CITI Technical Report 00-3

Encrypting Virtual Memory

Niels Provos
provos@citi.umich.edu

Abstract

In modern operating systems, cryptographic file systems can protect confidential data
from unauthorized access. However, once an authorized process has accessed data from
a cryptographic file system, the data can appear as plaintext in the unprotected virtual
memory backing store, even after system shutdown. The solution described in this paper
uses swap encryption for processes in possession of confidential data. Volatile encryption
keys are chosen randomly, and remain valid only for short time periods. Invalid encryption
keys are deleted, effectively erasing all data that was encrypted with them.

April 25, 2000

Center for Information Technology Integration
University of Michigan

519 West William Street

Ann Arbor, MI 48103-4943

Encrypting Virtual Memory

Niels Provos
Center for Information Technology Integration
Unwversity of Michigan
provos@citi.umich.edu

Abstract

In modern operating systems, cryptographic file sys-
tems can protect confidential data from unauthorized
access. However, once an authorized process has ac-
cessed data from a cryptographic file system, the data
can appear as plaintext in the unprotected virtual
memory backing store, even after system shutdown.
The solution described in this paper uses swap en-
cryption for processes in possession of confidential
data. Volatile encryption keys are chosen randomly,
and remain valid only for short time periods. In-
valid encryption keys are deleted, effectively erasing
all data that was encrypted with them.

1 Introduction

Many computer systems employ cryptographic file
systems, e.g. CFS [4], TCFS [6] or encryption lay-
ers [18], to protect confidential data from prying eyes.
A user without the proper cryptographic key is un-
able to read the contents of the cryptographic file
system, nor is he able to glean any useful informa-
tion from it. However, backing store of the virtual
memory system is generally unprotected. Any data
read by a process that was originally encrypted can
be found as plaintext in swap storage, if the process
was swapped out. It is possible for passwords and
pass phrases to reside in swap long after they have
been typed in, even across reboots.

A user expects that all confidential data vanishes
with process termination, and is completely unaware
that data can remain on backing store. And even if
she were aware of it, there is next to nothing she can

do to prevent its exposure.

If the integrity of the operating system is compro-
mised and an untrusted party gains root privileges or
physical access to the machine itself, she also gains
access to the potentially sensitive data retained in
backing store.

Our solution to this problem is to encrypt pages
that need to be swapped out. These pages are de-
crypted when they are brought back into physical
memory, e.g. due to a page fault. After a process
terminates, all its pages stored on backing store are
invalid, so there is no need to be able to decrypt them;
on the contrary, nobody should be able to decrypt
them. This suggests the use of volatile random keys
that exist only for short time periods.

The remainder of this paper is organized as follows.
Section 2 provides further motivation for encrypting
the backing store and describes related work. In Sec-
tion 3 we give a brief overview of virtual memory, note
a security problem of secondary storage, and discuss
how it can be resolved with encryption. Section 4
explains how we implemented swap encryption. In
Section 5 we analyse how the paging times and sys-
tem throughput are affected. Finally, we conclude in
Section 6.

2 Related Work

Computer systems frequently process data that re-
quires protection from unauthorized users. Often it
is enough to use access control mechanisms of the
operating system to determine who may access spe-
cific data. In many cases a system also needs to be

secured against physical attacks or protected against
security compromises that allow the circumvention of
access controls. Blaze addresses data protection with
a cryptographic file system called CFS by encrypt-
ing all file system data, preventing anyone without
the proper cryptographic key from accessing its con-
tent [4]. Anderson, Needham and Shamir aim at hid-
ing the existence of data from an attacker by using
a “Steganographic File System” [1]. A cryptographic
key and the knowledge that a file exists are needed
to access a file’s contents. However, security depends
on the whole system, and an investigation of the in-
teraction with other system components is essential.

Neither paper looks carefully at its operating en-
vironment, nor do they take into consideration that
confidential data might inadvertently end up in back-
ing store. The storage of confidential data on a swap
device may defeat the purpose of encryption in CFS.
Swap data can also be used to reconstruct what files
are present in a system, thus defeating the purpose
of steganography.

Swap encryption is meant to protect confidential
data left on the backing store from intruders who
have gained physical access to the storage medium.
We observe that the same could be achieved by delet-
ing all confidential data once it is no longer refer-
enced. However, Gutmann has shown that it is diffi-
cult to delete thoroughly information from magnetic
media or random-access memory [15]. He states: “the
easiest way to solve the problem of erasing sensitive
information from magnetic media is to ensure that it
never gets to the media in the first place. Although
not practical for general data, it is often worthwhile
to take steps to keep particularly important informa-
tion such as encryption keys from ever being written
to disk.”

Schneier and Kelsey describe a secure log system
that keeps the contents of the log files confidential
even if the system has been compromised [23]. While
swap encryption is quite different from secure log-
ging, the attack scenario and operating environment
is similar.

There are other systems that modify the paging
behavior of a virtual memory system. Notably, Fred
Douglis’ compression cache, which compresses mem-
ory pages to avoid costly disk accesses [10].

3 Virtual Memory System

One purpose of virtual memory is to increase the size
of the address space visible to processes by caching
frequently-accessed subsets of the address space in
physical memory [2]. Data that does not fit in phys-
ical memory is saved on secondary storage known as
the backing store. Paged out memory is restored to
physical memory when a process needs to access it
again [7].

In many operating systems, the virtual memory
pager daemon is responsible for reading and writ-
ing pages to and from their designated backing store.
When a page has been written, it is marked as “clean”
and can be evicted from physical memory. The next
time a process accesses the virtual memory that was
associated with this page, a page fault occurs.

If the page is still resident in physical memory, it is
marked as “recently used,” and additionally “dirty”
if the page fault is caused by a write access. Other-
wise, because the page is no longer resident in phys-
ical memory, the pager allocates a page of physical
memory and retrieves the data from backing store.

3.1 Secondary Storage

Compared to RAM speeds, secondary storage is usu-
ally made up from slow media, e.g. raw partitions
on disk drives. Unlike primary memory, secondary
storage is nonvolatile, and the data stored on it is
preserved after a system shutdown. Depending on
usage patterns, a swap partition can retain data for
many months or even years.

Confidential data in a process’ address space might
be saved on secondary storage and survive there be-
yond the expectations of a user. She assumes that
all confidential data is deleted with the termination
of the process. However, the data found by looking
at the content of several swap partitions of machines
at the Center of Information Technology Integration
included: login passwords!, PGP pass phrases, email
messages, cryptographic keys from ssh-agent, shell
command histories, URLs, etc.

IThe author was amazed to find not only his current pass-
word, but also older ones that had not been used for months.

To avoid this, we developed a system that makes
data on the backing store impossible for an attacker
to read if it was written a certain time prior to the
operating system’s compromise.

One approach is to avoid swapping completely by
not using secondary storage at all. But this is not
a general solution, and there are many applications
and environments that require a virtual address space
bigger than the physical memory present in the sys-
tem.

An application can prevent memory from being
swapped out by using the “mlock()” system call to
lock the physical pages associated with a virtual ad-
dress range into memory [15]. There are several dis-
advantages with this approach. It requires applica-
tions to be rewritten to use “mlock()”, which might
not be possible for legacy applications or difficult
if it requires a complicated analysis of which parts
of the memory contain confidential data. In addi-
tion, “mlock()” reduces the opportunity of the vir-
tual memory system to evict stale pages from physical
memory, which can have a severe impact on system
performance.

In general, it is not desirable to prevent the system
from swapping memory to the disk. Instead, encryp-
tion can be used to protect confidential data when it
is written to secondary storage by the pager. A user
program could install its own encrypting pager [2].
This would lead to greater complexity, require mod-
ification of applications and poses difficult decisions
about which cryptosystem to use. If a cryptographic
file system like CFS [4] were available, the virtual
memory pager could be configured to swap to a file
that resided on an encrypted file system.

However, in contrast to common use of encryp-
tion [19], we require different characteristics for our
cryptographic system:

e When a page on backing store is no longer refer-
enced by its owner, the decryption key for that
page should be irretrievably lost after a suitable
time period (tg) has passed.

e Only the virtual memory pager should be able
to decrypt data read from the backing store.

Clearly, the best protection is achieved with tg = 0.

The decryption key, and indirectly the page’s con-
tent, is irretrievably removed immediately when the
page is no longer referenced. This behavior meets the
user’s expectation that confidential data in a process’
address space is deleted with the termination of the
process.

However, this is difficult to achieve, and we have to
trade off security against performance. Often, a tg >
0 is still acceptable. In the initial implementation, we
only guarantee tg < system uptime, but attempt to
minimize the average tg.

This implies the use of volatile encryption keys,
valid maximally for the duration of the system’s up-
time. Such keys are similar to ephemeral keys used
to achieve perfect forward secrecy [9]. A volatile key
is completely unrelated to all other keys, knowledge
of it does not allow the decryption of old data on
secondary storage. Encryption keys are used only by
the virtual memory pager and can be generated on
demand when they are required, eliminating the need
for complicated key management.

On the other hand, swapping to a cryptographic
file system does not fulfill either of the two require-
ments. Key management is an integral part of an
encrypting file system [5]. Consequentially, perma-
nent nonvolatile encryption keys are present, making
it possible to read the data on the swap storage after
the system has been shut down. Furthermore, a user
with access rights to the swap file on the encrypted
file system - usually the root user - can directly read
its contents.

Instead, we employ encryption at the pager level.
Pages that are swapped out are (optionally) en-
crypted, and encrypted pages that are read from sec-
ondary storage are decrypted.

We compared page encryption to zeroing a page
on the backing store after it is dereferenced. To get
a better understanding of the overheard incurred by
such a measure, we recorded how long pages reside on
backing store. Figure 1 shows the result for a desktop
session.

Most pages remain in the backing store for only
a few minutes. The strong temporal correlation be-
tween swapping and zeroing could result in unneces-
sary cleaning of pages that will be overwritten imme-
diately and would cause a severe impact on system

number of pages

1400

100

1200

1000

800

600

400

200 |

HM&NM _ Dewa

0 10 20 30 40 50
time in minutes

1,

60 70

0

Figure 1: Histogram of page residency in secondary stor-
age for a desktop session and corresponding cumulative
probability.

performance due to expensive write operations. Zero-
ing pages also fails to protect against physical attacks
that prevent writes to secondary storage, e.g. an at-
tacker stealing disks or turning off the system’s power
supply.

In summary, encryption has the following advan-
tages over physically zeroing pages on the backing
store.

e Deleting data by erasing it on disk incurs extra
seek time and additional I/O for writing. On
the other hand, with encryption the content of a
page disappears when its respective encryption
key is deleted. Furthermore, encrypting a page
is fast compared to writing, and the encryption
cost is spread evenly over the whole swapping
process.

Encryption provides better protection against
physical attacks. Mere possession of the disk
drive is not sufficient to read its content. The
correct encryption key is required, but many
physical attacks disrupt the operation of the ma-
chine; the content of physical memory is lost, and
thus also the encryption key.

e Reliably deleting data from magnetic media is

difficult, a problem that does not apply when
encryption is used [15].

In the next section, we describe our implementa-
tion of swap encryption.

4 Swap Encryption

mulative probability in percent

3Swap encryption divides naturally into two separate

functions: encryption and decryption. The former re-
quires a policy decision about when to encrypt pages.
The latter requires the contents of pages read from
swap to be decrypted. The encryption policy can be
very simple, e.g. all pages that go to swap will be en-
crypted. A more sophisticated policy might encrypt
only pages of processes that have read data from a
cryptographic file system. The enumeration of such
policies is the subject of future work.

In all cases, though, the decryption is completely
independent from the decision to encrypt. For that
reason, we keep a bitmap in the swap device that
indicates for each page whether it needs to be de-
crypted after it has been read. Thus, it is possible to
change the encryption policy during the runtime of
the system without affecting the decryption of pages
that have been encrypted while a different policy was
in effect.

To achieve lower upper bounds on the window of
vulnerability (¢g), we divide the backing store into
sections of 512 KByte?, and give each section its own
key. A key consists of a 128-bit encryption key, a ref-
erence counter and an expiration time. For a backing
store of 256 MByte, keys occupy 14 KByte of mem-
ory.

A section’s 128-bit cryptographic key is created
randomly the first time it is needed, and its refer-
ence counter is set to 0. Each time a new page is
encrypted with it, the counter is incremented.

When a page is freed on the backing store, the ref-
erence counter of the respective key is decremented.
A key is immediately deleted when the reference
counter reaches 0. Thus, all data encrypted with

2The section size is configurable, and depends on how much
memory is available for cryptographic keys.

that key can no longer be decrypted and is effectively
erased.

At the moment the first page in a section becomes
unreferenced, its encryption key is set to expire after
a time period tg. After tg has been reached, all pages
that reference it have to be re-encrypted with a new
key. The number of pages that need to be processed
is bounded by the section size, so that the additional
encryption overhead is configurable.

The framework for expiration exists, but we have
yet to implement re-encryption. However, once this
has been done, we can make stricter guarantees for
the time that pages remain readable on the backing
store.

Figure 2 describes the paging process in several
steps, and shows where encryption and decryption
take place:

1. A user process references memory.

2. If the referenced address has a valid mapping,
the data is accessed from the mapped physical

page.

3. If the referenced address has an invalid mapping,
a page fault occurs.

4. The pager reads the corresponding page from
secondary storage.

5. The page is decrypted if its entry in the bitmap
indicates that is has been encrypted.

6. Finally, the page is mapped into physical mem-
ory, and the page fault is resolved.

7. Conversely, if the page daemon decides to evict
a page from physical memory,

8. the pager encrypts the page with the encryption
key of the section that the page belongs to.

(a) If the section does not have an encryption
key, e.g. it is the first encryption, a volatile
encryption key is initialized from the ker-
nel’s entropy pool.

9. Afterwards, the page is written to secondary
storage.

7
m
A
5
decrypt [&
X
2
r/, [Lj) §
4) PageOut T enciypt |2
vl T
-
Virtual Address Space: Physical Memory
o
\\\ ‘D D
i
-
Secondary Storage

Figure 2: An overview of the swap encryption process.

There is one central difference between page en-
cryption and decryption. Pages can be decrypted in
place because immediately after they have been read
into memory, no process is allowed to access these
pages until they have been decrypted. On the other
hand, even after a page has been swapped out, a pro-
cess may access it at any time. This precludes in-
place encryption. Instead, we have to allocate pages
into which to store temporarily the encryption result,
placing additional pressure on the already memory
limited VM system.

The volatile keys are stored in unmanaged part of
the kernel memory. As a result, they are never paged
out.

4.1 Cipher Selection

To be suitable for swap encryption, a cipher needs to
fulfill at least three important criteria:

e Encryption and decryption need to be fast com-
pared to disk I/O, so that the encryption does
not become the limiting factor in the swapping
process.

e The generation of a cipher’s key schedule should

be inexpensive compared to encrypting a page,
so that changing the key schedule does not af-
fect performance. The key schedule of a cipher
is usually larger than its encryption key. To con-
serve system memory we should recompute it ev-
ery time we switch encryption keys, e.g. the en-
cryption key changes when pages are written to
different sections.

e The cipher has to support encryption and de-
cryption on a page by page basis, since page in
and page out are not sequential. This precludes
the use of a stream cipher.

Initially, we planned to employ Schneier’s Blowfish
encryption algorithm [22]. Its software implementa-
tion is very fast, and it has been in use for several
years without any apparent security flaws. Nonethe-
less, Blowfish has one critical drawback. The com-
putation of its key schedule is very expensive, and
requires more than 4 KByte of memory. For that
reason, computing the key schedule when it is needed
is too expensive, and precomputation is not possible
due to large memory requirements.

Based on our environmental constraints, the cipher
that matches our needs the best is Rijndael [8]. We
describe it in the next section.

4.2 Rijndael

Rijndael is one of the finalists in the advanced encryp-
tion standard (AES) competition. It is a variable
block and key length cipher. In contrast to many
other block ciphers, its round transformation does
not have the Feistel structure. Instead, the round
transformation is composed of distinct layers: a linear
mixing layer, a non-linear layer, and a key addition
layer. Rijndael’s design tries to achieve resistance
against all known attacks while maintaining simplic-
ity [8].

Compared to Blowfish, Rijndael is faster in all as-
pects, but less studied [11]. We decided to use Rijn-
dael with 128-bit blocks and 128-bit keys. With the
optimized C implementation by Gladman [12], the
encryption key schedule can be computed in 305 cy-
cles on a Pentium Pro; the decryption key schedule

costs 1398 cycles. A block can be encrypted in 374
cycles, and block decryption takes 352 cycles.

However, because all encryption and decryption is
done on 4 KByte units, the cost of the key sched-
ule computation is amortized. Therefore, even if we
change the key schedule every time, the decryption
cost is only 357 cycles on average, and for encryption
it is 375 cycles.

Normally, the overall performance of an encryp-
tion algorithm is influenced by word conversion to ac-
commodate little and big endian architectures. How-
ever, because encryption and decryption happen on
the same machine, the word order of the algorithm’s
output is not relevant, and we do not need to take
endianness into consideration.

We use Rijndael in cipher-block chaining (CBC)
mode. The CBC mode of operation involves the use
of a 128-bit initialization vector. Identical plaintext
blocks encrypted under the same key but different
IVs, produce different cipher blocks. With ¢g = IV,
the result of the encryption is defined as

¢i = Ex(ci—1 ® x3),

where the z; are the plaintext and c; the ciphertext
blocks. The decryption is similar

T; =Ci—1 P El_{l (Ci).

For swap encryption, the initial 128-bit IV is the
64-bit block number to which the page is written,
concatenated with its bitwise complement. This en-
sures that each page is encrypted uniquely.

Caution is indicated because changing the IV in
sequential increments for adjacent pages may result
in only small input differences to the encryption func-
tion. The attacks described in “From Differential
Cryptanalysis to Ciphertext-Only Attacks” [3] might
apply in such a situation. For that reason, we encrypt
the block number and use that for the I'V. Biryukov
and Kushilevitz also state, “Another method of TV
choice is the encryption of the datagram sequence
numbers [...], and sending [the] IV in [the] clear (ex-
plicit IV method) [...]. This method is also very vul-
nerable to our analysis, [...].” Nevertheless, in our
case the I'V is not explicit, and no IV differences can
be observed directly.

4.3 Pseudo-random Generator

To initialize a volatile encryption key we require a
source of random bits. The generation of randomness
with deterministic computers is very hard. In partic-
ular, we do not strive to create perfect randomness
characterized by the uniform distribution. Instead,
we use pseudo-random generators.

A pseudo-random generator has the goal that its
output is computationally indistinguishable from the
uniform distribution, while its execution has to be
feasible [13]. A pseudo-random generator is realized
by a stretching function g that maps strings of length
n to strings of length I(n) > n. If X is a random
variable uniformly distributed on strings of length n
than ¢g(X) appears to be uniformly distributed on
strings of length I(n) [17].

For our purpose, we use the pseudo-random num-
ber generator (PRNG) provided by the OpenBSD
kernel [20]. The PRNG is a cryptographic stream
cipher that uses a source of strong randomness® for
initialization and reseeding. This source is referred
to as the “entropy pool.”

Nonetheless, the problem on how to accumulate
strong randomness for the entropy pool remains. For-
tunately, a multi-user operating system has many ex-
ternal events from which it can derive some random-
ness. Gutmann describes a generic framework for a
randomness pool [16].

In OpenBSD, the entropy pool

pP:= {pl;p27 s 710128}

consists of 128 32-bit words. To increase the pool’s
randomness the kernel collects measurements from
various physical events: the inter-keypress timing
from terminals, the mouse interrupt timing and the
reported position of the mouse cursor, the arrival
time of network packets, and the finishing time of
disk requests.

The measured values from these sources are added
to the entropy pool by a mixing function. For each

3The term “source of strong randomness” represents a gen-
erator whose output is not really random, but depends on so
many entropy providing physical processes that an attacker
can not practically predict its output.

value, the function replaces one word in the pool as
follows:

Pi < uDPitg9 D Pits9 © Pit31 ©
Di+9 @ pitr7 © pi,

where ¢ is the current position in the pool, and u the
32-bit word that is added. Index addition is modulo
128. After a value has been added i is decremented.
To estimate the randomness in the pool, the entropy
is measured by a heuristic based on the derivatives of
differences in the input values.

A random seed is extracted from the entropy pool
as follows: First, the concatenation of pips...piss
is given as input to an MD5 hash [21]. Second, the
internal state of the MD5 hash for the previous com-
putation is added into the entropy pool. Third, the
resulting pool is fed once more into the MD5 hash.
Finally, the message digest is calculated. The output
is “folded” in half by XOR-ing its upper and lower
word. The resulting 64 bits are returned as the seed.

The stretching function is implemented by ARC4,
a cipher equivalent to RSADSI’s RC4 [24]. The ci-
pher has an internal memory size of M = n2™ + 2n,
with in our case n = 8. We use the random seeds
extracted from the entropy pool to initialize the M
bits. The output of RC4 is expected to cycle after
2M-1 jterations. However, Goli¢ showed that a cor-
relation between the second binary derivative of the
least significant bit output sequence and 1 can be
detected in significantly fewer iterations [14], which
allows the differentiation of RC'4 from a uniform dis-
tribution. We can avoid this problem by reseeding
R(C4’s internal state before the number of critical iter-
ations has been reached. In fact, the implementation
in OpenBSD reseeds the ARC4 every time enough
new entropy has been accumulated.

The kernel provides the “arc4random(3)” function
to obtain a 32-bit word from the pseudo-random
number generator.

The volatile key of a section is created by fill-
ing it with the output from “arc4random(3).” We
hope that between the time the system has been
booted and the first swap encryption sufficient ran-
domness is available in the kernel entropy pool to en-
sure good randomness in the RC4 output. Nonethe-
less, it should be noted that this construction does

not create a provably pseudo-random generator as
described in the beginning of this section.

5 Performance Evaluation

In the following, we analyse the effect of swap en-
cryption on the paging behavior. We look at page
encryption and decryption times, and assess the run-
time of applications with large working sets.

All measurements were performed on an OpenBSD
2.6 system with 128 MByte main memory and a
333 MHz Celeron processor. The swap partition
was on a 6 GByte Ultra-DMA IDE disk, IBM
model DBCA-206480 running at 4200 revolutions per
minute. The operating system can sustain an average
block write rate of 7.5 MByte/s and a block read rate
of 6.3 MByte/s. OpenBSD uses the UVM [7] virtual
memory system.

5.1 Micro Benchmark

The micro benchmark measures the time it takes
to encrypt one page. A test program allocates 200
MByte of memory, and fills the memory sequentially
with zeros. Afterwards, it reads the whole memory
from the beginning in sequential order. The process
is repeated three times.

We use kernel profiling to measure page encryption
frequency, and the cumulative time of the encryption
function. The kernel function “swap_encrypt()” is
called 155336 times with a cumulative running time
of 67.96 seconds. One 4 KByte page could be en-
crypted in 0.44 ms, resulting in an encryption band-
width of 8.9 MByte/s. The total amount of memory
encrypted is 600 MByte.

In UVM, writes to the backing store are asyn-
chronous and reads are synchronous. To determine if
I/0 is still the bottleneck of the swapping process, we
measured the runtime of the test program for differ-
ent memory sizes, with and without swap encryption.
We measure an increase in runtime of about 14%
with encryption. To measure asynchronous writes,
we modified the test program to write only to mem-
ory. The runtime increase of 26% - 36% is due to al-
location of new pages that store the encrypted pages

until they are written to disk, thus causing the sys-
tem to swap more often. Figure 3 shows a graph of
the results.

300

T T T T T

seq. read and write with encryption ------ E
seq. read and write without encryption &

seq. write with encryption

seq. write without encryption -------

250 T 8

= N
o =}
(=] =}
T T

Bk

[
B

runtime in seconds

[

1<

1=}
T

50

- T

i | |
100 120 140 160 180 200
allocated memory in MByte

Figure 3: Performance difference between swap en-
cryption and normal swapping when pages are accessed
sequentially, illustrating the difference between asyn-
chronous write and synchronous reads.

5.2 Macro Benchmark

To judge the impact of swap encryption on appli-
cation programs, we used ImageMagick to process a
960 x 1280 image with a 16-bit colorspace. The im-
age was magnified and then rotated by 24°. The run-
times for different magnification factors are shown in
Table 1.

No Encryption Encryption
Magni- | Major | Runtime | Major | Runtime
fication | Faults | (in sec) | Faults | (in sec)
2.30x | 0.4 103 49s | 0.4 103 49s
2.35x | 19 103 145s | 18 10° 147s
2.40x | 22103 169s | 22 10° 180s
2.50x | 24103 179s | 24 10° 276s

Table 1: Runtime of image processing tool for differ-
ent magnification factors.

The table compares the major faults and program

runtime for a system that does not use encryption
against a system that does. A major fault is a page
fault that requires I/O to service it, and does not take
into account the pages that have been paged out by
the paging daemon.

With increasing magnification factor, the working
set size of the program grows larger. We measure a
sharp increase of the running time with swap encryp-
tion for a magnification factor of 2.5. However, for
the other magnification factors the program runtime
is not affected that much, even though nearly half of
the program’s memory was on backing store. Thus,
we believe that the overhead caused by encryption is
tolerable.

6 Conclusion

Confidential data can remain on backing store long
after the process to which the data originally be-
longed has terminated. This is contrary to a user’s
expectations that all confidential data is deleted with
the termination of the process. An investigation of
secondary storage of machines at the Center for In-
formation Technology Integration revealed very con-
fidential information, such as the author’s PGP pass
phrase.

We investigate several alternative solutions to pre-
vent confidential data from remaining on backing
store, e.g. erasing data physically from the backing
store after pages on it become unreferenced. How-
ever, we find that encryption of data on the backing
store with volatile random keys has several advan-
tages over other approaches:

e The content of a page disappears when its re-
spective encryption key is deleted, a very fast
operation.

e Encryption provides protection against physical
attacks, e.g. an attacker stealing the disk that
contains the swap partition

Encryption enables us to make the guarantee that
unreferenced pages on the backing store become un-
readable after a suitable time period upper bounded
by system uptime has passed.

We have demonstrated that the performance of our
encryption system is acceptable, and it proves to be
a viable solution.

The software is freely available and can be obtained
by contacting the author.

7 Acknowledgments

I thank Patrick McDaniel and my advisor Peter Hon-
eyman for careful reviews and helpful comments on
the organization of this paper. I also thank Chuck
Lever for getting me interested in swap encryption,
Artur Grabowski for improving my understanding of
UVM and David Wagner for helpful feedback on ci-
pher selection.

References

[1] R. Anderson, R. Needham, and A. Shamir. The
Steganographic File System. In Proceedings of the
Information Hiding Workshop, April 1998.

[2] A. Appel and K. Li. Virtual Memory Primitives for
User Programs. In Proceedings of the 4th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, April
1991.

[3] Alex Biryukov and Eyal Kushilevitz. From Dif-
ferential Cryptanalysis to Ciphertext-Only Attacks.
In Proceedings of the Advances in Cryptology —
CRYPTO ’98, pages 72-88. Springer-Verlag, August
1998.

[4] Matt Blaze. A Cryptographic Filesystem for Unix. In
Proceedings of the First ACM Conference on Com-
puter and Communications Security, pages 9-16,
November 1993.

[6] Matt Blaze. Key Management in an Encrypting File
System. In Proceedings of the 1994 USENIX Summer
Technical Conference, pages 27-35, June 1994.

[6] G. Cattaneo and G. Persiano. Design and Imple-
mentation of a Transparent Cryptographic Filesys-
tem for Unix. Unpublished Technical Report,
July 1997. ftp://edu-gw.dia.unisa.it/pub/tcfs/
docs/tcfs.ps.gz.

[7] Charles D. Cranor and Gurudatta M. Parulkar. The
UVM Virtual Memory System. In Proceedings of the

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

1999 USENIX Annual Technical Conference, pages
117-130, June 1999.

Joaen Daemen and Vincent Rijmen. AES Proposal:
Rijndael. AES submission, June 1998. http://
www.esat.kuleuven.ac.be/"rijmen/rijndael/.

Whitfield Diffie, Paul C. van Oorschot, and
Michael J. Wiener. Authentication and authenti-
cated key exchanges. Designs, Codes and Cryptog-
raphy, 2(2):107-125, June 1992.

Fred Douglis. The Compression Cache: Using On-
Line Compression to Extend Physial Memory. In
Proceedings of 1993 Winter USENIX Conference,
pages 519-529, 1993.

Niels Ferguson, John Kelsey, Mike Stay, David Wag-
ner, and Bruce Schneier. Improved Cryptanalysis
of Rijndael. In Fast Software Encryption Workshop
2000, April 2000.

Brian Gladman. AES Algorithm Efficiency. Web-
page.
http://www.btinternet.com/~brian.gladman/
cryptography_technology/aes/index.html.

Oded Goldreich. Modern Cryptography, Probabilis-
tic Proofs and Pseudo-randomness. Springer-Verlag,
1999.

Jovan Dj. Goli¢. Linear Statistical Weakness of Al-
leged RC4 Keystream Generator. In Proceedings of
the Advances in Cryptology — Eurocrypt ’97, pages
226-238. Springer-Verlag, May 1997.

Peter Gutmann. Secure Deletion of Data from Mag-
netic and Solid-State Memory. In Proceedings of
the Sizth USENIX Security Symposium, pages 77—
89, July 1996.

Peter Gutmann. Software Generation of Practially
Strong Random Numbers. In Proceedings of the Sev-
enth USENIX Security Symposium, pages 243-255,
June 1998.

J. Hastad, R. Impagliazzo, L. Levin, and M. Luby.
Construction of Pseudorandom Generator from any
One-Way Function, 1993.

J. Heidemann and G. Popek. File-System Develop-
ment with Stackable Layers. ACM Transactions on
Computer Systems, 12(1):58-89, February 1994.
Maurice P. Herlihy and J. D. Tygar. How to Make
Replicated Data Secure. In Proceedings of the Ad-
vances in Cryptology - CRYPTO ’87, pages 379-391.
Springer-Verlag, 1988.

[20]

[21]

[22]

(23]

(24]

10

Theo de Raadt, Niklas Hallgvist, Artur Grabowski,
Angelos D. Keromytis, and Niels Provos. Cryptogra-
phy in OpenBSD: An Overview. In Proceedings of the
USENIX Annual Technical Conference, FREENIX
Track, June 1999.

R. L. Rivest. The MD5 Message Digest Algorithm.
RFC 1321, April 1992.

Bruce Schneier. Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blowfish). In Fast
Software Encryption, Cambridge Security Workshop
Proceedings, pages 191-204. Springer-Verlag, Decem-
ber 1993.

Bruce Schneier and John Kelsey. Cryptographic Sup-
port for Secure Logs on Untrusted Machines. In
Proceedings of the Seventh USENIX Security Sym-
posium, pages 53—62, January 1998.

RSA Data Security. The RC4 Encryption Algorithm,
March 1992.

