap-allocated
object 100 million times. A single thread running the
benchmark on this hardware completes in 2.102 to
2.103 seconds. This result is independent of object
size because we write only a single byte at the front
and back of each object.

Figure 9 compares the elapsed time of the benchmark
against properly cache-aligned objects versus the
same benchmark with arbitrarily aligned objects. Two
threads compete with each other in this test. The test
runs on object sizes between three and 52 bytes in
order to vary the alignment of the objects with re-
spect to hardware cache lines.

Lever & Boreham

 - 10 -

0

2

4

6

8

10

0 10 20 30 40 50

el
ap

se
d

se
co

nd
s

request size, in bytes

cache-aligned
normal

FIGURE 9. Cache sharing between two threads. Cache
line sharing results in twice the amount of elapsed time per
write operation. From this test, it is clear that heap alloca-
tors that prevent cache line sharing can boost application
performance.

Here we clearly see that cache line sharing between
two CPUs can cause a slow-down of more than half
when the object is being concurrently modified. In
other words, if two objects happen to overlap in a
cache line, it can take more than twice as long for
writes into each object to complete. Figure 10 shows
the same test with the thread count increased from
two to three. While each object’s cache line is poten-
tially shared between only two CPUs at a time, there
is still a large penalty.

0

2

4

6

8

10

0 10 20 30 40 50

el
ap

se
d

se
co

nd
s

request size, in bytes

cache-aligned
normal

FIGURE 10. Cache sharing between three threads. This
test shows the impact of false cache sharing among three
processors due to improper heap object alignment.

Figure 11 depicts the same test with thread count
increased from three to four.

Four threads modifying independent cache lines on
this hardware can run almost as fast as a single
thread. As soon as cache line sharing occurs, write
performance is greatly reduced, sometimes by as
much as a factor of four.

0

2

4

6

8

10

0 10 20 30 40 50

el
ap

se
d

se
co

nd
s

request size, in bytes

cache-aligned
normal

FIGURE 11. Cache sharing between four threads. This
test shows large elapsed time variances as well as substan-
tial slowdowns in write operations.

The precise results obtained in the tests that used
normally aligned objects are not repeatable because
the addresses of objects returned by malloc() are
somewhat nondeterministic. However we observe
that some of the time objects are aligned in such a
way that false sharing occurs and application per-
formance suffers.

While it is common wisdom that cache line sharing
can affect application behavior, these tests demon-
strate conclusively that this impact can be substantial.
We note that this test artificially highlights alignment
problems. Real applications will likely not be as pro-
foundly affected by object misalignment.

6. Conclusions and Future Work

Our tests show that the malloc() implementation
used in glibc 2.0 and 2.1 handles increasing numbers
of threads effectively while adding little overhead,
even for a large number of threads. We find expected
performance curves as offered load increased. Other
studies, such as Berger and Blumofe, that have in-
creased the number of CPUs in their systems far past
four have found that glibc malloc() ’s performance
degrades for large numbers of CPUs [1]. However for
the two- and four- CPU systems commonly used in
today’s server farms, glibc’s malloc() performs
acceptably well.

Many allocators cause unbounded heap growth when
an application allocates objects in one thread and
releases them in another. Our benchmarks show that,
even under contention, glibc’s allocator becomes less
efficient, but doesn’t show pathological heap growth.

We also note potential slow-downs that can result
from poor alignment of heap objects with respect to
the Level 1 CPU cache line size. These slow-downs

 Multithreaded malloc()

 - 11 -

can be mitigated either by careful application design
or by accepting a heap allocator that aligns objects
automatically to cache line boundaries, and thereby
increases heap fragmentation. Application developers
might make use of two different allocation mecha-
nisms: one for thread-private objects that provides
tight alignment to reduce fragmentation and memory
utilization, and one for objects that may be shared
among threads that uses cache-aware alignment to
reduce false cache sharing.

In the future, we plan to run tests that include two
important areas not considered in this paper. Heap
allocator latency should show little or no change as
network servers remain up over time. We plan to cre-
ate a benchmark to measure latency changes over
server uptime. We also plan to test our assumptions
about the allocation patterns of large-scale network
servers by instrumenting heavily used servers to gen-
erate trace data.

Wilson, Zorn, and many others have spent consider-
able effort optimizing the basic algorithms for single
threaded allocation. However, a close examination of
the performance relationship between the C library’s
memory allocator and OS primitives such as
mutexes, mmap() , and sbrk() might show some
interesting trade-offs.

Finally, we plan to examine the performance and
scalability of kernel-level memory allocators with
these same criteria in mind. The kernel’s slab alloca-
tor uses a single spin lock in each slab cache to con-
trol access among multiple threads. This has the same
performance implications as using a single spin lock
at the user level.

6.1. Acknowledgements

The authors thank Emery Berger for his contribution
to our efforts, and thank our reviewers for their co-
gent comments. Special thanks go to Dr. Charles An-
tonelli, Intel Corporation, Seth Meyer, and Hans C.
Masing for equipment loans.

7. References

[1] E. Berger, R. Blumofe, “Hoard: A Fast, Scalable,
and Memory-Efficient Allocator for Shared-
Memory Multiprocessors,” The University of
Texas at Austin, Department of Computer Sci-
ences. Technical Report TR-99-22. September
1999.

[2] W. Gloger, “Dynamic memory allocator imple-
mentations in Linux system libraries,”
www.dent.med.uni-muenchen.de/
~wmglo/malloc-slides.html .

[3] D. Grunwald, B. Zorn, and R. Henderson, “Im-
proving the Cache Locality of Memory Alloca-
tion,” SIGPLAN Conference on Programming
Language Design and Implementation, June
1993.

[4] M. S. Johnstone and P. R. Wilson, “The Memory
Fragmentation Problem: Solved?” Proceedings
of the First International Symposium on Memory
Management, ACM Press, October 1998.

[5] P. A. Larson and M. Krishnan, “Memory Alloca-
tion for Long-Running Server Applications,”
Proceedings of the First International Sympo-
sium on Memory Management, ACM Press, Oc-
tober 1998.

[6] D. Lea, “A Memory Allocator,” unix/mail, De-
cember 1996. See also
g.oswego.edu/dl/html/ mal-
loc.html .

[7] P. Wilson, M. Johnstone, M. Neely and D. Boles,
“Dynamic Storage Allocation: A Survey and
Critical Review,” Proceedings of the 1995 Inter-
national Workshop on Memory Management,
Springer LNCS, 1995.

[8] B. Zorn and D. Grunwald, “Empirical measure-
ments of six allocation-intensive C programs,”
ACM SIGPLAN notices, 27(12): 71-80, 1992.

[9] B. Zorn and D. Grunwald, “Evaluating Models
of Memory Allocation,” ACM Transactions on
Modeling and Computer Simulation, 4(1): 107-
131, 1994.

