The Direct Access File System (DAFS)

Matt DeBergalis, Peter Corbett, Steve Kleiman,
Arthur Lent, Dave Noveck, Tom Talpey, Mark Wittle

Network Appliance, Inc.

Usenix FAST '03
Tom Talpey

tmt@netapp.com

Ny

Network Appliance® 1

A _
Outline

» DAFS

» DAT / RDMA

» DAFS API

» Benchmark results

Ny

_— . .)
Usenix FAST ‘03 Network Appliance

DAFS — Direct Access File System

» File access protocol, based on NFSv4 and
RDMA, designed specifically for high-
nerformance data center file sharing (local
sharing)

» Low latency, high throughput, and low
overhead

» Semantics for clustered file sharing
environment

@

_— . . 3
Usenix FAST ‘03 Network Appliance

& A
| DAFS Design Points

» Designed for high performance
— Minimize client-side overhead
-~ Base protocol: remote DMA, flow control
— Operations: batch I/O, cache hints, chaining

» Direct application access to transport resources
-~ Transfers file data directly to application buffers
- Bypasses operating system overhead
— File semantics

» Improved semantics to enable local file sharing
— Superset of CIFS, NFSv3, NFSv4 (and local file systems!)
— Consistent high-speed locking
— Graceful client and server failover, cluster fencing

» http://www.dafscollaborative.org

@

_— . . .
Usenix FAST ‘03 Network Appliance

¢ A
DAFS Protocol

» Session-based

» Strong authentication

» Message format optimized

» Multiple data transfer models
» Batch 1/O

» Cache hints

» Chaining

kc
_— . . 6
Usenix FAST ‘03 Network Appliance

A
DAFS Protocol Enhanced Semantics

» Rich locking

» Cluster fencing

» Shared key reservations

» Exactly-once failure semantics

» Append mode, Create-unlinked, Delete-on-last-
close

kc
_— . . 6
Usenix FAST ‘03 Network Appliance

DAT — Direct Access Transport

» Common requirements and an abstraction of services

for RDMA - Remote Direct Memory Access

-~ Portable, high-performance transport underpinning for
DAFS and applications

-~ Defines communications endpoints, transfer semantics,
memory description, signalling, etc.

» Transfer models:
-~ Send (like traditional network flow)
— RDMA Write (write directly to advertised peer memory)
- RDMA Read (read from advertised peer memory)

» Transport independent
— 1 Gb/s VI/IP, 10 Gb/s InfiniBand, future RDMA over IP

» http://www.datcollaborative.org

@

_— . .
Usenix FAST ‘03 Network Appliance

Client

Send Descriptor -
Receive
Descriptor
Application

Buffer
Server
3 Buffer

2
Recgive
Descrjptor
_ Send Descriptor

kc
T, X]] 8
Usenix FAST ‘03 Network Appliance

Client

Send Descriptor -
Receive
Descriptor
Application
Buffer
RDMA Write
2
Server
Buffer
Receive 3
Descriptor
Send Descriptor

kc
T, X]] 9
Usenix FAST ‘03 Network Appliance

Client Server

Send Descriptor -
A .
Receive
Desqriptor
Application
Buffer

Server
3 Buffer
2
Receive
Descriptor
Send Descriptor

G
erw i . 10
Usenix FAST ‘03 Network Appliance

Client

Send Descriptor -
Receive
Descriptor
Application
Buffer

\

ROMA Read

2
Server
Buffer
Receive 3
Descriptor
Send Descriptor

G
erw i . 11
Usenix FAST ‘03 Network Appliance

DAFS-enabled Applications

Raw Device Adapter Kernel File System User Library
Application Application Application
(unchanged) (unchanged) (modified)
QSZLe Buffers | Buffers | Buffers |
. . v |Disk 110 . v | File 110 v | DAFS API
Device Driver Syscalls File System Syscalls DAFS Library Calls
DAFS Library DAFS Library User
AT Provider Library AT Provider Library AT Provider Libr Space

cornel NIC Driver NIC Driver NIC Driver cornel
HW RDMA NIC RDMA NIC RDNA NIC HW

Kernel-level plug-in - Kernel-level plug-in - User-level library

Looks like raw disk - Peerto local FS - Best performance

App uses standard - App uses standard - Full application

disk I/O calls file /O semantics access to DAFS

Very limited access to - Limited access to semantics

DAFS features DAFS features - Paper focuses on

Performance similar - Performance similar this style

to direct-attached disk to local FS

Ny

erw i . 12
Usenix FAST ‘03 Network Appliance

A
| DAFS API

» File based: exports DAFS semantics
» Designed for highest application performance
» Lowest client CPU requirements of any I/O system

» Rich semantics that meet or exceed local file system
capabilities

» Portable and consistent interface and semantics

across platforms

-~ No need for different mount options, caching policies,
client-side SCSI commands, etc.

— DAFS APl interface is completely specified in an open
standard document, not in OS-specific documentation

» Operating system avoidance

@

erw i . 13
Usenix FAST ‘03 Network Appliance

1 The DAFS AP

» Why a new API?

— Backward compatibility with POSIX is fruitless

- File descriptor sharing, signals, fork()/exec()
-~ Performance

- RDMA (memory registration), completion groups
— New semantics

- Batch I/O, cache hints, named attributes, open with
key, delete on last close

— Portability
- OSindependence and semantic consistency

kc
erw i . 14
Usenix FAST ‘03 Network Appliance

A
| Key DAFS API Features

Asynchronous

- High performance interfaces support native asynchronous
file 1/0O

-~ Many I/Os can be issued and awaited concurrently

Memory registration

- Efficiently prewires application data buffers, permitting
RDMA (direct data placement)

Extended semantics

-~ Batch I/O, delete on last close, open with key, cluster
fencing, locking primitives

Flexible completion model

— Completion groups segregate related 1/O

-~ Applications can wait on specific requests, any of a set, or
any number of a set

v

v

v

v

@

erw i . 15
Usenix FAST ‘03 Network Appliance

A
| Key DAFS API Features

» Batch I/O

Essentially free I/O: amortizes costs of /O issue over many
requests
Asynchronous notification of any number of completions

Scatter/gather file regions and memory regions
independently

Support for high-latency operations
Cache hints

» Security and authentication

Credentials for multiple users

Varying levels of client authentication: none, default,
plaintext password, HOSTKEY, Kerberos V, GSS-API

» Abstraction

Usenix FAST ‘03

server discovery, transient failure and recovery, failover,
multipathing

@

Network Appliance® 16

.
| I INENES

» Microbenchmarks to measure throughput and
cost per operation of DAFS versus traditional
network /O

» Application benchmark to demonstrate value
of modifying application to use DAFS API

@

lerw i u 17
Usenix FAST ‘03 Network Appliance

A
Benchmark Configuration

User-space DAFS library, VI provider

NetApp F840 Server, fully cached workload
— Adapters (GbE):
Intel PRO/1000
Emulex GN9000 VI/TCP
— NFSv3/UDP, DAFS

Sun 280R client

-~ Adapters:
Sun “Gem 2.0"
Emulex GN9000 VI/TCP

Point-to-point connections

v Vv

v

v

Ny

erw i . 18
Usenix FAST ‘03 Network Appliance

.
| Microbenchmarks

» Measures read performance

» NFS kernel versus DAFS user

» Asynchronous and Synchronous
» Throughput versus blocksize

» Throughput versus CPU time

» DAFS advantages are evident:
— Increased throughput
— Constant overhead per operation

@

erw i . 19
Usenix FAST ‘03 Network Appliance

1000
(ol
o]
"
g 100
10
1000
(ol
o]
"
g 100
10

Usenix FAST ‘03

CPU cost of asynchronous operations fsynchronous throughput

T T T T T T T T T T L] T T T T T T T T
NFS ——
L DAFS —+— - 20 -
70 - -
] 60]
] o SO | .
"
.
- - Mmoo 40 - .
F b =
] 38 -
M : =T i
] 10 | NFS —s—y 4
D&aFs —+—

1 1 1 1 1 1 1 1 1 1 0 | ! 1 1 1 1 ! 1 1
17412 1 2 4 8 16 32 64 128 1.4 1.2 1 2 4 g8 16 32 64 128
Blocksize (KB} Blocksize (KB

CPU cost of synchronous operations Synchronous throughput
T T T T T T T T T T 7@ T T T T T T T T
NFS ——
:_DAFS —t 5 co L |
] 50 _
J 8 4@ _
"
.
— — [aa] [—
F 3 15
] Pl _
" J
] 16 NFS —e— |
D&aFs —+—
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 ! 1 1
17412 1 2 4 8 16 32 64 128 1.4 1.2 1 2 4 g8 16 32 64 128
Blocksize (KB} Blocksize (KB

o

Network Appliance® 20

A
— 1 Application (GNU gzip)

» Demonstrates benefit of user I/O parallelism
» Read, compress, write 550MB file

» Gzip modified to use DAFS API

- Memory preregistration, asynchronous read and
write

» 16KB blocksize
» 1 CPU, 1 process: DAFS advantage
» 2 CPUs, 2 processes: DAFS 2x speedup

@

erw i . 21
Usenix FAST ‘03 Network Appliance

ceconds

Usenix FAST ‘03

154

166

146

12#

196

1%

=15

41

%

DAFS

NFS

DAFS

NFS -

Mumber ot CFlUs

Ny

Network Appliance® 22

g _
| Conclusion

» DAFS protocol enables high-performance local
file sharing

» DAFS API leverages benefit of user space I/O

» The combination yields significant
performance gains for I/O intensive
applications

@

erw i . 23
Usenix FAST ‘03 Network Appliance

