
NFS over RDMA

Brent Callaghan
(brent.callaghan@sun.com)

Network bandwidth is growing by orders of
magnitude. Yet conventional processing of NFS
traffic over gigabit networks gobbles CPU. Using
RDMA protocols, we expect NFS to make full and
efficient use of gigabit networks.

January 28, 2002
er-

d
n-
li-

r

,
as-

f

not
ro-
n
s,
a-

d-

-
,

1.0 Introduction

NAS file access protocols, like NFS, allow files to be
shared among many servers running different operating
systems. Yet this flexibility of NFS is tempered by its
requirement for TCP/IP networks, which as yet, do not
perform at the speed of SAN fibrechannel networks. Addi-
tionally, the protocol processing and data movement
required by TCP/IP make heavy demands on the client and
the server CPU.

The following sections describe a way to run file access
protocols at high speed over fast storage networks without
significant CPU overhead. You can enjoy the file sharing
advantages of NFS with the performance of a SAN.

2.0  NFS Background

The NFS protocol was originally designed as a LAN pro-
tocol for file access over 10Mb Ethernet. Since the NFS
protocol emerged in the mid-1980’s, it has been used
exclusively with, and strongly associated with TCP/IP
Networking. The first NFS products ran over UDP, but in
the last decade a growing number of implementations pro-
vide NFS over TCP connections. Work is under way
within the Internet Engineering Task Force (IETF) to
extend the NFS protocol to function well over TCP con-
nections that span the Internet: NFS version 4. Like
TCP/IP, NFS has a long history, implementations are very

robust, the serious bugs were fixed long ago and NFS p
formance has increased significantly with improvements
in host CPU and network bandwidth. Like TCP/IP, NFS
implementations are available from all major vendors an
yet it is highly interoperable due to annual testing at Co
nectathon events. It’s a safe assumption that any NFS c
ent will work with any Filer. NFS is well known as a tough
protocol that is undeterred by transient network failures o
Filer outages. Filers can be built from highly-available
clusters and clients can easily switch between read-only
replica Filers. NFS provides a robustness that cannot e
ily be matched by block-based storage on SANs.

3.0  NFS in the Server Room

Today, a common NFS storage configuration is a pool o
NFS filers that keep files for a large array of “stateless”
application servers. Because the application servers do
have any dedicated storage and are not responsible for p
viding access to any storage, the failure of an applicatio
server doesn’t block access to files. Since it keeps no file
a failed application server can be replaced easily. Applic
tion processing capacity can be increased simply by ad
ing new servers.

The filers are located within a few meters of the applica
tion servers in a controlled, machine-room environment
and are connected to the application servers via fast or
Gigabit Ethernet. The same machine rooms often host
1 of 4



Performance of Storage Networking

r

t
o-

ff-

-
.

s

nt

the
il-

ike
s a

d
ir

t
r

FibreChannel connections from application hosts or filers
to storage arrays.

4.0 Performance of Storage Networking

Typically, the FibreChannel connections move SCSI data
significantly faster than Gigabit connections move NFS
data, even though the media bandwidths are the same. Not
only do the FibreChannel connections move data faster,
but they use less host CPU than NFS running over TCP/IP.
The FibreChannel and SCSI protocols are lightweight,
short-haul protocols, easily implemented in I/O control-
lers. These controllers use Direct Memory Access (DMA)
to move aligned data directly between the Fibrechannel
network and host memory without burden to the host
CPU. Credit is due to decades of I/O engineering that have
produced architectures that offload protocol processing
and data movement from the host CPU. File data moved
via the NFS protocol has the potential to be just as fast, if
it weren’t for the movement of data through TCP/IP stacks
that make heavier use of the host CPU and create addi-
tional data copies.

NFS has the potential to use similar high-speed networks
and CPU offloading to accelerate file sharing to SAN
speeds.

5.0 Direct Memory Access

Direct Memory Access (DMA) accelerates the movement
of data between host memory and a network interface or
I/O controller. Without DMA the device driver must use
the host CPU to copy data between memory and the device
buffers. DMA allows the device to “take over” the host
memory bus and transfer the data itself, leaving the host
CPU to work on less mundane work - like transaction pro-
cessing. The device driver simply notifies the device where
the data is (or where it is to go) then “kicks off” the DMA
operation. Another benefit of DMA is that it allows a net-
work adapter to use host main memory directly rather than
depend entirely on local on-card buffering. This gives the
device a lot of flexibility in handling very large data trans-
fers in excess of its local buffering capacity.

6.0 Remote Direct Memory Access

Remote Direct Memory Access is an extension of DMA
across an interconnect from one host to another. Rathe
than transfer data between host memory and a device
buffer, RDMA moves data between memory on one hos
and memory on another host. As with DMA, the host pr
cessor(s) just “kick off” the transfer, while the details of
moving the data from memory to memory via device bu
ers and network interconnect are handled completely by
the hardware. Like DMA, RDMA is a hardware abstrac-
tion that is supported by a variety of application program
ming interfaces, hardware adapters, and network media
The most commonly implemented RDMA driver interface
is VI (Virtual Interface) though more recent development
include the Direct Access Transport API (DAT) and
RDMA support for Infiniband.

7.0 Doing RPC over RDMA

RDMA hardware gives us speedy and efficient moveme
of data from one host memory to another. If the of data
represents an RPC call or reply message, then we have
basis for high-speed RPC transport. We are already fam
iar with the use of RPC over transports like UDP or TCP
for NFS, or for memory-to-memory loopback operation
between kernel and user address spaces for protocols l
autofs. The RPC transport model already accommodate
variety of transports. It is straightforward to add RDMA as
an additional transport without any need to modify the
RPC protocol, or the application protocols that utilize it.
The “plug-in” nature of RPC transports means that it is
easy to provide a substantial acceleration for RPC-base
protocols without change to the RPC applications, or the
administration.

8.0 Use of queues and RDMA ops

The RDMA model for moving data is somewhat differen
to that of the “data stream” model of TCP connections o
the “datagram” model of UDP sockets. With these more
conventional models, data can be transmitted “in the
blind”. Streams or blocks of data can be transmitted to a
network address, but the ultimate disposition of the data
when it reaches that address is left completely up to the
receiving system. The RDMA read and write operations
2 of  4 NFS over RDMA



Additional services (NLM, ACL)

el-
ly
r-

r,
n-

ler-

s
is

to

IP

r
ut-

ds

.

-

d-

is
require that the reader or writer have knowledge of the
location and size of the destination buffer at both the
source and the destination.

If you write a block of data from the memory of one host
to another via RDMA you have to supply the virtual
address of the destination buffer - and make sure that the
buffer is big enough to accept all the data. Similarly, when
reading data from a remote host, the virtual address from
which the data is to be read must be known, as well as the
location of a correctly sized local buffer. Both VI and
Infiniband RDMA models provide message queues that
allow short messages to be exchanged. These messages
can be used to prompt RDMA read or write operations as
well as providing source and destination virtual addresses
and message size.

For example, if an RPC client needs to send a call message
to a server, it might first send a short message to the server
giving the virtual address and size of the call message.
This is notification to the server that there is a call message
waiting. On receiving this notification message, the server
can allocate a buffer of the size needed, then initiate an
RDMA read operation to transfer the RPC call message
from the client to the server’s buffer. When the RDMA
read is complete, the server sends a short message to the
client to notify it that the message has been received suc-
cessfully.

A call message could also be sent to the server with an
RDMA write operation. The client would send a message
to the server requesting the address of a destination buffer
big enough to hold the RPC call message. On receiving the
server’s response, the client initiates an RDMA write oper-
ation directly into the server’s buffer. When the RDMA
operation is complete, the client sends a short message to
the server to notify it that the call message is transferred
and waiting for attention.

Similar methods can be used to return RPC reply mes-
sages. There are lots of different ways that can be used to
transfer RPC messages using a combination of RDMA
operation and message queues. It is possible to optimize
the process to minimize the number of messages
exchanged and reduce latency as well as to adapt to differ-
ences in RDMA read and write speeds, to optimize band-
width.

9.0 Additional services (NLM, ACL)

We have been looking at how RDMA can be used to acc
erate RPC messages. Yet, we have referred only oblique
to the protocols that use RPC. Of course, the most impo
tant protocol in this context is the NFS protocol. Howeve
the NFS protocol does not stand alone. File locking is ha
dled by a separate Network Lock Manager protocol.
Because this protocol is also RPC-based, it is also acce
ated by the RDMA transport. Additionally, the NFS ACL
protocol is used to provide control and viewing of Acces
Control Lists in filesystems that support them. Again, th
protocol is RPC-based, and it too is accelerated by
RDMA.

10.0 Protocol Offloading

The use of RDMA to accelerate NFS traffic can be used
improve performance for existing TCP/IP clients. Many
customers use NFS filers to provide file services to TCP/
clients. These clients cannot use RDMA acceleration
directly because they are too far away from the Filers, o
because they are low-cost workstations that cannot be o
fitted economically with RDMA hardware. NFS filers for
these clients must handle heavy TCP/IP processing loa
when providing NFS services.

This TCP/IP processing load can be off-loaded to a box
that moves NFS traffic between TCP/IP and RDMA net-
works. Incoming RPC calls can be extracted from their
TCP/IP packets and sent on to the Filers via fast RDMA
RPC replies from the Filers are obtained via RDMA from
Filer memory and returned to the client via TCP/IP.
Because the Filer is no longer handling TCP/IP process
ing, its service latency is reduced and it can absorb a
higher NFS load.

11.0  Benefits of NFS over RDMA

At first glance, the benefits of NFS over RDMA may
appear to be just “faster NFS”. Indeed, applications that
already use NFS will benefit from the increased data ban
width, reduced CPU overhead, and reduced latency.

But if NFS over RDMA performance matches that of
“direct attach” or SAN-connected filesystems, then NFS
NFS over RDMA 3 of 4



Project Status
no longer a bottleneck, and we can appreciate the file shar-
ing benefits of NFS more widely, even in applications that
previously required “raw” disk access.

For example, a database provides high-volume, transac-
tion-based access to large volumes of data. Typically, the
database provides its own access methods, along with its
own caching and I/O scheduling. It is normal for a data-
base to have “raw” access to a disk partition and organize
its own on-disk layout. In this role, a database fills a simi-
lar role to a filesystem, it maps data access semantics onto
disk data blocks. The downside of having the database
manage its own storage is that it burdens the system
administrator with additional tools because database parti-
tions are managed differently, e.g. UNIX system adminis-
tration tools like “df” and “mount” do not work with
database partitions. Databases do not benefit from filesys-
tems features like automatic growth of file (table) space, or
snapshots.

A database can benefit from filesystem features if tables
are mapped onto files within a filesystem. With a properly
tuned filesystem, a database can have good performance
and benefit from more flexible filesystem administration.
By far, the easiest filesystem storage for to install and
manage is provided by NFS filers, so databases can have
the best of both worlds: improved storage management
through NFS filesystems, while maintaining performance.

12.0 Project Status

We have run a prototype implementation over an SCI (SCI
(Scalable Coherent Interconnect) connection. The RPC
layer in the client and server was modified to transport
RPC messages as memory-to-memory operations. This
experience confirmed that the RPC abstraction on which
protocols like NFS are built, makes it quite easy to run
RPC-based protocols over radically different transports.

We are further developing this RPC code to adapt readily
to a variety of RDMA transports, such as VI, DAT (Direct
Access Transport) and Infiniband.
4 of  4 NFS over RDMA


	NFS over RDMA
	Brent Callaghan (brent.callaghan@sun.com)
	Network bandwidth is growing by orders of magnitude. Yet conventional processing of NFS traffic o...

	January 28, 2002
	1.0 Introduction
	2.0 NFS Background
	3.0 NFS in the Server Room
	4.0 Performance of Storage Networking
	5.0 Direct Memory Access
	6.0 Remote Direct Memory Access
	7.0 Doing RPC over RDMA
	8.0 Use of queues and RDMA ops
	9.0 Additional services (NLM, ACL)
	10.0 Protocol Offloading
	11.0 Benefits of NFS over RDMA
	12.0 Project Status



