
Center for Information Technology Integration 
Project Report 
June 30, 2003 

 

This report discusses progress on the tasks outlined in a Memorandum of Understanding 
dated October 2, 2002, which constitutes the joint understanding of CITI and ITCom in 
pursuing a research and development partnership. 

Statement of Work 
The primary goal of the partnership for FY 2002-2003 is to identify and enhance network 
test and performance tools that can help ITCom staff build and maintain a more secure 
and functional network at the University of Michigan.  The first focus is on Iperf, an open 
source network measurement tool from the University of Illinois, with the goal of 
developing an authenticated Iperf service running on multihomed servers placed 
strategically in a VLANed network. 

Task 1: Globus integration 
In this task, CITI will make a Globus service that provides remote network test and 
measurement to authorized users.  ITCom is currently deploying measurement stations 
throughout the network.  This task will enhance the test bed by providing a web interface, 
authorized access, and strong authentication.  This task leverages CITI’s prior efforts in 
Authenticated Quality of Service and KX.509. 

The initial implementation will build on Iperf; later enhancements that allow extended 
functionality within the Globus framework are anticipated.  Authorization can be based 
on environmental and Iperf parameters such as user identity and group membership, 
CPU load on the test harness, time-of-day, TOS, TTL, TCP or UDP, bandwidth (UDP 
only), etc. 
We extended our Authenticated Quality of Service work based on Globus 1.3 GARA to 
run Iperf between two performance monitoring platforms (PMP), and demonstrated it in 
November 2002.    Users with kx509 credentials run Iperf via an https web interface.  The 
web server runs  kx509 proxy software and the GARA client. Authorization based on 
Iperf input parameter values, environmental parameter values, and group membership 
was demonstrated.  This version of the code was not flexible; it was difficult to add new 
network testing tools, output was stored only on the node's local file system, and 
scheduling of network testing was not implemented. 

We rebased to Globus 2.4, added a PHP module to the web server, and rewrote portions 
of the GARA client and service.  The PHP module creates a web page based on a 
configuration file. After a PHP module reads in user's values, it encodes the request in 
Globus's RSL format and uses it as an input to the GARA client module also running on 
the web server.  We rewrote the GARA client and service to pass the RSL all the way 
through the Globus gatekeeper to the GARA service, which adds the RSL along with 
other necessary information to the slot manager.  The slot manager is the portion of the 
GARA service which schedules jobs in the future. We extended the slot manager to be 



able to schedule arbitrary jobs (not just bandwidth brokering).  The slot manager reads a 
configuration file to locate the program to run for a scheduled job.  The infrastructure 
handles synchronous and asynchronous requests. If the user places a synchronous 
reservation, output is returned to the web server and displayed to the user, as well as 
being stored on the network test node local filesystem. If the user places asynchronous 
request (ie., a reservation in a future), the results of the execution are stored on the 
network test node filesystem. Please see Appendix A for more details about PHP module 
and the extended GARA infrastructure. 

The result of this work is the ability to add a new network testing tool to the Globus PMP 
service by constructing a web page via a PHP configuration file, and adding the test 
executable location to a configuration file on the server.  The service does not need to be 
stopped or compiled to add a new test tool.  Changes in authorization policies still require 
a compilation. 

We demonstrated this new Globus service to Roy Hockett – we ran traceroute, ping, and 
Iperf by scheduling a short time into the future. 

Task 2: Multihomed Iperf stations 
An Iperf platform that supports multiple interfaces can be situated at a nexus of networks 
and used to test them all.  For example, such a platform could be used to send test data 
out one interface, into the Internet, and collect it on another.  However, ordinary UNIX 
routing specifies a default route per host, not per interface.  Consequently, test data 
arriving on one interface may be returned on another, which interferes with the goal of 
multihomed Iperf stations.  This task will extend the Linux kernel routing framework so 
that interfaces can support routing behaviors that are more complex. 

Using a Linux-based policy routing strategy via the iproute2 package, we implement 
one routing table per VLAN attached to an Iperf station, and a routing policy that selects 
the correct routing table based on the source address of the outgoing packet.  This 
effectively emulates a default route per virtual interface. 

Correct operation has been verified on a CITI testbed consisting of two multihomed Iperf 
stations and two Linux boxes set up as routers. 

We include in the project deliverables a sample configuration file for defining the correct 
policy routes and a script, ntap-config, for installing them into an Iperf station, as 
well as scripts for post-processing tcpdump output for verifying correct operation and 
for listing the policy routes in a compact format. 

Please see Appendix B for a detailed description of our testbed architecture, sample 
packet flow, and a description and usage guide to ntap-config. 

Task 3: Performance of multihomed test stations 
Network tool performance is tied to a number of parameters, such as aggregate 
bandwidth and CPU speed.  In this task, we will model and measure the multihomed 
network test station to determine the limits of its performance as interfaces are added.  
With this understanding in hand, we will determine the feasibility of using a multihomed 
network test station as both source and sink of test data. 



Our performance tests have determined that a PMP can produce a maximal Iperf 
throughput of 2.5 Gbps using the loopback interface on a single host, and 940 Mbps 
between two hosts connected by a private 1 Gbps Ethernet network.  These results were 
obtained for TCP using standard frame sizes. 

Thse two results together suggest that bottlenecks exist in one or more of the system 
buses, memory system, DMA system, driver, or network card of a PMP.  Further testing 
of simultaneous data sources and sinks over multiple physical interfaces can take place 
once we have three PMPs in place in the ITCom lab. 

Please see Appendix C for detailed performance results. 

Task 4: Remote testing 
This task develops a user-friendly application that authorized users can run on their 
desktops to test and measure network performance, both end-to-end and segment-by-
segment.  This application will take parameters such as TCP or UDP port number, 
TOS/Diffserv code point, bandwidth, destination, etc.  The application will find test 
stations along the path to the destination and run end-to-end and segment-by-segment 
tests on them. 

The service described in Task 1 is web based, and allows segment-by-segment testing 
between PMPs, leaving the sending host to first PMP segment and the last PMP to 
receiving host segment untested.   

Shawn McKee (smckee@umich.edu) is the chairman of the Internet2 end-to-end 
technical advisory group (TAG) which is working with developers from CalTech to write 
a Java applet to run network tests between hosts.  As a start, they have implemented a 
Java applet that runs Iperf against a server that has the Web100 kernel patch which 
exposes details of the network stack to the OS.  By building our PMPs with the Web100 
patch, we can test the host to PMP network segments. 

Our current design for the discovery of the network segments and therefore the addresses 
of the PMPs for the segment-by-segment tests uses traceroute for path discovery and 
an LDAP database to map subnets to network node addresses. The LDAP schema used is 
an initial primitive implementation, and communication is done via SASL/GSSAPI/ 
Kerberos V5 if required. 

Using traceroute for segment discovery is problematic; while traceroute 
identifies the correct router, it returns the address of the wrong interface.  Further 
conversation with Roy Hockett has determined that this issue will not occur for Internet2 
routers and has produced an algorithm for resolving this issue in the end-system routers. 

Milestones and Deliverables 

September 2002 
Task 1 begin 

Task 2 begin 

mailto:smckee@umich.edu


November 2002 
Task 1 deliverable: Globus service that provides remote Iperf network test and 
measurement to authorized users. 

Task 1 continue 

Task 4 begin 

January 2003 
Task 2 deliverable: Extend the Linux kernel routing framework so that complex routing 
behavior can be set for each interface. 

Task 2 end 

Task 3 begin 

May 2003 
Task 1 deliverable: Enhanced Globus service that provides remote network test and 
measurement to authorized users. 

Task 3 deliverable: Report on performance of multihomed network test station 
performance when used as both source and sink of test data. 

Task 3 end 

June 2003 
Task 4 deliverable: User-oriented Linux application that authorized users can run on 
their desktops to test and measure end-to-end and segment-by-segment network 
performance. 

Task 4 end



 

Appendix A 

PHP module 
The web interface is managed by a PHP script that builds the parameter page and 
processes the input data. The script is driven by a configuration file that details the 
options to be passed to the new program. The script outputs a string containing the  
parameters in a form suitable for input to the GARA module operations described in the 
next section. 

GARA module 
The GARA web module is constructed from four simple operations provided by the 
GARA infrastructure: reservation_create, reservation_cancel,  
reservation_status, and reservation_callback.  

The reservation_create() function places a reservation by encoding the user's 
request in the RSL format. An RSL request is a collection of attribute and value pairs 
with certain syntax restrictions.  A typical RSL for a traceroute request contains all 
available command-line options and looks like: 

“&(reservation-type=network) (endpoint-a=141.211.133.59) 
(endpoint-b=141.211.133.121) (packet_length=--EMPTY) 
(first_ttl=--EMPTY--) (nofrag=--EMPTY--) (sockdebug=--EMPTY-
-) (gateway=--EMPTY--) (iface=--EMPTY--) (useicmp=--EMPTY--) 
(max_ttl=30) (usenumaddr=--EMPTY--) (port=--EMPTY--) 
(norouting=--EMPTY--) (n_queries=3) (src_addr=--EMPTY--) 
(tos=--EMPTY--) (verbose=--EMPTY--) (wait_time=5) 
(checksums=--EMPTY--) (pause_msecs=--EMPTY--) (start-
time=now) (bandwidth=0) (duration=2) (protocol=tcp) 
(request-type=1) (option-string-a= 141.211.133.121) (exec-
name=traceroute) (client_name=aglo)” 

Some of the parameters are required inputs to the GARA infrastructure such as 
endpoint fields that are used to contact appropriate PMP nodes, a start-time field 
used to determine when to perform the requested operation, and a duration field used 
to stop the request (eg., stop a started iperf server process). Other parameters, specific 
to the requested remote operation (eg., traceroute), are not interpreted by the GARA 
infrastructure but might be used by the KeyNote security policy engine before accepting 
a reservation.  

The reservation_cancel() function allows for cancelling a previously scheduled 
reservation. It also serves a cleanup purpose, letting the GARA service know that the user 
is no longer interested in this reservation and thus allowing the GARA service to remove 
all the stored information about the request.  

The reservation_callback() function provides the functionality to register a 
callback for a previously placed reservation and listen for the GARA reservation events 
operation_started and operation_finished. This functionality is used in 
case the user is interested in the output of his or her previously-created  reservation. After 



placing the reservation_callback() request, the caller can wait until the 
operation_finished event is received before proceeding with its execution. To 
prevent the GARA client module from waiting indefinitely in case of some sort of failure, 
there is a timeout mechanism in place that will wake up the waiting thread after a 
(currently hardcoded) maximum allowed period of time and will inform the user that the 
request has failed.   

The reservation_status() function allows for checking on a status of the 
reservation. If the operation is finished, then the result data, stored at each of the PMP 
nodes involved in the request, is sent back to the GARA client module and displayed on 
the web page.  

Different combinations of these four operations provide the functionality for performing 
different types of requests: one node synchronous (or asynchronous) requests (eg., 
traceroute or ping), where the GARA client module places a reservation to one 
PMP node; two node synchronous (or asynchronous) requests (eg., iperf or any other 
client/server tools); or more complex requests such as one-node request to run 
traceroute, followed by several two-node requests to iperf based on the 
discovered path.  

The GARA service part has four components: main server, KeyNote security policy 
engine, scheduler, and application executioner.  

The main server listens and accepts incoming request of the types listed above.  

Before any type of the request is handled, a KeyNote security policy engine is consulted. 
The current implementation authorizes requests based on the user's group membership. 
Group membership can be retrieved either from an AFS PTS  server or from a file stored 
in a local filesystem. A security policy engine can support different policies for different 
executables (eg., separate policies for traceroute and iperf).  It's implemented by 
adding an appropriate suffix to a default policy prefix (eg., policy.traceroute and 
policy.iperf). 

The scheduler is responsible for checking, scheduling and stopping reservations based on 
their requested start times and durations. Once a reservation is ready, a scheduler looks 
up the corresponding RSL for the request, creates a unique filename where the output of 
the execution is redirected, and forks the application executioner. 

The application executioner is responsible for doing any application specific setup and 
the actual starting (or stopping).  The current implementation does not do any application 
specific setup but only looks up the correct path to the executable (eg., traceroute) for the 
PMP machine ( eg., /usr/sbin/traceroute), since the executable is not necessarily in the 
default path and it is not assumed that the placement of the executable is known to the 
user who is placing the request through a web page. After an application executioner 
starts an application, it record the process's pid. When the application executioner is 
called again to stop the application, it looks up the appropriate pid and stops its 
execution.   



Appendix B 

 

 
Our demonstration network (see Figure 1) is a testbed consisting of two routers (pugna 
and moritz), two PMPs (la1 and la2), and a machine (buffalo) that monitors the 
traffic between the other four. la1 is associated with pugna, just as la2 is associated 
with moritz.  pugna and moritz serve as an example hop along a path whose 
performance is to be measured. 
 
By running the iperf server on la1, for instance, and binding it to la1's VLAN 33 
interface, 10.3.3.10, and then running the iperf client on la2's VLAN 22 interface, 
10.2.2.20, we can watch the inter-VLAN traffic and verify that our policy routing is 
functioning as expected.  A packet traveling from 10.2.2.20 to 10.3.3.10 would be sent 
out la2's default route on VLAN 22, which is moritz' interface at 10.2.2.2.  moritz 
routes the traffic over to VLAN 33 and sends it along to pugna at 10.3.3.1, who then 
forwards it to la1 at 10.3.3.10.  Note that la2 first selects a routing table based on the 
outgoing source address and thereafter makes a routing decision based on the destination 
address; this is why, despite having a presence on VLAN 33, la2 nevertheless sends the 
packet out of its VLAN 22 interface. 
 
Similarly, when sending a reply, la1 selects a routing table based on the outgoing source 
address.  Each source-based routing table is configured with the appropriate default rule, 
effectively emulating a default route per virtual interface, forcing packets to be reflected 
out of the same interface on which the incoming packet should have arrived.  Policy 
routing thus implements the desired “packet reflection” for the multihomed iperf tests. 
 
 
 



la1’s routing tables are shown in the following partial output from our lsrt tool: 
 
[cja@la1 ~]$ lsrt 
1000: from 10.2.2.0/24 lookup vlan22 
  10.2.2.0/24 dev vlan22  scope link 
  default via 10.2.2.1 dev vlan22 
1001: from 10.3.3.0/24 lookup vlan33 
  10.3.3.0/24 dev vlan33  scope link 
  default via 10.3.3.1 dev vlan33 
1002: from 10.4.4.0/24 lookup vlan44 
  10.4.4.0/24 dev vlan44  scope link 
  default via 10.4.4.1 dev vlan44 
 
The first output line indicates that packets with source addresses in the 10.2.2 subnet are 
to use the vlan22 routing table.  This table consists of the next two lines and performs 
conventional destination-based routing:  packets whose destinations are in the 10.2.2 
subnet are routed locally back to vlan22; all other packets are forwarded to 10.2.2.1, 
which is one of pugna’s addresses, using vlan22.  This routing table thus ensures 
incoming vlan22 traffic goes back out on vlan22.  The rest of the tables function 
similarly. 
 
Despite the fact that the PMPs are interconnected through a hub, the process of having 
them communicate through their respective routers simulates the behavior of a PMP in 
the field.  The hub merely allows buffalo to examine inter-VLAN traffic with 
tcpdump.  Note that the inclusion of a hub precludes the demonstration of intra-VLAN 
performance testing, since the traffic would bypass the routers entirely.  Nevertheless, 
intra-VLAN traffic is, in practice, a simplification of inter-VLAN traffic.  Replacing the 
hub with a switch would get closer to a real-life scenario, but snooping would not be as 
effective. 
 
 
ntap-config 
 
We have designed a tool, ntap-config, which works on the PMPs and aids in the 
creation and configuration of 802.1q virtual interfaces and their corresponding policy 
routing data in the iproute2 Linux package.  Given properly installed NICs, an 
802.1q-savvy kernel, and access to the vconfig VLAN configuration utility, ntap-
config will read a configuration file and bring up the virtual interfaces specified 
therein.  The configuration file, usually /etc/ntap.conf, can be modified and 
ntap-config immediately re-run to reconfigure the devices on-the-fly. 
 
 
ntap-config has the following options: 
 
-q          be quiet; produce no output on success 
-v          be verbose; print routing tables and rules after setup 
-c <file>   use <file> as the conf file, instead of `/etc/ntap.conf' 



-u          bring up all devices in the conf file and configure them 
-d          bring down all devices in the conf file 
-f          flush the routing caches of all devices in the conf file 
 
The configuration file (e.g. /etc/ntap.conf) contains some subset of the following 
options (dev, vid, and ip are required; mask and brd will become class A/B/C defaults, 
based on ip): 
 
dev:        host-device       # the host interface on which to add the  

#   virtual interface; e.g., eth1 
vid:        <number>          # the vid of the VLAN; e.g., 22 
ip:         dotted-quad       # the dotted-decimal IPv4 address  

#   associated with the interface  
mask:       dotted-quad       # the dotted-decimal representation of  

#   the netmask 
brd:        dotted-quad       # the dotted-decimal representation of  

#   the network broadcast address 
mac:        MAC addr          # a full MAC address for the interface,  

#   or a * followed by a suffix 
ro_table:   table-name        # the name of the iproute2 table used in  

#   rule and routing entries 
ro_entries: entry [; entry]*  # an iproute2-style routing table entry,  

#   sans table and device names 
ru_entries: entry [; entry]*  # an iproute2-style policy routing rule  

#   entry or entries, sans table name 
 
For example, configuring a VLAN 33 virtual interface on host interface eth1, with IP 
141.211.133.43, netmask 255.255.255.0, broadcast address 141.211.133.255, a rule to 
send all traffic destined for 141.211.92.0/24 to lookup routes in the routing table "net-
92", and then to send everything to the default route 141.211.133.1, would look like this: 
 
dev:        eth1 
vid:        33 
ip:         141.211.133.43 
mask:       255.255.255.0 
brd:        141.211.133.255 
ro_table:   "net-92" 
ro_entries: "default via 141.211.133.1" 
ru_entries: "to 141.211.92.0/24 table net-92" 
 
Optionally, perhaps for testing purposes it would be convenient to replace the last octet of 
the host interface's MAC address with "33".  If the original MAC were 
11:11:11:22:22:22, adding either of the following two lines: 
 
mac:        *:33 
mac:        *33 
 
would achieve the desired result, a MAC address of 11:11:11:22:22:33.  
A full MAC address need not be prefixed with an asterisk; currently 
only prefixes are matched with the asterisk. 



Appendix C 
Our initial performance tests have concentrated on our loaned PMPs that we have named 
la1 and la2.  Both hosts contain four 2.2 Ghz Intel Xeon processors with 2 GB RAM 
and dual Tigon3 PCIX 133MHz 64-bit 10/100/1000BaseT Ethernet cards and run 2.4.18-
3smp Red Hat 7.3 Linux.  We have created a separate VLAN over a directly connected 
Ethernet cable between the two hosts for these tests; this removes the interference caused 
by our routers and our 100 Mbps hub. 

Our first test measures performance over the loopback interface on la1.  One Iperf 
server is started; successive instances of the client are then started in parallel.  The results 
show that all processors are fully occupied with four Iperf clients and yield an aggregate 
TCP throughput of approximately 2.5 Gbps.  We use an MSS of 1456, 4 shy of the usual 
value, to work around a bug in the Ethernet drivers for our router machines, in which the 
additional 802.1q fields cause maximally-sized Ethernet frames to appear to be too large. 
This gives an approximate lower bound of the maximum throughput that can be expected 
from a PMP. 

With an Iperf server running on la2, and successive instances of the client started on 
la1, we measure a maximum aggregate throughput of 940 Mbps for two to eight Iperf 
clients, the highest number tested.  Aggregate processor idle time is about 80% on both 
la1 and la2, even with eight clients. 
 
 


	Center for Information Technology Integration�Project Report�June 30, 2003
	Statement of Work
	Task 1: Globus integration
	Task 2: Multihomed Iperf stations
	Task 3: Performance of multihomed test stations
	Task 4: Remote testing

	Milestones and Deliverables
	
	September 2002
	November 2002
	January 2003
	May 2003
	June 2003


	Appendix A
	PHP module
	GARA module

	Appendix B
	�

	Appendix C

