RPCSEC_GSS for the Linux Kernel

William A. Adamson

Center for Information Technology Integration
Unwversity of Michigan
Ann Arbor

{andros}@citi.umich.edu

1 Introduction

An implementation of the RPCSEC_GSS Protocol
(RFC 2203) is a required piece of the NFS version
4 Open Source Reference Implementation project
sponsored by Sun Microsystems. This document
describes the initial implementation.

Note that this project uses the following RFC’s, and
that to chase down proper behavior requires jump-
ing between the behaviors therein described.

e RFC 1964 The Kerberos Version 5§ GSS-API
Mechanism

e RFC 2078 Generic Security Service Application
Program Interface, Version 2

e RFC 2203 RPCSEC_-GSS Protocol Specifica-
tion

2 RPCSEC_GSS Architecture

Kerberos v5 is one of the required mechanism for
the NFSv4 RPCSEC_GSS implementation. This
is convenient, because Kerberos vb from MIT in-
cludes a userlevel GSS implementation. There is
however, no Kerberos implementation for the Linux
kernel. Following Sun Microsystems lead, we im-
plemented a userlevel daemon called GSSD to call
userland Kerberos v5 gss functionality, and added
the RPCSEC_GSS infrastructure to the Linux ker-
nel Sun ONC implementation. This architecture al-
lows us to get early functionality, and decide on a
feature by feature basis what portions of the Ker-
beros v5 code (if any) belongs in the Linux kernel.

Our first implementation left all the gss work to
GSSD, and used the RPCSEC_GSS additions to the
Linux Kernel Sun ONC RPC simply as a transport.
Although this implementation performed Kerberos
vb mutual authentication over and RPCSEC_GSS
channel, it was not fully RFC 2203 compliant as it
did not perform the per packet hashing and verifi-
cation required by RPCSEC_GSS.

The hashing and verification is needed for every
packet with the RPC_AUTH_GSS authentication
flavor. We felt that an upcall to GSSD for each
packet to perform hashing and verification would
be too great a performance hit, so we decided to
add this functionality to the Linux kernel.

This decision means adding code to the Sun ONC
RPC kernel implementation that can do the follow-
ing:

Switch on GSS security mechanisms.

Import and cache gss_context on both the client
and server

Create and verify GSS tokens

Understand Kerberos v5 GSS token payloads.

Call kernel crypto routines.

The rest of this document details the changes and
additions to the Linux kernel Sun ONC RPC that
implement the above features. The changes are
based on the Linux 2.4.4 kernel ../net/sunrpc and
../include/linux /sunrpc code. We based our user-

1 land work on MIT’s krb5-1.2.1 Kerberos v5 code.

5 KDC
GSSD GSSD
11 1| 3
user user
kernel kernel 5
NFSv4 CLIENT 4 NFSv4 SERVER
gssd_import_sec_context gssd_init_sec_context ° gssd_accept_sec_context gssd_import_sec_context

12 krb5_gss import_sec_context
13 gss svC _ctx_insert—
rpc_clnt credcache

struct gssd_cred
14 gc_ctx_id

gc_ctx_map

Client Gss Context Cache
10 gc_cred.gc_ctx

7 krb5_gss import_sec_context
8 (gss _svc_ctx_insert

svc_ctx_map

Server Gss Context Cache

Figure 1: GSS Context Creation and Caching. This figure shows the process of obtaining a GSS Context and

caching it in the Linux Kernel

3 Sun ONC RPC Interface to RPC-
SEC_GSS

Our first task was to examine and improve MIT’s
krb5-1.2.1 rpcsec_gss implementation, and bring it
to compliance with RFC 2203. This is mostly done.
We then based our Linux kernel port on this code.

The entry point for creating a gss_context
is the client rpcauth_create() call with the
RPC_AUTH_GSS flavor. In the NFSv4 client,
this occurs as a result of a security negotiation
with the server, or at client creation via the
rpc_create_client() call.

On the client, there are two changes to auth.c: the
addition of authgss_ops to the struct rpc_authops
and reverting to a previous interface to rp-
cauth_lookup_credcache.

This is the original 2.4.4 interface which will not
work for rpcsec_gss which needs the struct task.

static struct rpc_cred *

rpcauth_lookup_credcache(
struct rpc_auth *auth,
int taskflags)

Here is the changed interface:

static struct rpc_cred *
rpcauth_lookup_credcache(
struct rpc_task *task)

On the server, the only change to the existing Sun
ONC RPC code is an entry in svcauth.c authtab for
the gss flavor, and a gss cache initialization function
in stats.c.

4 GSSD

GSSD is an Sun ONC RPC service that runs on the
localhost ethernet interface on a privileged port and
demands root uid/gid values. It is compiled against
the MIT krb5-1.2.1 code, and acts as a gss function
translator, receiving gss function call requests from
NFSv4 which it runs and returns the result.

Referring to Figure 1 for an example, the NFSv4
client will initiate a gss connection with by call-
ing gssd_init_sec_context (step 1) which communi-
cates with GSSD over its RPC interface. GSSD
then calls gss_init_sec_context which, for the Ker-
beros v mechanism, contacts the KDC (step 2).
GSSD then bundles the gss_init_sec_context results
and returns an RPC to the NFSv4 client (step 3).
The NFSv4 client packages the gssd_init_sec_context
result in an rpcsec_gss null rpc which is sent to the
server (step 4). The server performs similar steps
calling gssd_accept_sec_context with data from the
step 4 null rpc, and returns the results to the client
in step 9.

5 Switch on GSS Security Mecha-
nisms

The Kerberos v5 gss code base includes a mech_glue
sub-directory that contains code to switch on se-
curity mechanisms, of which Kerberos v5 is one.
The mech_glue code exports the full set of gss func-
tions. These functions add a mechanism OID to
data structures such as a gss_oid data structure
and then uses this mechanism OID to locate the
mechanism specific gss function. By default, the
mech_glue code is not used, and a mechanism OID
of zero is interpreted as the Kerberos OID by the
MIT code. We have debugged and added to the
mech _glue layer which is used by GSSD.

The Linux kernel implementation will need to per-
form the same task, and I have added a portion
of the mech_glue layer to the kernel rpc code base
(gss_union.c). I have yet to implement the function
table lookup piece of the mech_glue layer in the ker-
nel.

6 Import and Cache gss_context

Referring to Figure 1, after steps 1 through 5 have
occurred, the negotiated context’s reside in the re-
spective GSSDs. The context contains information
necessary to perform crypto such as negotiated al-
gorithms. The context needs to be imported into
the kernel so they can be used.

Context importation is done on both the NFSv4

client and server with the gssd_import_sec_context
upcall to GSSD (step 6). GSSD then -calls
gss_export_sec_context which for the Kerberos vb
mechanism calls krb5_export_sec_context. This
results in the context being removed from
the userland GSSD Kerberos v5 context cache.
GSSD then returns the exported context in the
gssd_import_sec_context call. step 6 is performed
only after the gssd_accept_context call (step 5) suc-
ceeds.

One caveat - the Kerberos v5 code returns the con-
text in a form similar to XDR or ASN1 in that
it’s 'flattened’ - but it’s in their special ’serialized’
form. I chose to import the serialization decoding
code into the Linux kernel so that I could decode
the Kerberos v5 gss context into a readable form
(gss_kbser.c,gss_kbserialize.c and gss_intern_ctz.c).
Step 7 and step 12 call krb5_gss_import_sec_context
to de-serialize the context.

Step 8 creates a gss context cache entry (struct
gss_ctx_cacheent), and inserts the new context into
the server gss context cache. On the NFSv4
server, the global gss_svc_ctx_mapping struct holds
gss_ctx_cacheents hashed by cacheent pointer. The
gss_ctx_cacheent pointer is put in the gc_ctx field of
the struct rpc_gss_cred in the return null rpc (step
9) and is used by the client to reference the server
gss_context in future communications.

auth_gss.h:

/* server gss context cache */
struct gss_svc_ctx_mapping {

rwlock_t lock;

list_head gss_ctx_cache[GSS_HASH_SIZE];
s

struct gss_ctx_cacheent {

GSS_0ID gcc_mech;
u32 gcc_qop;
void *gcc_ctx;

/* fields after this point are private,
x for use by the gss cache */
atomic_t gecc_refcount;
list_head gss_ctx_cache;

};

The server gss caching code is in gss_svc_cache.c.

The client keeps all gss cache info in struct gss_cred

which is stored in the rpc cred cache, rpc_clnt-
jcli_auth-jaui_credcache. If the status of the
gss_accept_sec_context call, step 9, indicates suc-
cess, the pointer to the server side gss_ctx_cacheent
is copied from the on the wire struct rpc_gss_cred
ge_ctx into the gss_cred.ge_cred.ge_ctx (step 10).
The NFSv4 client then calls
gssd_import_sec_context (step 11) and
krb5_gss_import_sec_context (step 12) to ob-
tain it’s negotiated gss_context. The context is
stored in a gss_ctx_cacheent in the client gss context
cache (step 13), and a pointer to the newly created
client gss_ctx_cacheent is stored in the gss_cred
ge_ctx_id field.

The client gss cache is implemented as a list of struct
gss_ctx_cacheent’s hanging off the gss_cred stuct
with a pointer to the current gss_context stored in
gss_cred.gc_ctx_id. This design allows for the fact
that there may be multiple gss contexts needed for
a single user, for example, when a server exports
two file systems, one with Kerberos v5 security and
one with LIPKEY security.

auth_gss.h:

/* client gss context cache */
struct gss_ctx_mapping {
rwlock_t
struct list_head
s

lock;
gss_ctx_cache;

struct gss_cred {
struct rpc_cred gc_base;
u32 gc_established;
GSS_BUFFER_T gc_wire_verf;
GSS_BUFFER_T gc_service_name;
GSS_CTX_ID_T gc_ctx_id;
struct gss_ctx_mapping gc_ctx_map;
u32 gc_win;
struct rpc_gss_cred gc_cred;

The client gss caching code is in gss_cache.c.

7 Create and Verify GSS tokens

All gss communications are wrapped in gss to-
ken headers and followed by mechanism specific
payloads. This includes the gss_verify mic and
gss_get_mic used to hash portions of the gss header
to verify message integrity. Note that this verifica-
tion is part of each gss data message and is separate
from the data integrity calculations.

The gss token header is ASN1 encoded, and it’s con-
struction is therefore non-trivial. I imported the
Kerberos v5 routines to create and verify the token
headers (gss-generic_token.c).

gss-mic.c contains the mechanism independent
gss_get_mic and gss_verify_mic function calls, which
hard code the calls to the Kerberos v specific
calls kg seal (in gss_kbseal.c), and kg unseal (in
gss_kbunseal.c). These Kerberos v5 calls construct
the gss token payload. They are also used for
data integrity and privacy tokens. They have code
that switches on algorithms stored in the gss con-
text. I’ve implemented the Kerberos v5 default al-
gorithms which use md5 and des cbc. The md5 algo-
rithm is used to calculate and verify the gss header
checksums.

An important part of the gss protocol is the cor-
rect creation of sequence numbers. The functions in
gss_generic_ordering.c perform this task. The Ker-
beros v token payload encrypts the calculated se-
quence number using des cbc. These functions exist
in gss_kbutil_segnum.c.

8 Kerberos 5 Mechanism and the
Linux CryptoAPI

I use the Linux kernel crypto patch, currently
cryptoapi-2.4.10.diff. The cryptoapi uses strings to
locate digests and ciphers. Kerberos v5 gss sends in-
tegers as algorithm identifiers. I constructed static
lists that map Kerberos v5 algorithm identifiers to
linux crypto names, and functions to locate and
lookup buffer lengths (gss_util_crypto.c).

I then replace the (three or so deep) Kerberos
vb crypto interface with calls into the Linux ker-
nel cryptoapi. gss_kfencrypt.c, gss_kbdecrypt.c, and
gss_k5hash_md5.c all contain pieces of this code.

