
1

The Direct Access File System (DAFS)

 Matt DeBergalis, Peter Corbett, Steve Kleiman, 
Arthur Lent, Dave Noveck, Tom Talpey, Mark Wittle

 Network Appliance, Inc.

Usenix FAST ’03

Tom Talpey

tmt@netapp.com



2
Usenix FAST ‘03

Outline

4 DAFS

4 DAT / RDMA

4 DAFS API

4 Benchmark results



3
Usenix FAST ‘03

DAFS – Direct Access File System

4 File access protocol, based on NFSv4 and 
RDMA, designed specifically for high-
performance data center file sharing (local 
sharing)

4 Low latency, high throughput, and low 
overhead

4 Semantics for clustered file sharing 
environment



4
Usenix FAST ‘03

DAFS Design Points

4 Designed for high performance
– Minimize client-side overhead
– Base protocol: remote DMA, flow control
– Operations: batch I/O, cache hints, chaining

4 Direct application access to transport resources
– Transfers file data directly to application buffers
– Bypasses operating system overhead
– File semantics

4 Improved semantics to enable local file sharing
– Superset of CIFS, NFSv3, NFSv4 (and local file systems!)
– Consistent high-speed locking
– Graceful client and server failover, cluster fencing

4 http://www.dafscollaborative.org



5
Usenix FAST ‘03

DAFS Protocol

4 Session-based

4 Strong authentication

4 Message format optimized

4 Multiple data transfer models

4 Batch I/O

4 Cache hints

4 Chaining



6
Usenix FAST ‘03

DAFS Protocol Enhanced Semantics

4 Rich locking

4 Cluster fencing

4 Shared key reservations

4 Exactly-once failure semantics

4 Append mode, Create-unlinked, Delete-on-last-
close



7
Usenix FAST ‘03

DAT – Direct Access Transport

4 Common requirements and an abstraction of services 
for RDMA - Remote Direct Memory Access

– Portable, high-performance transport underpinning for 
DAFS and applications

– Defines communications endpoints, transfer semantics, 
memory description, signalling, etc.

4 Transfer models:
– Send (like traditional network flow)
– RDMA Write (write directly to advertised peer memory)
– RDMA Read (read from advertised peer memory)

4 Transport independent
– 1 Gb/s VI/IP, 10 Gb/s InfiniBand, future RDMA over IP

4 http://www.datcollaborative.org



8
Usenix FAST ‘03

DAFS Inline Read

READ_INLINE

Application
Buffer

Send Descriptor

Receive
Descriptor

Client

REPLY

Server
Buffer

Send Descriptor

Receive
Descriptor

Server

READ_INLINE

REPLY

1

2
3



9
Usenix FAST ‘03

DAFS Direct Read

READ_DIRECT

Application
Buffer

Send Descriptor

Receive
Descriptor

Client

REPLY

Server
Buffer

Send Descriptor

Receive
Descriptor

Server

READ_DIRECT

REPLY

1

2

3

RDMA Write



10
Usenix FAST ‘03

DAFS Inline Write

WRITE_INLINE

Application
Buffer

Send Descriptor

Receive
Descriptor

Client

REPLY

Server
Buffer

Send Descriptor

Receive
Descriptor

Server

WRITE_INLINE

REPLY

1

2
3



11
Usenix FAST ‘03

DAFS Direct Write

WRITE_DIRECT

Application
Buffer

Send Descriptor

Receive
Descriptor

Client

REPLY

Server
Buffer

Send Descriptor

Receive
Descriptor

Server

WRITE_DIRECT

REPLY

1

2

3

RDMA Read



12
Usenix FAST ‘03

DAFS-enabled Applications

Raw Device Adapter

Disk I/O
Syscalls

Application
(unchanged)

Buffers

Device Driver

DAFS Library

DAT Provider Library

NIC Driver

RDMA NIC

• Kernel-level plug-in
• Looks like raw disk
• App uses standard 

disk I/O calls
• Very limited access to 

DAFS features
• Performance similar 

to direct-attached disk

Kernel File System

File I/O
Syscalls

Application
(unchanged)

Buffers

File System

DAFS Library

DAT Provider Library

NIC Driver

RDMA NIC

• Kernel-level plug-in
• Peer to local FS
• App uses standard 

file I/O semantics
• Limited access to 

DAFS features
• Performance similar 

to local FS

User Library

Application
(modified)

Buffers

RDNA NIC

DAFS Library

DAT Provider Library

NIC Driver

User
Space

OS
Kernel

H/W

• User-level library
• Best performance
• Full application 

access to DAFS 
semantics

• Paper focuses on 
this style

User
Space

OS
Kernel

H/W

DAFS API
Calls



13
Usenix FAST ‘03

DAFS API

4 File based: exports DAFS semantics
4 Designed for highest application performance
4 Lowest client CPU requirements of any I/O system
4 Rich semantics that meet or exceed local file system 

capabilities
4 Portable and consistent interface and semantics 

across platforms
– No need for different mount options, caching policies, 

client-side SCSI commands, etc.
– DAFS API interface is completely specified in an open 

standard document, not in OS-specific documentation

4 Operating system avoidance



14
Usenix FAST ‘03

The DAFS API

4 Why a new API?
– Backward compatibility with POSIX is fruitless

• File descriptor sharing, signals, fork()/exec()
– Performance

• RDMA (memory registration), completion groups
– New semantics

• Batch I/O, cache hints, named attributes, open with 
key, delete on last close

– Portability
• OS independence and semantic consistency



15
Usenix FAST ‘03

Key DAFS API Features

4 Asynchronous
– High performance interfaces support native asynchronous 

file I/O
– Many I/Os can be issued and awaited concurrently

4 Memory registration
– Efficiently prewires application data buffers, permitting 

RDMA (direct data placement)

4 Extended semantics
– Batch I/O, delete on last close, open with key, cluster 

fencing, locking primitives

4 Flexible completion model
– Completion groups segregate related I/O
– Applications can wait on specific requests, any of a set, or 

any number of a set



16
Usenix FAST ‘03

Key DAFS API Features

4 Batch I/O
– Essentially free I/O: amortizes costs of I/O issue over many 

requests
– Asynchronous notification of any number of completions
– Scatter/gather file regions and memory regions 

independently
– Support for high-latency operations
– Cache hints

4 Security and authentication
– Credentials for multiple users
– Varying levels of client authentication: none, default, 

plaintext password, HOSTKEY, Kerberos V, GSS-API

4 Abstraction
– server discovery, transient failure and recovery, failover, 

multipathing



17
Usenix FAST ‘03

Benchmarks

4 Microbenchmarks to measure throughput and 
cost per operation of DAFS versus traditional 
network I/O

4 Application benchmark to demonstrate value 
of modifying application to use DAFS API



18
Usenix FAST ‘03

Benchmark Configuration

4 User-space DAFS library, VI provider
4 NetApp F840 Server, fully cached workload

– Adapters (GbE):
• Intel PRO/1000
• Emulex GN9000 VI/TCP

– NFSv3/UDP, DAFS

4 Sun 280R client
– Adapters:

• Sun “Gem 2.0”
• Emulex GN9000 VI/TCP

4 Point-to-point connections



19
Usenix FAST ‘03

Microbenchmarks

4 Measures read performance
4 NFS kernel versus DAFS user
4 Asynchronous and Synchronous
4 Throughput versus blocksize
4 Throughput versus CPU time
4 DAFS advantages are evident:

– Increased throughput
– Constant overhead per operation



20
Usenix FAST ‘03

Microbenchmark Results



21
Usenix FAST ‘03

Application (GNU gzip)

4 Demonstrates benefit of user I/O parallelism
4 Read, compress, write 550MB file
4 Gzip modified to use DAFS API

– Memory preregistration, asynchronous read and 
write

4 16KB blocksize
4 1 CPU, 1 process: DAFS advantage
4 2 CPUs, 2 processes: DAFS 2x speedup



22
Usenix FAST ‘03

GNU gzip Runtimes



23
Usenix FAST ‘03

Conclusion

4 DAFS protocol enables high-performance local 
file sharing

4 DAFS API leverages benefit of user space I/O

4 The combination yields significant 
performance gains for I/O intensive 
applications


