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Abstract
Network interface implementors have repeatedly at-

tempted to offload TCP processing from the host CPU.
These efforts met with little success, because they were
based on faulty premises. TCP offload per se is neither
of much overall benefit nor free from significant costs
and risks. But TCP offload in the service of very specific
goals might actually be useful. In the context of the re-
placement of storage-specific interconnect via commod-
itized network hardware, TCP offload (and more gen-
erally, offloading the transport protocol) appropriately
solves an important problem.

1 Introduction
TCP [18] has been the main transport protocol for the

Internet Protocol stack for twenty years. During this
time, there has been repeated debate over the implement-
ation costs of the TCP layer.
One central question of this debate has been whether it

is more appropriate to implement TCP in host CPU soft-
ware, or in the network interface subsystem. The latter
approach is usually called “TCP Offload” (the category
is sometimes referred to as a “TCP Offload Engine,” or
TOE), although it in fact includes all protocol layers be-
low TCP, as well. Typical reasons given for TCP offload
include the reduction of host CPU requirements for pro-
tocol stack processing and checksumming, fewer inter-
rupts to the host CPU, fewer bytes copied over the sys-
tem bus, and the potential for offloading computationally
expensive features such as encryption.
TCP offload poses some difficulties, including both

purely technical challenges (either generic to all trans-
ports or specific to TCP), and some more subtle issues of
technology deployment.
In some variants of the argument in favor of TCP of-

fload, proponents assert the need for transport-protocol
offload but recognize the difficulty of doing this for TCP,
and have proposed deploying new transport protocols
that support offloading. For example, the XTP pro-
tocol [8] was originally designed specifically for efficient
implementation in VLSI, although later revisions of the
specification [23] omit this rationale.

To this day, TCP offload has never firmly caught on
in the commercial world (except sometimes as a stopgap
to add TCP support to immature systems [16]), and has
been scorned by the academic community and Internet
purists. This paper starts by analyzing why TCP offload
has repeatedly failed.
The lack of prior success with TCP offload does not,

however, necessarily imply that this approach is categor-
ically without merit. Indeed, the analysis of past failures
points out that novel applications of TCP might benefit
from TCP offload, but for reasons not clearly anticip-
ated by early proponents. TCP offload does appear to
be appropriately suited when used in the larger context
in which storage-interconnect hardware, such as SCSI
or FiberChannel, is on the verge of being replaced by
Ethernet-based hardware and specific upper-level proto-
cols (ULPs), such as iSCSI. These protocols can exploit
“Remote Direct Memory Access” (RDMA) functionality
provided by network interface subsystems. This paper
ends by analyzing how TCP offload (and more generally,
offloading certain transport protocols) can prove useful,
not as a generic protocol implementation strategy, but as
a component in an RDMA design.
This paper is not a defense of RDMA. Rather, it ar-

gues that the choice to use RDMA more clearly justifies
offloading the transport protocol than has any previous
application.

2 Why TCP offload is a dumb idea
TCP offload has been unsuccessful in the past for two

kinds of reasons: fundamental performance issues, and
difficulties resulting from the complexities of deploying
TCP offload in practice.

2.1 Fundamental performance issues
Although TCP offload is usually justified as a perform-

ance improvement, in practice the performance benefits
are either minimized or actually negated, for many reas-
ons:

Limited processing requirements: Processing TCP
headers simply doesn' t (or shouldn' t) take many
cycles. Jacobson [11] showed how to use “header
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prediction” to process the common case for a TCP
connection in very few instructions. The overhead
of the TCP protocol per se does not justify offload-
ing. Clark et al. [9] showed more generally that
TCP should not be expensive to implement.

Moore's Law: Adding a transport protocol implement-
ation to a Network Interface Controller (NIC)
requires considerably more hardware complexity
than a simple MAC-layer-only NIC. Complex-
ity increases time-to-market, and because Moore' s
Law rapidly increases the performance of general-
purpose CPU chips, complex special-purpose NIC
chips can fall behind CPU performance. The TOE
can become the bottleneck, especially if the vendor
cannot afford to utilize the latest fab. (On the other
hand, using a general-purpose CPU as a TOE could
lead to a poor tradeoff between cost and perform-
ance [1].)
Partridge [17] pointed out that the Moore' s Law
issue could be irrelevant once each NIC chip is
fast enough to handle packets at full line rate;
further improvements in NIC performance might
not matter (except to reduce power consumption).
Sarkar et al. [21], however, showed that current
protocol-offload NIC system products are not yet
fast enough. Their results also imply that any
extra latency imposed by protocol offload in the
NIC will hurt performance for real applications.
Moore' s Law considerations may plague even “full-
line-rate” NICs until they are fast enough to avoid
adding much delay.

Complex interfaces to TOEs: O'Dell [14] has ob-
served that “the problem has always been that the
protocol for talking to the front-end processor and
gluing it onto the API was just as complex (often
more so, in fact) as the protocol being `offloaded'.”
Similarly, Partridge [16] observed that “The idea
was that you passed your data over the bus to an
NIC that did all the TCP work for you. However, it
didn' t give a performance improvement because to
a large degree, it recreated TCP over the bus. That
is, for each write, you had to add a bus header, in-
cluding context information (identifying the process
and TCP connection IDs) and then ship the packet
down to the board. On inbound, you had to pass up
the process and TCP connection info and then the
kernel had to demux the bus unit of data to the right
process (and do all that nasty memory alignment
stuff to put it into the process's buffer in the right
place).” While better approaches are now known,
in general TOE designers had trouble designing an
efficient host interface.

Suboptimal buffer management: Although a TOE can
deliver a received TCP data segment to a chosen

location in memory, this still leaves ULP protocol
headers mingled with ULP data, unless complex
features are included in the TOE interface.

Connection management: The TOE must maintain
connection state for each TCP connection, and must
coordinate this state with the host operating sys-
tem. Especially for short-lived connections, any
savings gained from less host involvement in pro-
cessing data packet is wasted by this extra connec-
tion management overhead.

Resource management: If the transport protocol
resides in the NIC, the NIC and the host OS must
coordinate responsibility for resources such as data
buffers, TCP port numbers, etc. The ownership
problem for TCP buffers is more complex than the
seemingly analogous problem for packet buffers,
because outgoing TCP buffers must be held until
acknowledged, and received buffers sometimes
must be held pending reassembly. Resource
management becomes even harder during overload,
when host OS policy decisions must be supported.
None of these problems are insuperable, but they
reduce the benefits of offloading.

Event management: Much of the cost of processing a
short TCP connection comes from the overhead of
managing application-visible events [2]. Protocol
offload does nothing to reduce the frequency of such
events, and so fails to solve one of the primary costs
of running a busy Web server (for example).

Much simpler NIC extensions can be effective:
Numerous projects have demonstrated that instead
of offloading the entire transport protocol, a NIC
can be more simply extended so as to support
extremely efficient TCP implementations. These
extensions typically eliminate the need for memory
copies, and/or offload the TCP checksum (eliminat-
ing the need for the CPU to touch the data in many
cases, and thus avoiding data cache pollution). For
example, Dalton et al. [10] described a NIC sup-
porting a single-copy host OS implementation of
TCP. Chase et al. [7] summarize several approaches
to optimizing end-system TCP performance.

These criticisms of TCP offload apply most clearly
when one starts with a well-tuned, highly scalable host
OS implementation of TCP. TCP offload might be an ex-
pedient solution to the problems caused by second-rate
host OS implementations, but this is not itself an archi-
tectural justification for TOE.

2.2 Deployment issues
Even if TCP offload were justified by its performance,

it creates significant deployment, maintenance, and man-
agement problems:

Scaling issues: Some servers must maintain huge num-
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bers of connections [2]. Modern host operating sys-
tems now generally place no limits except those
based on RAM availability. If the TOE implement-
ation has lower limits (perhaps constrained by on-
board RAM), this could limit system scalability.
Scaling concerns also apply to the IP routing table.

Bugs: Protocol implementations have bugs. Mature im-
plementations have fewer bugs, but still require
patches from time to time. Updating the firmware of
a programmable TOE could be more difficult than
updating a host OS. Clearly, non-programmable
TOEs are even worse in this respect [1].

Quality Assurance (QA): System vendors must test
complete systems prior to shipping them. Use of
TOE increases the number of complex components
to be tested, and (especially if the TOE comes from
a different supplier) increases the difficulty of loc-
ating bugs.

Finger-pointing: When a TCP-related bug appears in a
traditional system, it is not hard to decide whether
the NIC is at fault, because non-TOE NICs perform
fairly simple functions. With a system using TCP
offloading, deciding whether the bug is in the NIC
or the host could be much harder.

Subversion of NIC software: O'De ll has argued that
the programmability of TOE NICs offers a target
for malicious modifications [14]. This argument
is somewhat weakened by the reality that many (if
not most) high-speed NICs are already reprogram-
mable, but the extra capabilities of a TOE NIC
might increase the options for subversion.

System management interfaces: System administrat-
ors prefer to use a consistent set of management
interfaces (UIs and commands). Especially if the
TOE and OS come from different vendors, it might
be hard to provide a consistent, integrated manage-
ment interface. Also, TOE NICs might not provide
as much state visibility to system managers as can
be provided by host OS TCP implementations.

Concerns about NIC vendors: NIC vendors have typ-
ically been smaller than host OS vendors, with
less sophistication about overall system design and
fewer resources to apply to support and mainten-
ance. If a TOENIC vendor fails or exits the market,
customers can be left without support.

While none of these concerns are definitive arguments
against TOE, they have tended to outweigh the limited
performance benefits.

2.3 Analysis: mismatched applications
While it might appear from the preceding discussion

that TCP offload is inherently useless, a more accurate
statement would be that past attempts to employ TCP of-
fload were mismatched to the applications in question.

Traditionally, TCP has been used either for WAN net-
working applications (email, FTP, Web) or for relatively
low-bandwidth LAN applications (Telnet, X/11). Often,
as is the case with email and the Web, the TCP connec-
tion lifetimes are quite short, and the connection count at
a busy (server) system is high.
Because these are seen as the important applications

of TCP, they are often used as the rationale for TCP of-
fload. But these applications are exactly those for which
the problems of TCP offload (scalability to large num-
bers of connections, per-connection overhead, low ratio
of protocol processing cost to intrinsic network costs)
are most obvious. In other words, in most WAN ap-
plications, the end-host TCP-related costs are insignific-
ant, except for the connection-management costs that are
either unsolved or worsened by TOE.
The implication of this observation is that the sweet

spot for TCP offload is not for traditional TCP applica-
tions, but for applications that involve high bandwidth,
low-latency, long-duration connections.

3 Why TCP offload's time has come
Computers generate high data rates on three kinds of

channels (besides networks): graphics systems, storage
systems, and interprocessor interconnects. Historically,
these rates have been provided by special-purpose inter-
face hardware, which trades flexibility and price for high
bandwidth and high reliability.
For storage especially, the cost and limitations of

special-purpose connection hardware is increasingly
hard to justify, in the face of much cheaper Gbit/sec
(or faster) Ethernet hardware. Replacing fabrics such
as SCSI and Fiber Channel with switched Ethernet con-
nections between storage and hosts promises increased
configuration flexibility, more interoperability, and lower
prices.
However, replicating traditional storage-specific per-

formance using traditional network protocol stacks
would be difficult, not because of protocol processing
overheads, but because of data copy costs – especially
since host busses are now often the main bottleneck. Tra-
ditional network implementations require one or more
data copies, especially to preserve the semantics of sys-
tem calls such as read() and write(). These APIs allow
applications to choose when and how data buffers appear
in their address spaces. Even with in-kernel applications
(such as NFS), complete copy avoidance is not easy.
Several OS designs have been proposed to support tra-

ditional APIs and kernel structures while avoiding all un-
necessary copies. For example, Brustoloni [4, 5] has ex-
plored several solutions to these problems.
Nevertheless, copy-avoidance designs have not been

widely adopted, due to significant limitations. For ex-
ample, when network maximum segment size (MSS)
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values are smaller than VM page sizes, which is often the
case, page-remapping techniques are insufficient (and
page-remapping often imposes overheads of its own.)
Brustoloni also points out that “many copy avoidance
techniques for network I/O are not applicable or may
even backfire if applied to file I/O.” [4]. Other designs
that eliminate unnecessary copies, such as I/O Lite [15],
require the use of new APIs (and hence force application
changes). Dalton et al. [10] list some other difficulties
with single-copy techniques.
Remote Direct Memory Access (RDMA) offers the

possibility of sidestepping the problems with software-
based copy-avoidance schemes. The NIC hardware (or
at any rate, software resident on the NIC) implements
the RDMA protocol. The kernel or application software
registers buffer regions via the NIC driver, and obtains
protected buffer reference tokens called region IDs. The
software exchanges these region IDs with its connection
peer, via RDMA messages sent over the transport con-
nection. Special RDMA message directives (“verbs”)
enable a remote system to read or write memory regions
named by the region IDs. The receiving NIC recog-
nizes and interprets these directives, validates the region
IDs, and performs protected data transfers to or from the
named regions.1

In effect, RDMA provides the same low-overhead ac-
cess between storage and memory currently provided by
traditional DMA-based disk controllers.
(Some people have proposed factoring an RDMA pro-

tocol into two layers. A Direct Data Placement (DDP)
protocol simply allows a sender to cause the receiving
NIC to place data in the right memory locations. To this
DDP functionality, a full RDMA protocol adds a remote-
read operation: system A sends a message to system B,
causing the NIC at B to transfer data from one of B's buf-
fers to one of A' s buffers without waking up the CPU at
B. David Black [3] argues that a DDP protocol by itself
can provide sufficient copy avoidance for many applica-
tions. Most of the points I will make about RDMA also
apply to a DDP-only approach.)
An RDMA-enabled NIC (RNIC) needs its own imple-

mentation of all lower-level protocols, since to rely on
the host OS stack would defeat the purpose. Moreover,
in order for RDMA to substitute for hardware storage in-
terfaces, it must provide highly reliable data transfer, so
RDMA must be layered over a reliable transport such as
TCP or SCTP [22]. This forces the RNIC to implement
the transport layer.
Therefore, offloading the transport layer becomes

valuable not for its own sake, but rather because that
allows offloading of the RDMA layer. And offloading
the RDMA layer is valuable because, unlike traditional
TCP applications, RDMA applications are likely to use a
relatively small number of low-latency, high-bandwidth

transport connections, precisely the environment where
TCP offloading might be beneficial. Also, RDMA al-
lows the RNIC to separate ULP data from ULP con-
trol (i.e., headers) and therefore simplifies the received-
buffer placement problems of pure TCP offload.
For example, Magoutis et al. [13] show that the

RDMA-based Direct Access File System can outperform
even a zero-copy implementation of NFS, in part because
RDMA also helps to enable user-level implementation of
the file system client. Also, storage access implies the
use of large ULP messages, which amortize offloading's
increased per-packet costs while reaping the reduced per-
byte costs.
Although much of the work on RDMA has focussed

on storage systems, high-bandwidth graphics applica-
tions (e.g., streaming HDTV videos) have similar char-
acteristics. A video-on-demand connection might use
RDMA both at the server (for access to the stored video)
and at the client (for rendering the video).

4 Implications for operating systems
Because RDMA is explicitly a performance optimiza-

tion, not a source of functional benefits, it can only suc-
ceed if its design fits comfortably into many layers of a
complete system: networking, I/O, memory architecture,
operating system, and upper-level application. A misfit
with any of these layers could obviate any benefits.
In particular, an RNIC design done without any con-

sideration for the structures of real operating systems will
not deliver good performance and flexibility. Experience
from an analogous effort, to offload DES cryptography,
showed that overlooking the way that software will use
the device can eliminate much of the potential perform-
ance gain [12]. Good hardware design is certainly not
impossible, but it requires co-development with the op-
erating system support.
RDMA aspects requiring such co-development in-

clude:

Getting the semantics right: RDMA introduces many
issues related to buffer ownership, operation com-
pletion, and errors. Members of the various groups
trying to designs RDMA protocols (including the
RDMA Consortium [19] and the IETF's RDDP
Working Group [20]) have had difficulty resolving
many basic issues in these designs. These disagree-
ments might imply the lack of sufficiently mature
principles underlying the mixed use of remotely-
and locally-managed buffers.

OS-to-RDMA interfaces: These interfaces include, for
example, buffer allocation; mapping and protection
of buffers; and handling exceptions beyond what the
RNIC can deal with (such as routing and ARP in-
formation for a new peer address).

Application-to-RDMA interfaces: These interfaces
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include, for example, buffer ownership; notification
of RDMA completion events; and bidirectional
interfaces to RDMA verbs.

Network configuration and management: RNICs
will require IP addresses, subnet masks, etc.,
and will have to report statistics for use by net-
work management tools. Ideally, the operating
system should provide a “single system image”
for network management functions, even though
it includes several independent network stack
implementations.

Defenses against attacks: an RNIC acts as an exten-
sion of the operating system's protection mechan-
isms, and thus should defend against subversions of
these mechanisms. The RNIC could refuse access
to certain regions of memory known to store kernel
code or data structures, except in narrowly-defined
circumstances (e.g., bootstrapping).

Since the RNIC includes a TCP implementation, there
will be temptation to use that as a pure TOE path for non-
RDMA TCP connections, instead of the kernel' s own
stack. This temptation must be resisted, because it will
lead to over-complex RNICs, interfaces, and host OS
modifications. However, an RNIC might easily support
certain simple features that have been proposed [5] for
copy-avoidance in OS-based network stacks.

5 Difficulties
RDMA introduces several tricky problems, especially

in the area of security. Prior storage-networking designs
assumed a closed, physically secure network, but IP-
based RDMA potentially leaves a host vulnerable to the
entire world.
Offloading the transport protocol exacerbates the se-

curity problem by adding more opportunities for bugs.
Many (if not most) security holes discovered recently are
implementation bugs, not specification bugs. Even if an
RDMA protocol design can be shown to be secure, this
does not imply that all of its implementations would be
secure. Hackers actively find and exploit bugs, and an
RDMA bug could be much more severe than traditional
protocol-stack bugs, because it might allow unbounded
and unchecked access to host memory.
RDMA security therefore cannot be provided by

sprinkling some IPSec pixie dust over the protocol; it
will require attention to all layers of the system.
The use of TCP below RDMA is controversial, be-

cause it requires TCP modifications (or a thin interme-
diate layer whose implementation is entangled with the
TCP layer) in order to reliably mark RDMA message
boundaries. While SCTP is widely accepted as inher-
ently better than TCP as a transport for RDMA, some
vendors believe that TCP is adequate, and intend to
ship RDMA/TCP implementations long before offloaded

SCTP layers are mature. This paper's main point is not
that TCP offload is a good idea, but rather that transport-
protocol offload is appropriate for RNICs. TCP might
simply represent the best available choice for several
years.

6 Conclusions
TCP offload has been “a solution in search of a prob-

lem” for several decades. This paper identifies several
inherent reasons why general-purpose TCP offload has
repeatedly failed. However, as hardware trends change
the feasibility and economics of network-based storage
connections, RDMA will become a significant and ap-
propriate justification for TOEs.
RDMA's remotely-managed network buffers could be

an innovation analogous to novel memory consistency
models: an attempt to focus on necessary features for real
applications, giving up the simplicity of a narrow inter-
face for the potential of significant performance scaling.
But as in the case of relaxed consistency, we may see a
period where variants are proposed, tested, evolved, and
sometimes discarded. The principles that must be de-
veloped are squarely in the domain of operating systems.
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Notes

1Much of this paragraph was adapted, with permis-
sion, from a forthcoming book chapter by Jeff Chase [6].


