
Project Status

NFSv4 Extensions for Performance and Interoperability

Center for Information Technology Integration

This is a report on the status of CITI’s EMC-funded pNFS development project as of January 29, 2009. Items
marked in blue reflect change from the November 21, 2008 report.

Sessions in the generic Linux pNFS client
The Linux Sessions implementation is a broad community effort, to which CITI contributes. Sessions code is
currently being submitted to the Linux NFS maintainers, Bruce Fields and Trond Myklebust, consuming much of the
attention leading Sessions implementers, Andy Adamson and Benny Halevy. As this proceeds, much of the remaining
community effort is stalled while we wait for consensus. In particular, this affects our S1–4 and C1–5 tasks.

Task Description Status

S1 Session recovery. This task was complete, but will be revisited when the Sessions
integration is complete.

S2 Callback channel. This task was complete, but will be revisited when the Sessions
integration is complete.

S3 NFSv4.1 back channel security
using machine credentials.

To provide for back channel security, we added support for machine
credentials in the SETCLIENTID call. This makes it possible for the
callback client to establish a secure channel to the corresponding
principal on the callback server. Patches were committed to Linux
2.6.26-rc1.

The 4.1 GSS security framework on the backchannel is being
rewritten by Ricardo Labiaga (NetApp).

We are working on extending the RPC upcall mechanism so that the
callback client can acquire appropriate credentials from gssd. Patches
were posted to the linux-nfs mailing list and are under discussion.

S4 NFSv4.1 security using secret
state verifiers.

We now have a working Python implementation to test against.

See Appendix II for details on SSV progress.

Other generic pNFS client issues

Task Description Status

C1
LAYOUTGET,
LAYOUTRETURN, and
CB_LAYOUTRECALL.

LAYOUTGET and LAYOUTRETURN are complete.

We need to address a layering issue: the generic layer is unable to
merge adjacent or overlapping layouts, so it sends more
LAYOUTGET requests than it needs to. The block layer handles this
under the covers, but it would be more efficient to merge them in
the generic layer.

We have a general framework and a draft implementation
of CB_LAYOUTRECALL. Testing with the LSI server exposed some
issues related to draining pending I/O in the generic session code;
addressing the issue is deferred while the code stabilizes.

We are currently preparing to test with the new EMC image that
uses CB_LAYOUTRECALL.

C2
CB_RECALL_ANY,
RECLAIM_COMPLETE, and
CB_RECALLABLE_OBJ_AVAIL.

No progress to report. (So far, the NFSv4.1 development community
is deferring work on these non-critical elements.)

Task Description Status

C3 Integration of block layout
requirements into generic client.

This task is under way and ongoing. The main pNFS branch now
includes appropriate hooks for the block driver in the write path.

C4
Implement new NFSv4.1 draft
19–21 pNFS features and
behavior.

Layout stateid is under active development in the NFSv4.1
development community, with Andy Adamson (NetApp) leading the
way.

Basic stateid functionality exists, but further work is deferred
pending Sessions integration.

Device notification is under active development in the pNFS
development community, with Marc Eshel (IBM) leading the
development activity. Draft rewrites have simplified this task
considerably by eliminating the ADD operation. XDR formats have
been worked out and we have an initial implementation of the
generic client and server processing code.

Generic code exists to handle DELETE notify, but not CHANGE
notify.

C5 Reboot recovery.
This task was nearly complete, until the NFS maintainers simplified
state management in Linux 2.6.29, so the reboot recovery interfaces
must now be revisited.

Block layout module

Task Description Status

B1 Rebase the implementation from
block draft 3 to block draft 6.

We are at draft 12, which was approved by the IESG as a proposed
standard, so this task is complete.

B2
Extend the block layout
implementation to support large
server block sizes.

This task is complete.

B3
Block layout client
implementation based on
architectural review.

We are conducting final review and integration of Tang Haiying’s user-
space disk scanning code, which replaces CITI’s kernel-based
prototype. Haiying's code recursively constructs a logical volume in
user space and passes that information to the kernel.

B4

Support for complex volume
topologies using the Linux device
mapper (dm) needs to be
reviewed to meet performance
and quality requirements.

We are ready to begin comprehensive testing of Haiying's code.

B5
Extend the layout cache
implementation to support at
least two devices.

We have a working implementation that needs further testing.

B6

Extend the device mapper to
support the asynchronous
CB_NOTIFY_DEVICEID callback
operation.

Block-specific device notification depends on generic device
notification, which now exists (Task C4). We are ready to begin
work on this task.

B7

The block layout client must
implement a timed lease I/O
fencing mechanism to insulate
against network partition.

We are reviewing Haiying’s code for this task.

– 2 –

PyNFS

Task Description Status

P1
Update PyNFS client and server
to support new protocol features
in the latest drafts.

The PyNFS client and server now support the latest drafts
(minorversion1 draft 29 and pnfs-block draft 12).

P2
Enhance the block server
implementation to pass full
Connectathon tests.

The PyNFS server passes all Connectathon NFSv4 and non-pNFS
NFSv4.1 tests except for the large file test. We now have a
prototype implementation of a “real” file system that supports read,
write, and file creation.

– 3 –

Milestone summary
The following tasks were projected to be complete by the May 2008 Connectathon.

Task Description Status

S1 Session recovery Complete,
revisiting

S2 Callback channel implementation Complete,
revisiting

B1 Block layout draft 6 Complete

B2 Server block sizes greater then 4 KB Complete

B3 Revisit block layout client implementation based on architectural review Nearly complete

The following tasks are projected to be complete by the Fall 2008 Bakeathon.

Task Description Status

S3 Back channel security using machine credentials Under way

C1 LAYOUTGET, LAYOUTRETURN, and CB_LAYOUTRECALL Nearly complete

C2 CB_RECALL_ANY, RECLAIM_COMPLETE, CB_RECALLABLE_OBJ_AVAIL No progress

P1 PyNFS block client and server support latest drafts Complete

P2 PyNFS block server passes full Connectathon tests, prototype file system. Nearly complete

The following tasks are projected to be under way by the Fall 2008 Bakeathon.

Task Description Status

C3 Integration of block layout requirements into the generic client Ongoing

C4 Draft 19–21 pNFS features and behavior. See Appendix for status. Under way

B4 Complex volume topologies Nearly complete

B5 Copy-on-write Nearly complete

The remaining tasks are projected to be complete by the end of the project.

Task Description Status

S4 NFSv4.1 security using secret state verifiers Under way

C5 Reboot recovery Complete,
revisiting

B6 CB_NOTIFY_DEVICEID Under way

B7 Timed lease I/O fencing mechanism Nearly complete

– 4 –

Appendix I
This table is a partial list of organizations and engineers who are contributing to NFSv4.1 and pNFS.

Organization People Role

CITI

Bruce Fields Code review

Peter Honeyman Advisory

Fred Isaman
pNFS block layout client
PyNFS NFSv4.1 test suite
PyNFS pNFS block client and server

Olga Kornievskaia SSV GSSAPI
Long-haul WAN performance for NFSv4.1

David Richter Directory delegation

DESY Tigran Mkrtchyan pNFS file layout server for dCache in Java
pNFS wireshark module

EMC

Richard Chandler pNFS block layout architecture
pNFS Celerra implementation

Daniele Gardere NFSv4.1

Jean-Loiuis Rochette pNFS and delegation implementation

Haiying Tang pNFS block layout client

Mario Wurzl Advisory

IBM Marc Eshel
Dean Hildebrand

pNFS file layout client
Generic pNFS client and server

NetApp

Andy Adamson Generic pNFS client and server

Ricardo Labiaga
Mike Sager

NFSv4.1 sessions client and server

Dan Muntz pNFS file layout server on linux

Trond Myklebust Code review

Tom Talpey Advisory

Panasas Benny Halevy pNFS generic client and server
pNFS OSD layout client and server

– 5 –

Appendix II: Notes on SSV
NFSv4.1 clients and servers need a secure way to manage state so that a malicious or errant client can not
interfere with another client’s state management operations, e.g., Alice should not be able to close Bob’s open files.
One way to provide this level of security is with “machine credentials” such as a Kerberos keytab or a Public Key
Certificate, however these credentials must be manufactured in advance, which is not always convenient. The SSV
GSSAPI1 mechanism supports secure state management without prearrangement. Furthermore, the SSV
mechanism provides a finer granularity for protection by preventing clients on the same host from interfering with
one another.

An SSV (or Secret State Verifier) is a unique secret key shared by an NFSv4.1 client and server that serves as the
secret key for the SSV GSS mechanism. As with any GSSAPI mechanism, the SSV GSSAPI implementation includes
methods for key agreement, for integrity protection, and for privacy protection. SSV is unusual in that it does not
have a context establishment method; instead security context is established with the NFSv4.1 EXCHANGE_ID
and SET_SSV operations.

CITI has developed a Python implementation of SSV that we use to test the ongoing Linux SSV implementation. At
this writing, no other SSV implementations exist, to our knowledge.

In CITI’s Linux SSV implementation, we have a working SET_SSV operation on the client and have implemented
GSS_GetMIC and GSS_VerifyMIC functions for Message Integrity Checking. We are currently working on the
GSS_Wrap and GSS_UnWrap functions. Some work remains:

• Server side Set_SSV operation
• Multiple versions of SSV
• Multi-page data input to the SSV GSS functions
• Invoking Set_SSV for every new principal

– 6 –

1 Linn, J. 2000. Generic Security Service Application Program Interface Version 2, Update 1. RFC 2078. The Internet Society.

