
24333721.doc

Pentium  II Processor
Specification Update

Release Date: December 1998

Order Number: 243337-021

The Pentium® II processor may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are documented in this Specification
Update.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Pentium® II processor may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

The Specification Update should be publicly available following the last shipment date for a period of time equal to the specific
product’s warranty period. Hardcopy Specification Updates will be available for one (1) year following End of Life (EOL). Web
access will be available for three (3) years following EOL.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com

Copyright © Intel Corporation 1998.

* Third-party brands and names are the property of their respective owners.

24333721.doc

CONTENTS
REVISION HISTORY... v

PREFACE ...vii

Specification Update for Pentium ® II Processors... 1

GENERAL INFORMATION.. 3

ERRATA... 16

DOCUMENTATION CHANGES .. 50

SPECIFICATION CLARIFICATIONS .. 62

SPECIFICATION CHANGES .. 79

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

v

REVISION HISTORY
Date of Revision Version Description

May 1997 -001 This document is the first Specification Update for the Pentium®

II processor.

June 1997 -002 Added Erratum 25. Update Erratum 13 status in the Summary
Table of Changes. Added Documentation Change Table and
Documentation Change 1. Added 300-MHz Pentium II processor
information.

July 1997 -003 Added Erratum 26. Added Specification Change Table and
Specification Changes 1 and 2.

August 1997 -004 Added Erratum 27. Added Document Change 2 and Spec
Changes 3, 4, 5, 6, and 7.

September 1997 -005 Updated Erratum 27. Added Errata 28 and 29. Added Document
Change 3 and Spec Clarification 1. Added C1 stepping
information. Updated Spec Change 6.

October 1997 -006 Updated Errata 6 and 18, and S-spec table.

November 1997 -007 Updated Erratum 22. Added Specification Clarification 2, 3, and
4.

December 1997 -008 Updated and added notes to S-spec table. Updated package
information table. Updated Errata 24. Added Errata 30, 31, and
32.

January 1998 -009 Added notes to Pentium II processor markings. Updated Erratum
28. Added Erratum 33. Added Documentation Change 4 and 5.
Added Specification Change 5.

January 26, 1998
(Special Edition)

-010 Updated S-spec table. Added dA0 stepping information. Added
Errata 34, 35, 36, 37, and 38.

February 1998 -011 Added new processor markings. Corrected Errata 13 and 34 for
steppings affected. Corrected typos in summary table for Errata
34, 35, and 36. Added Erratum 39. Added Documentation
Change 6.

March 1998 -012 Added new boxed processor markings. Updated Documentation
Changes section, Specification Clarifications section, and
Specification Changes section. Corrected Erratum 8. Added
Errata 40, and 41. Added Documentation Changes 6 and 7.
Added Specification Clarification 6. Added Specification
Changes 1 and 2.

April 1998 -013 Added new Mobile Pentium II processor markings and Pentium II
Mobile Modules markings. Updated Documentation Changes
section, Specification Clarifications section, and Specification
Changes section. Updated S-spec table. Added new steppings
to Summary Table of Changes. Corrected Erratum 1. Added
Errata 42, 43 and 44. Added Documentation Change 8. Updated
Specification Change 1. Added Specification Change 3.

May 1998 -014 Updated S-spec table. Updated Errata 2 and 42. Added Errata
45 through 51. Corrected Documentation Change 7. Updated
Specification Change 2.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

vi

Date of Revision Version Description

June 1998 -015 Updated S-spec Table. Updated Summary Table of Changes.
Updated Erratum 47. Added Errata 52 and 53. Added
Documentation Changes 9 through 16. Added Specification
Clarifications 7 though 9. Updated Specification Change 1.
Added Specification Change 4 and 5.

July 1998 -016 Added Pentium II Processor and Boxed Pentium II Processor 3
Line Markings. Updated Preface, Documentation Changes
section, Specification Clarifications section, and Specification
Changes section. Updated S-spec Table. Updated Summary
Table of Changes. Added Errata 54 and 55. Added
Documentation Changes 17 through 21. Added Specification
Clarifications 10 through 15. Added Specification Change 6.

August 1998 -017 Moved all references to the Mobile Pentium II processor to the
Mobile Pentium® II Processor Specification Update. Updated S-
spec Table. Updated Summary Table of Changes. Updated
Errata 6 and 38. Added Errata 56 through 59. Updated
Specification Clarification 5.

September 1998 -018 Added new Pentium II OverDrive® Processor markings.
Updated S-spec table. Updated Errata 56 and 57. Added Errata
60 through 62. Added Specification Changes 6 and 7.

October 1998 -019 Implemented new numbering nomenclature. Updated S-spec
table. Updated Errata A1 and A48. Added Errata A62, A63 and
A64. Added Specification Change A8. Added Specification
Clarifications A16 and A17.

November 1998 -020 Updated Specification Change A1, Documentation Change A11,
Erratum A44, Specification Change A6 and the Pentium II
Processor Identification Information table. Added Erratum A65
and Documentation Change A18.

December 1998 -021 Updated Specification Change A1 and the Pentium® II Processor
Identification Information table. Added Erratum A66. Updated
status for Errata A16 through A29, A31, A35 through A39, A42,
A48, A54, A57, and A60. Changed affected steppings for
Erratum A32.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

vii

PREFACE
This document is an update to the specifications contained the Pentium® II Processor Developer’s Manual
(Order Number 243341), the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet
(Order Number 243335), the Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet (Order
Number 243657), and the Intel Architecture Software Developer’s Manual, Volumes 1, 2 and 3 (Order Numbers
243190, 243191, and 243192, respectively). It is intended for hardware system manufacturers and software
developers of applications, operating systems, or tools. It contains Specification Changes, S-Specs, Errata,
Specification Clarifications, and Documentation Changes.

Nomenclature

Specification Changes are modifications to the current published specifications for the Pentium® II processor.
These changes will be incorporated in the next release of the specifications.

S-Specs are exceptions to the published specifications, and apply only to the units assembled under that
s-spec.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s impact
to a complex design situation. These clarifications will be incorporated in the next release of the specifications.

Documentation Changes include typos, errors, or omissions from the current published specifications. These
changes will be incorporated in the next release of the specifications.

Errata are design defects or errors. Errata may cause the Pentium II processor’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given processor must assume
that all errata documented for that processor are present on all devices unless otherwise noted.

Identification Information

The Pentium II processor can be identified by the following values:

Family 1 233-, 266-, 300, 3333-MHz Model 3 2 266-, 300-, 333-, 350-, 400-, and 450- MHz Model 5 2

0110 0011 0101

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after the CPUID

instruction is executed with a 1 in the EAX register, and the generation field of the Device ID register accessible through
Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID
instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through
Boundary Scan.

3. This is a Pentium® II OverDrive® processor. Please note that although this processor has a CPUID of 163xh, it uses a
Pentium II processor CPUID 065xh processor core.

The Pentium II processor’s second level (L2) cache size can be determined by the following register contents:

512-Kbyte Unified L2 Cache 1 43h

NOTE:
1. For the Pentium® II processor, the unified L2 cache size corresponds to the value in bits [3:0] of the EDX register after

the CPUID instruction is executed with a 2 in the EAX register. Other Intel microprocessor models or families may move
this information to other bit positions or otherwise reformat the result returned by this instruction; generic code should
parse the resulting token stream according to the definition of the CPUID instruction.

Specification Update for
Pentium ® II Processors

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

3

GENERAL INFORMATION

Pentium  II Processor and Boxed Pentium  II Processor 3 Line Markings

350/512E/100/2.2V S1
SL28R FFFFFFFF-NNNN
i ©’97 PHILIPPINES

2-D Matrix Mark

Country of Assy

Speed / Cache / Bus / Voltage

S-Spec - FPO - Serial #
m

UL Identifier

Dynamic Mark Area

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

4

Pentium  II Processor Markings

80522PXZZZLLL SYYYY
FFFFFFFF-XXXX Country of Origin

2-D Matrix Mark
Intel UCC#
Order Code (Product - speed)
S Number
Lot Number (date, factory)

Dynamic Mark Area

Hologram
Location

pentium ®IIP R O C E S S O

with MMX ™ technology

pentium ®IIP R O C E S S

Dynamic Mark Area

80523PXZZZLLL SYYYY
FFFFFFFF-XXXX Country of Origin

NOTES:
• ZZZ = Speed (MHz).
• SYYYY = S-spec Number.
• LLL = Level 2 Cache Size (in Kilobytes).
• FFFFFFFF = FPO # (Test Lot Traceability #).
• XXXX = Serialization Code.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

5

Boxed Pentium  II Processor Markings

B80522PZZZLLLE SYYYY
FFFFFFFF-XXXX Country of Origin

2-D Matrix Mark
Intel UCC#
Order Code (Product - speed)
S Number
Lot Number (date, factory)

Dynamic Mark Area

Dynamic Mark Area

Hologram
Location

pentium ®II
P R O C E S S O

with MMX ™ technology

pentium ®IIP R O C E S S

dA-Step Production Units

C-Step Production Units

B80523PZZZLLLE SYYYY 2.0V
FFFFFFFF-XXXX Country of Origin

NOTES:
• ZZZ = Speed (MHz).
• LLL = Level 2 Cache Size (in Kilobytes).
• E = ECC Support in Level 2 Cache
• SYYYY = S-spec Number.
• FFFFFFFF = FPO # (Test Lot Traceability #).
• XXXX = Serialization Code.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

6

Pentium  II OverDrive  Processor Line Markings

Bottom View of Pentium ® II OverDrive ® Processor

PODP66X333 SYYYY VW.W

NOTES:

Label Markings
• FFFFFFF = FPO # (Test Lot Traceability #).
• DDDDDD – DDD = Altered Assembly Number.

Bottom Cover Markings
• PODP66X333 = Product Code.
• SYYYY = S-spec Number.
• VW.W = Version Number.

NOTES:

1. Attached fan heat sink is not end user removable.

2. Fan power is provided through external fan power
connector, not through the processor socket.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

7

Summary Table of Changes

The following table indicates the Specification Changes, Errata, Specification Clarifications, or Documentation
Changes which apply to the Pentium II processors. Intel intends to fix some of the errata in a future stepping of
the component, and to account for the other outstanding issues through documentation or specification changes
as noted. This table uses the following notations:

CODES USED IN SUMMARY TABLE

X: Specification Change, Erratum, Specification Clarification, or Documentation
Change applies to the given processor stepping.

Doc: Intel intends to update the appropriate documentation in a future revision.

Fix: This erratum is intended to be fixed in a future stepping of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.

AP: APIC related erratum.

SUB: This column refers to errata on the Pentium® II processor substrate.

Shaded: This item is either new or modified from the previous version of the document.

Some of Intel’s Specification Updates will be undergoing a numbering methodology change to reduce confusion
when referring to errata which affect a specific product. Each Specification Update item will be prefixed with a
capital letter to distinguish the product it refers to. The key below details the letters which will be used for the
current Intel microprocessor Specification Updates:

A = Pentium® II processor

B = Mobile Pentium II processor

C = Intel® Celeron™ processor

D = Pentium II Xeon™ processor

The Specification Updates for the Pentium processor, Pentium Pro processor, and other Intel products will not
be implementing such a convention at this time.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

8

Pentium  II Processor Identification Information

S-Spec
Core

Stepping CPUID

Speed
(MHz)

Core/Bus
 L2 Size
(Kbytes)

TagRAM/
Stepping

ECC/
Non-ECC

Processor
Substrate
Revision

Package
and

Revision Notes

SL264 C0 0633h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2,13

SL265 C0 0633h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2,13

SL268 C0 0633h 233/66 512 T6/B0 ECC D SECC 3.00 1, 2,13

SL269 C0 0633h 266/66 512 T6/B0 ECC D SECC 3.00 1, 2,13

SL28K C0 0633h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,13

SL28L C0 0633h 266/66 512 T6/B0 non-EC C D SECC 3.00 1, 2, 3, 9,13

SL28R C0 0633h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2,13

SL2MZ C0 0633h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2, 3,13

SL2HA C1 0634h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2,13

SL2HC C1 0634h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2,13

SL2HD C1 0634h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2,13

SL2HE C1 0634h 266/66 512 T6/B0 ECC D SECC 3.00 1, 2,13

SL2HF C1 0634h 233/66 512 T6/B0 ECC D SECC 3.00 1, 2,13

SL2QA C1 0634h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,13

SL2QB C1 0634h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,13

SL2QC C1 0634h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2, 3,13

SL2KA dA0 0650h 333/66 512 T6P/A3 ECC B1 SECC 3.00 4, 5, 8,14

SL2QF dA0 0650h 333/66 512 T6P/A3 ECC B1 SECC 3.00 3, 4, 5, 8,14

SL2K9 dA0 0650h 266/66 512 T6P/A3 ECC B1 SECC 3.00 4, 5, 8,14

SL35V dA1 0651h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 3,4,5,7,8, 15

SL2QH dA1 0651h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,15

SL2S5 dA1 0651h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,15

SL2S6 dA1 0651h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,15

SL2S7 dA0 0651h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8, 10,15

SL2SF dA1 0651h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,15

SL2SH dA1 0651h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
10,15

SL2VY dA1 0652h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 3,3,6,7,8,15

SL33D dB0 0652h 266/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,15

SL2YK dB0 0652h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,15

SL2WY dB0 0652h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,15

SL2WZ dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,15

SL2YM dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
10,15

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

9

Pentium  II Processor Identification Information (Continued)

S-Spec
Core

Stepping CPUID

Speed
(MHz)

Core/Bus
 L2 Size
(Kbytes)

TagRAM/
Stepping

ECC/
Non-ECC

Processor
Substrate
Revision

Package
and

Revision Notes

SL2WB dB0 0652h 450/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 7, 8, 10,
11,15

SL2W7 dB0 0652h 266/66 512 T6P-e/A0 ECC B1 SECC 2.00 4,5,7,8,15

SL2W8 dB0 0652h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,15

SL2TV dB0 0652h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,15

SL2U3 dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,15

SL2U4 dB0 0652h 350/100 512 T6P-e/A0 ECC B0 SECC 3.00 4, 6, 7, 8,15

SL2U5 dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8, 10,15

SL2U6 dB0 0652h 400/100 512 T6P-e/A0 ECC B0 SECC 3.00 4, 6, 7, 8, 10,15

SL2U7 dB0 0652h 450/100 512 T6P-e/A0 ECC B0 SECC 3.00 4, 7, 8, 10,
11,15

SL2KE TdB0 1632h 333/66 512 C6C/A3 ECC N/A PGA 4, 7, 8, 12

SL36U dB1 0652h 350/100 512 T6P-e/A3 ECC B1 SECC 3.00 7,8,10

SL38Z dB1 0652h 400/100 512 T6P-e/A3 ECC B1 SECC 3.00 7,8

NOTES:

1. VCC_CORE is specified for 2.8 V +100/-70 mV for all Pentium® II processors.

2. TPLATE is specified for 5 °C – 75 °C for these Pentium II processors with S.E.C. cartridge packages except for s-specs
SL28R , SL2HA, SL2MZ, and SL2QC which have a TPLATE specification for 5 ºC – 72 ºC.

3. This is a boxed Pentium II processor with an attached fan heatsink.

4. VCCCORE is specified for 2.0 V +100/-70 mV for these Pentium II processors.

5. TPLATE is specified for 5 °C – 65 °C for these Pentium II processors.

6. TPLATE is specified for 5 °C – 75 °C with ETP (extended thermal plate) for these Pentium II processors.
7. Cacheable address space supports up to 4 GB for these Pentium II processors.
8. These processors will not shut down automatically on THERMTRIP#.
9. These boxed processors may have packaging which incorrectly indicates ECC support in the L2 cache.
10. These processors are affected by Erratum A57.
11. TPLATE is specified for 5 °C – 70 °C with ETP (extended thermal plate) for these Pentium II processors.
12. This is a boxed Pentium II OverDrive® with an attached fan heatsink.
13. This TagRAM notation is equivalent to part number 82459AB.
14. This TagRAM notation is equivalent to part number 82459AC.
15. This TagRAM notation is equivalent to part number 82459AD.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

10

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans ERRATA

A1 X X X X X X X NoFix FP Data Operand Pointer may be
incorrectly calculated after FP access
which wraps 64-Kbyte boundary in 16-bit
code

A2 X X X X X X X NoFix Differences exist in debug exception
reporting

A3 X X X X X X X NoFix FLUSH# servicing delayed while waiting
for STARTUP_IPI in 2-way MP systems

A4 X X X X X X X NoFix Code fetch matching disabled debug
register may cause debug exception

A5 X X X X X X X NoFix Double ECC error on read may result in
BINIT#

A6 X X X X X X X NoFix FP inexact-result exception flag may not
be set

A7 X X X X X X X NoFix BTM for SMI will contain incorrect FROM
EIP

A8 X X X X X X X NoFix I/O restart in SMM may fail after
simultaneous MCE

A9 X X X X X X X NoFix Branch traps do not function if BTMs are
also enabled

A10 X X X X X X X NoFix Checker BIST failure in FRC mode not
signaled

A11 X X X X X X X NoFix BINIT# assertion causes FRCERR
assertion in FRC mode

A12 X X X X X X X NoFix Machine check exception handler may not
always execute successfully

A13 X X X X X X X NoFix MCE due to L2 parity error gives L1
MCACOD.LL

A14 X X X X X X X NoFix LBER may be corrupted after some
events

A15 X X X X X X X NoFix BTMs may be corrupted during
simultaneous L1 cache line replacement

A16 X Fixed System may hang due to internal protocol
violation

A17 X Fixed Livelock condition may cause system
hang

A18 X X Fixed Mispredicted branch may cause incorrect
tag word on MMX™ technology
instructions

A19 X X Fixed Thermal sensor/THERMTRIP# does not
work

A20 X X Fixed Spurious machine check exception via
IFU data parity error

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

11

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans ERRATA

A21 X X Fixed Loss of inclusion in IFU can cause
machine check exception

A22 X X Fixed Possible system hang when paging is
disabled and reenabled from uncached
memory

A23 X X Fixed L2 performance counters miscount
L2_RQSTS

A24 X X Fixed Erroneous signaling of user mode
protection violation

A25 X Fixed Invalid operation not signaled by the FIST
instruction on some out of range operands

A26 X X Fixed FLUSH# assertion disables L2 machine
check exception reporting

A27 X X Fixed EFLAGS may be incorrect after a
multiprocessor TLB shootdown

A28 X X X X Fixed Delayed line invalidation issue during 2-
way MP data ownership transfer

A29 X X X X Fixed Potential early deassertion of LOCK#
during split-lock cycles

A30 X X X X X X X NoFix A20M# may be inverted after returning
from SMM and Reset

A31 X X X X Fixed Reporting of floating-point exception may
be delayed

A32 X X X X X X X Fix EFLAGS discrepancy on a page fault
after a multiprocessor TLB shootdown

A33 X X X X X X X NoFix Near CALL to ESP creates unexpected
EIP address

A34 Fixed Deep sleep exit transition may cause
hang

A35 X X Fixed Built-in self test always gives nonzero
result

A36 X X Fixed THERMTRIP# may not be asserted as
specified

A37 X Fixed Cache state corruption in the presence of
page A/D-bit setting and snoop traffic

A38 X Fixed Snoop cycle generates spurious machine
check exception

A39 X X X X Fixed MOVD/MOVQ instruction writes to
memory prematurely

A40 X X X X X X X NoFix Memory type undefined for nonmemory
operations

A41 X X X X X NoFix Infinite snoop stall during L2 initialization
of MP systems

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

12

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans ERRATA

A42 X X X X Fixed Bus protocol conflict with optimized
chipsets

A43 X X X X X X X NoFix FP Data Operand Pointer may not be zero
after power on or Reset

A44 X X X X X X X NoFix MOVD following zeroing instruction can
cause incorrect result

A45 X X X X X X X NoFix Premature execution of a load operation
prior to exception handler invocation

A46 X X X X X X X NoFix Read portion of RMW instruction may
execute twice

A47 X X X X X X X Fix Test pin must be high during power up

A48 X X X X X X X NoFix Intervening writeback may occur during
locked transaction

A49 X X X X X X X NoFix MC2_STATUS MSR has model-specific
error code and machine check
architecture error code reversed

A50 X X X X X X X NoFix Mixed cacheability of lock variables is
problematic in MP systems

A511 X X X X X X X NoFix MOV with debug register causes debug
exception

A521 X X X X X NoFix Upper four PAT entries not usable with
Mode B or Mode C paging

A531 X X X X X X X Fix UC write may be reordered around a
cacheable write

A541 X X Fixed Incorrect memory type may be used when
MTRRs are disabled

A551 X X X X X X X Fix Misprediction in program flow may cause
unexpected instruction execution

A561 X X X X X Fix System bus ECC may report false errors

A571 X X X X X X Fixed Full In-Order Queue may cause infinite
DBSY# assertion

A581 X X X X X X X NoFix Data breakpoint exception in a
displacement relative near call may
corrupt EIP

A591 X X X X X NoFix System bus ECC not functional with 2:1
ratio

A601 X X X X X X X NoFix Fault on REP CMPS/SCAS operation
may cause incorrect EIP

A611 X X X X X X X NoFix RDMSR and WRMSR to invalid MSR may
not cause GP fault

A621 X X X X X X X NoFix SYSENTER/SYSEXIT instructions can
implicitly load “null segment selector” to
SS and CS registers

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

13

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans ERRATA

A631 X X X X X X X NoFix PRELOAD followed by EXTEST does not
load boundary scan data

A641 X X X X X X X NoFix Far jump to new TSS with D-bit cleared
may cause system hang

A651 X X X X X X X Fix Incorrect chunk ordering may prevent
execution of the machine check exception
handler after BINIT#

A661 X X X X X X X NoFix Resume Flag may not be cleared after
debug exception

A1AP X X X X X X X NoFix APIC access to cacheable memory
causes SHUTDOWN

A2AP X X X X X X X NoFix 2-way MP systems may hang due to
catastrophic errors during BSP
determination

A3AP X X X X X X X NoFix Write to mask LVT (programmed as
EXTINT) will not deassert outstanding
interrupt

NOTE:
1. This number needs to be incremented by one when attempting to correlate to a previous revision’s numbering scheme

where the old numbering nomenclature was used. For example, the existing Pentium® II Erratum A51 is equivalent to the
previous Pentium II Erratum 52.

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans DOCUMENTATION CHANGES

A1 X X X X X X X Doc Invalid arithmetic operations and masked
responses to them relative to FIST/FISTP
instruction

A2 X X X X X X X Doc FIDIV/FIDIVR m16int description

A3 X X X X X X X Doc PUSH does not pad with zeros

A4 X X X X X X X Doc DR7, bit 10 is reserved

A5 X X X X X X X Doc Additional states that are not automatically
saved and restored

A6 X X X X X Doc S.E.C. cartridge mechanical specification
corrections

A7 X X X X X X X Doc Cache and TLB description correction

A8 X X X X X X X Doc SMRAM state save map contains
documentation error

A9 X X X X X X X Doc OF and DF of the EFLAGS register are
mislabeled as system flags

A10 X X X X X X X Doc CS:EIP pushed onto stack prior to code
segment limit check

A11 X X X X X X X Doc Corrections to opcode maps

A12 X X X X X X X Doc MP initialization protocol algorithm
correction

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

14

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans DOCUMENTATION CHANGES

A13 X X X X X X X Doc Interrupt 13-general protection exception
(#GP)

A14 X X X X X X X Doc Corrections to Intel Architecture Software
Developer’s Manual, Volume 2:
Instruction Set Reference

A15 X X X X X X X Doc MCI_ADDR MSR reference section
correction

A16 X X X X X X X Doc FCOMI/FCOMIP/FUCOMI/FUCOMIP
setting of flags relative to exceptions

A17 X X X X X X X Doc MemTypeGet() function example

A18 X X X X X X X Doc RSVD flag correction

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans SPECIFICATION CLARIFICATIONS

A1 X X X X X X X Doc Writes to WC memory

A2 X X X X X X X Doc Multiple processor protocol and
restrictions

A3 X X X X X X X Doc NMI handling while in SMM

A4 X X X X X X X Doc Critical sequence of events during a page
fault exception

A5 X X X X X X X Doc Performance-monitoring counter issues

A6 X X X X X X X Doc POP[ESP] with 16-bit stack size

A7 X X X X X X X Doc Preventing caching

A8 X X X X X X X Doc Paging must be enabled before enabling
the page global bit

A9 X X X Doc PWRGOOD inactive pulse width

A10 X X X X X X X Doc Interrupt recognition determines priority

A11 X X X X X X X Doc References to 2-Mbyte pages should
include 4-Mbyte pages

A12 X X X X X X X Doc Modification of reserved areas in the
SMRAM saved state map

A13 X X X X X X X Doc TLB flush necessary after PDPE change

A14 X X X X X X X Doc Exception handler wrong code bit
clarification

A15 X X X X X X X Doc Propagation of page table entry changes
to multiple processors

A16 X X X X X X X Doc Software initialization requirements for
FRC mode

A17 X X X X X X X Doc Switching to protected mode while in
SMM

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

15

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 SUB Plans SPECIFICATION CHANGES

A1 X X X X X X X Doc Mixing steppings in DP systems

A2 X X X X X X X Doc System bus timings changes

A3 X X X X X X X Doc FRCERR pin removed from specification

A4 X X X X X Doc New footnote for PWRGOOD inactive
pulse width

A5 X X X X X X X Doc PICCLK rise and fall times

A6 X X X X X X X Doc System bus AC specifications (clock)

A7 X X X X X X X Doc Thermal design specification

A8 X X X X X X X Doc WC buffer eviction data ordering

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

16

ERRATA

A1. FP Data Operand Pointer May Be Incorrectly Calculated After FP
Access Which Wraps 64-Kbyte B oundary in 16-Bit Code

PROBLEM: The FP Data Operand Pointer is the effective address of the operand associated with the last
noncontrol floating-point instruction executed by the machine. If an 80-bit floating-point access (load or store)
occurs in a 16-bit mode other than protected mode (in which case the access will produce a segment limit
violation), the memory access wraps a 64-Kbyte boundary, and the floating-point environment is subsequently
saved, the value contained in the FP Data Operand Pointer may be incorrect.

IMPLICATION: A 32-bit operating system running 16-bit floating-point code may encounter this erratum, under
the following conditions:

• The operating system is using a segment greater than 64 Kbytes in size.

• An application is running in a 16-bit mode other than protected mode.

• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is executed.

• The operating system performs a floating-point environment store (FSAVE/FNSAVE/FSTENV/FNSTENV)
after the above memory access.

• The operating system uses the value contained in the FP Data Operand Pointer.

 Wrapping an 80-bit floating-point load around a segment boundary in this way is not a normal programming
practice. Intel has not currently identified any software which exhibits this behavior.

 WORKAROUND: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point code, care
must be taken to ensure that no 80-bit floating-point accesses are wrapped around a 64-Kbyte boundary.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A2. Differences Exist in De bug E xception Reporting

PROBLEM: There exist some differences in the reporting of code and data breakpoint matches between that
specified by previous Intel processors’ specifications and the behavior of the Pentium II processor, as described
below:

CASE 1:

The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the instruction following it causes
a debug register protection fault (DR7.gd is already set, enabling the fault). The processor reports delayed data
breakpoint matches from the MOVSS or POPSS instructions by setting the matching DR6.bi bits, along with the
debug register protection fault (DR6.bd). If additional breakpoint faults are matched during the call of the debug
fault handler, the processor sets the breakpoint match bits (DR6.bi) to reflect the breakpoints matched by both
the MOVSS or POPSS breakpoint and the debug fault handler call. The Pentium II processor only sets DR6.bd
in either situation, and does not set any of the DR6.bi bits.

CASE 2:

In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with a data breakpoint is
followed by a store to memory which crosses a 4-Kbyte page boundary, the breakpoint information for the
MOVSS or POPSS will be lost. Previous processors retain this information across such a page split.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

17

CASE 3:

If they occur after a MOVSS or POPSS instruction, the INT n, INTO, and INT3 instructions zero the DR6.Bi bits
(bits B0 through B3), clearing pending breakpoint information, unlike previous processors.

CASE 4:

If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously, the SMI will be serviced
via a call to the SMM handler, and the pending breakpoint will be lost.

CASE 5:

When an instruction which accesses a debug register is executed, and a breakpoint is encountered on the
instruction, the breakpoint is reported twice.

IMPLICATION: When debugging or when developing debuggers for a Pentium II processor-based system, this
behavior should be noted. Normal usage of the MOVSS or POPSS instructions (i.e., following them with a MOV
ESP) will not exhibit the behavior of cases 1-3. Debugging in conjunction with SMM will be limited by case 4.

WORKAROUND: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been identified for cases 4 or 5.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A3. FLUSH# Servicing Delayed While Waiting for STARTUP_IPI in
2-way MP Systems

PROBLEM: In a 2-way MP system, if an application processor is waiting for a startup inter-processor interrupt
(STARTUP_IPI), then it will not service a FLUSH# pin assertion until it has received the STARTUP_IPI.

IMPLICATION: After the 2-way MP initialization protocol, only one processor becomes the bootstrap processor
(BSP). The other processor becomes a slave application processor (AP). After losing the BSP arbitration, the AP
goes into a wait loop, waiting for a STARTUP_IPI.

The BSP can wake up the AP to perform some tasks with a STARTUP_IPI, and then put it back to sleep with an
initialization inter-processor interrupt (INIT_IPI, which has the same effect as asserting INIT#), which returns it to
a wait loop. The result is a possible loss of cache coherency if the off-line processor is intended to service a
FLUSH# assertion at this point. The FLUSH# will be serviced as soon as the processor is awakened by a
STARTUP_IPI, before any other instructions are executed. Intel has not encountered any operating systems that
are affected by this erratum.

WORKAROUND: Operating system developers should take care to execute a WBINVD instruction before the AP
is taken off-line using an INIT_IPI.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A4. Code Fetch Matching Disabled Debug Register May Cause Debug
Exception

PROBLEM: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks, respectively. If one
of these bits is set, a breakpoint is enabled, corresponding to the addresses in the debug registers DR0-DR3. If
at least one of these breakpoints is enabled, any of these registers are disabled (i.e., Ln and Gn are 0), and RWn
for the disabled register is 00 (indicating a breakpoint on instruction execution), normally an instruction fetch will
not cause an instruction-breakpoint fault based on a match with the address in the disabled register(s). However,

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

18

if the address in a disabled register matches the address of a code fetch which also results in a page fault, an
instruction-breakpoint fault will occur.

IMPLICATION: While debugging software, extraneous instruction-breakpoint faults may be encountered if
breakpoint registers are not cleared when they are disabled. Debug software which does not implement a code
breakpoint handler will fail, if this occurs. If a handler is present, the fault will be serviced. Mixing data and code
may exacerbate this problem by allowing disabled data breakpoint registers to break on an instruction fetch.

WORKAROUND: The debug handler should clear breakpoint registers before they become disabled.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A5. Double ECC Error on Read May Result in BINIT#

PROBLEM: For this erratum to occur, the following conditions must be met:

• Machine Check Exceptions (MCEs) must be enabled.

• A dataless transaction (such as a write invalidate) must be occurring simultaneously with a transaction
which returns data (a normal read).

• The read data must contain a double-bit uncorrectable ECC error.

If these conditions are met, the Pentium II processor will not be able to determine which transaction was
erroneous, and instead of generating an MCE, it will generate a BINIT#.

IMPLICATION: The bus will be reinitialized in this case. However, since a double-bit uncorrectable ECC error
occurred on the read, the MCE handler (which is normally reached on a double-bit uncorrectable ECC error for a
read) would most likely cause the same BINIT# event.

WORKAROUND: Though the ability to drive BINIT# can be disabled in the Pentium II processor, which would
prevent the effects of this erratum, overall system behavior would not improve, since the error which would
normally cause a BINIT# would instead cause the machine to shut down. No other workaround has been
identified.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A6. FP Inexact-Result Exception Flag May Not Be Set

PROBLEM: When the result of a floating-point operation is not exactly representable in the destination format
(1/3 in binary form, for example), an inexact-result (precision) exception occurs. When this occurs, the PE bit (bit
5 of the FPU status word) is normally set by the processor. Under certain rare conditions, this bit may not be set
when this rounding occurs. However, other actions taken by the processor (invoking the software exception
handler if the exception is unmasked) are not affected. This erratum can only occur if the floating-point operation
which causes the precision exception is immediately followed by one of the following instructions:

• FST m32real

• FST m64real

• FSTP m32real

• FSTP m64real

• FSTP m80real

• FIST m16int

• FIST m32int

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

19

• FISTP m16int

• FISTP m32int

• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a dependency on the internal
pipelining and execution state of both instructions in the processor.

IMPLICATION: Inexact-result exceptions are commonly masked or ignored by applications, as it happens
frequently, and produces a rounded result acceptable to most applications. The PE bit of the FPU status word
may not always be set upon receiving an inexact-result exception. Thus, if these exceptions are unmasked, a
floating-point error exception handler may not recognize that a precision exception occurred. Note that this is a
“sticky” bit, i.e., once set by an inexact-result condition, it remains set until cleared by software.

WORKAROUND: This condition can be avoided by inserting two NOP instructions between the two floating-point
instructions.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A7. BTM for SMI Will Contain Incorrect FROM EIP

PROBLEM: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if BTMs are
enabled. However, the FROM EIP field of the BTM (used to determine the address of the instruction which was
being executed when the SMI was serviced) will not have been updated for the SMI, so the field will report the
same FROM EIP as the previous BTM.

IMPLICATION: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the usefulness
of BTMs for debugging software in conjunction with System Management Mode (SMM).

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A8. I/O Restart in SMM May Fail After Simultaneous MCE

PROBLEM: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed, and if the
data for this instruction becomes corrupted, the Pentium II processor will signal a machine check exception
(MCE). If the instruction is directed at a device which is powered down, the processor may also receive an
assertion of SMI#. Since MCEs have higher priority, the processor will call the MCE handler, and the SMI#
assertion will remain pending. However, upon attempting to execute the first instruction of the MCE handler, the
SMI# will be recognized and the processor will attempt to execute the SMM handler. If the SMM handler is
completed successfully, it will attempt to restart the I/O instruction, but will not have the correct machine state,
due to the call to the MCE handler.

IMPLICATION: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions above. The
SMM handler may attempt to restart such an I/O instruction, but will have corrupted state due to the MCE
handler call, leading to failure of the restart and shutdown of the processor.

WORKAROUND: If a system implementation must support both SMM and MCEs, the first thing the SMM handler
code (when an I/O restart is to be performed) should do is check for a pending MCE. If there is an MCE pending,
the SMM handler should immediately exit via an RSM instruction and allow the machine check exception handler
to execute. If there is not, the SMM handler may proceed with its normal operation.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

20

A9. Branch Traps Do Not Function if BTMs Are Also Enabled

PROBLEM: If branch traps or branch trace messages (BTMs) are enabled alone, both function as expected.
However, if both are enabled, only the BTMs will function, and the branch traps will be ignored.

IMPLICATION: The branch traps and branch trace message debugging features cannot be used together.

WORKAROUND: If branch trap functionality is desired, BTMs must be disabled.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A10. Checker BIST Failure in FRC Mode Not Signaled

PROBLEM: If a system is running in functional redundancy checking (FRC) mode, and the checker of the
master-checker pair encounters a hard failure while running the built-in self test (BIST), the checker will tri-state
all outputs without signaling an IERR#.

IMPLICATION: Assuming the master passes BIST successfully, it will continue execution unchecked, operating
without functional redundancy. However, the necessary pull-up on the FRCERR pin will cause an FRCERR to
be signaled. The operation of the master depends on the implementation of FRCERR.

WORKAROUND: For successful detection of BIST failure in the checker of an FRC pair, use the FRCERR
signal, instead of IERR#.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A11. BINIT# Assertion Causes FRCERR Assertion in FRC Mode

PROBLEM: If a pair of Pentium II processors are running in functional redundancy checking (FRC) mode, and a
catastrophic error condition causes BINIT# to be asserted, the checker in the master-checker pair will enter
shutdown. The next bus transaction from the master will then result in the assertion of FRCERR.

IMPLICATION: Bus initialization via an assertion of BINIT# occurs as the result of a catastrophic error condition
which precludes the continuing reliable execution of the system. Under normal circumstances, the master-
checker pair would remain synchronized in the execution of the BINIT# handler. However, due to this erratum,
an FRCERR will be signaled. System behavior then depends on the system specific error recovery
mechanisms.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A12. Machine Check Exception Handler May Not Always Execute
Successfully

PROBLEM: An asynchronous machine check exception (MCE), such as a BINIT# event, which occurs during an
access that splits a 4-Kbyte page boundary may leave some internal registers in an indeterminate state. Thus,
MCE handler code may not always run successfully if an asynchronous MCE has occurred previously.

IMPLICATION: An MCE may not always result in the successful execution of the MCE handler. However,
asynchronous MCEs usually occur upon detection of a catastrophic system condition that would also hang the
processor. Leaving MCEs disabled will result in the condition which caused the asynchronous MCE instead
causing the processor to enter shutdown. Therefore, leaving MCEs disabled may not improve overall system
behavior.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

21

WORKAROUND: No workaround which would guarantee successful MCE handler execution under this condition
has been identified.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A13. MCE Due to L2 Parity Error Gives L1 M CACOD.LL

PROBLEM: If a Cache Reply Parity (CRP) error, Cache Address Parity (CAP) error, or Cache Synchronous
Error (CSER) occurs on an access to the Pentium II processor’s L2 cache, the resulting Machine Check
Architectural Error Code (MCACOD) will be logged with ‘01’ in the LL field. This value indicates an L1 cache
error; the value should be ‘10’, indicating an L2 cache error. Note that L2 ECC errors have the correct value of
‘10’ logged.

IMPLICATION: An L2 cache access error, other than an ECC error, will be improperly logged as an L1 cache
error in MCACOD.LL.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A14. LBER May Be Corrupted After Some Events

PROBLEM: The last branch record (LBR) and the last branch before exception record (LBER) can be used to
determine the source and destination information for previous branches or exceptions. The LBR contains the
source and destination addresses for the last branch or exception, and the LBER contains similar information for
the last branch taken before the last exception. This information is typically used to determine the location of a
branch which leads to execution of code which causes an exception. However, after a catastrophic bus
condition which results in an assertion of BINIT# and the re-initialization of the buses, the value in the LBER may
be corrupted. Also, after either a CALL which results in a fault or a software interrupt, the LBER and LBR will be
updated to the same value, when the LBER should not have been updated.

IMPLICATION: The LBER and LBR registers are used only for debugging purposes. When this erratum occurs,
the LBER will not contain reliable address information. The value of LBER should be used with caution when
debugging branching code; if the values in the LBR and LBER are the same, then the LBER value is incorrect.
Also, the value in the LBER should not be relied upon after a BINIT# event.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A15. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

PROBLEM: When Branch Trace Messages (BTMs) are enabled and such a message is generated, the BTM
may be corrupted when issued to the bus by the L1 cache if a new line of data is brought into the L1 data cache
simultaneously. Though the new line being stored in the L1 cache is stored correctly, and no corruption occurs in
the data, the information in the BTM may be incorrect due to the internal collision of the data line and the BTM.

IMPLICATION: Although BTMs may not be entirely reliable due to this erratum, the conditions necessary for this
boundary condition to occur have only been exhibited during focused simulation testing. Intel has currently not
observed this erratum in a system level validation environment.

WORKAROUND: None identified at this time.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

22

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A16. System May Hang Due To Internal Protocol Violation

PROBLEM: Pentium II processor-based systems may hang due to an internal protocol violation. When a
snoopable transaction is issued on the bus and the cache line being accessed is in the modified state, the
processor must deliver to the system bus an updated copy of the cache line. When the processor attempts to
deliver the most up to date copy via an implicit writeback, the data transfer transaction fails and the DBSY#
signal remains asserted until the next RESET#. This causes the system to hang indefinitely. In order to
encounter this erratum, the following sequence of events must occur:

1. A snoopable transaction (transaction 1) is issued on the system bus. The processor contains in its L1
and/or L2 caches the data for this line in the modified state.

2. Another snoopable transaction (transaction 2) is issued and the processor contains this line only in its L2
cache in the modified state. Both of these transactions can be issued by either the chipset, by the
processor (in which case they are of the self-snoop type), by another processor (2-way MP systems), or
any combination thereof.

3. A nonsnoopable transaction is then issued (transaction 3) for which address bits A15-A5 are the same as
those in transaction 2.

4. Transaction 3 is followed by a snoopable transaction (transaction 4).

5. The completion of the data transfer phase of transaction 1 must line up with the snoop response phase of
transaction 3. This data transfer phase of transaction 1 must occur after the ADS# of transaction 4 and line
up with the completion of an internal cache transaction.

6. The internal cache transaction must miss the L2 targeting a line for eviction, but the internal cache
transaction must be such that it has to be retried.

The result of this sequence of transactions causes the processor bus to lock up after delivering the data for
transaction 1, but prior to delivering the data for transaction 2. Since this data is never delivered, DBSY# does
not deassert and the system hangs.

IMPLICATION: The Pentium II processor may cause a system to hang if the above listed sequence of events
occurs. This sequence is a necessary condition to hit the erratum, but multiple variations of this sequence which
also cause this erratum are also possible. The probability of encountering this erratum increases with I/O queue
depth greater than 4 and in 2-way MP systems.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A17. Livelock Condition May Cause System Hang

PROBLEM: A “livelock” situation could occur in 2-way MP Pentium II processor-based systems, when IOQ depth
is set to 1, with a failure signature such that a processor arbitrates for the system bus but fails to drive out a
transaction when it gains ownership of the bus. The processor then relinquishes bus ownership to another
requester, but on rearbitration performs the same repetitive actions. This course of action continues until
RESET# is asserted. The failure signature in 2-way MP systems is such that both processors require execution
of an explicit writeback cycle and both processors request the bus for this transaction. However, when the time
comes to drive out the writeback transaction, the internal request has been suspended due to an internal
blocking condition. After the internal blocking condition has gone away the original writeback request is

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

23

reasserted. However, by the time bus ownership has been regained, the blocking condition has recurred, thus
suppressing the writeback request before the transaction can be driven out to the system bus.

The writeback which is waiting to go out on the system bus must be issued before the internal blocking condition
can be removed. But the writeback can never be issued because of the recurring blocking condition. This
causes an “infinite loop” situation to develop, and the processor essentially stops executing code.

IMPLICATION: This erratum was observed to occur when both processors are configured for IOQ depth = 1 in
Intel commercial system testing.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A18. Mispredicted Branch May Cause Incorrect Tag Word on MMX™
Technology Instructions

PROBLEM: After any MMX technology instruction is executed, all of the FPU stack registers should be marked
valid in the FPU tag word. If one or more of the first three instructions of a mispredicted branch are MMX
technology instructions of the form “opcode reg, mem” not including MOVD and MOVQ, the FPU tag word is
incorrectly modified. Some of the tag word bits may remain invalid. This tag word will remain incorrect until one of
two events occur:

1. Any MMX technology instruction is executed four or more instructions after the branch target, or

2. An MMX technology instruction of the following type is executed:

• Any MMX technology instruction of the form “opcode reg, reg”

• MOVD

• MOVQ

• EMMS

The following are examples of code that will encounter this erratum.

Example 1:

EMMS

...

Jcc target ; mispredicted as not taken

...

target:

PADDW mm0, [edi] ; Is an “reg, mem” format instruction

FSTENV env

In this example, the tag word stored in memory by FSTENV will be incorrect.

Example 2:

EMMS

...

Jcc target ; mispredicted as not taken

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24

...

target:

PADDW mm0, [edi]

FUCOMPP ; depends on tag word, also violates coding guideline against mixing

; floating-point and MMX technology instructions

FWAIT

In this example, the FUCOMPP instruction will cause a Numeric Invalid Operation Exception if the FPU stack
fault exception is unmasked.

IMPLICATION: When writing code that mixes FP and MMX technology instructions where the target of a branch
is an MMX technology instruction with a memory operand, the FPU tag word may be incorrect. Software that
expects the FP stack register to be set to valid after an MMX technology instruction and utilizes this information
may be affected.

If floating-point instructions are intermixed, the floating-point instructions may raise the floating-point stack
exception. If this exception is unmasked, the application will receive an unexpected numeric exception. The
result is application dependent. If the floating-point stack exception is masked, the floating-point instruction will
compute with a indefinite operand instead of the register contents. In either case the result is application
dependent. Applications that follow the Intel MMX Technology Coding Guidelines against intermixing floating-
point and MMX technology code are not affected by this erratum.

If the floating-point tag word is saved immediately after an affected MMX technology instruction, an erroneous
value will be stored. Program behavior is application dependent. This may also cause debuggers to temporarily
display incorrect tag word contents.

WORKAROUND : All of the following must be applied to work around this erratum:

• Follow the Intel MMX technology guidelines in the Intel Architecture Optimization Manual for writing MMX
technology programs. Specifically, do not intermix MMX technology instructions and floating-point
instructions on a per instruction basis.

• If it is possible that some of the tag word bits may be invalid prior to a branch, avoid using MMX technology
instructions of the form “opcode reg, mem”, except MOVD, MOVQ, within the first three instructions at the
target of a branch.

• Use the FSAVE instruction to save all floating-point stack registers if at least one of the registers is valid
during a context switch.

• Before a transition from MMX technology code to floating-point code that does not meet the Intel MMX
technology guidelines in the Intel Architecture Optimization Manual, execute a nonsusceptible MMX
technology instruction such as MOVD eax, mm0.

• Floating-point instructions should not depend on MMX technology instructions to set the tag word bits to
valid.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A19. Thermal Sensor/THERMTRIP# Does Not Work

PROBLEM: THERMTRIP# is a feature of the Pentium II processor which asserts when the core reaches a
certain temperature during operation as specified in the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz,
and 333 MHz datasheet. The Pentium II processor may assert THERMTRIP# at a temperature lower or higher
than the specified trippoint of 135 °C for TJUNCTION. When THERMTRIP# is asserted, the processor may shut
down causing all execution to be halted.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

25

IMPLICATION: When running the Pentium II processor, the Pentium II processor core may reach a temperature
causing the processor to assert THERMTRIP# early. Once THERMTRIP# has been asserted, the processor
may shut down due to this erratum. All execution after the SHUTDOWN will be halted. This erratum is only
exhibited when TPLATE is above the Maximum Specification of 75 °C (see the Pentium® II Processor at 233 MHz,
266 MHz, 300 MHz, and 333 MHz datasheet (Order Number 243335) for details on specifications).

WORKAROUND: Avoid operation of the Pentium II processor outside of thermal specifications defined by the
Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet. Do not monitor the
THERMTRIP# pin (pin A15).

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A20. Spurious Machine Check Exception Via IFU Data Parity Error

PROBLEM: The Pentium II processor can signal an unrecoverable Machine Check Exception (MCE) in the event
that the Instruction Fetch Unit (IFU) detects a mismatch when verifying instruction parity. The execution of code
which modifies the current instruction sequence that may already be fetched into the processor can cause an
instruction at a given address to appear differently depending on when it was fetched in time relative to its being
modified. Thus, a speculatively prefetched instruction may have been modified such that it now differs from the
copy of the same instruction resident in the instruction cache. This discrepancy (of one copy located in the
speculative prefetch portion, and a different copy in the instruction cache) is sensed by the IFU. When the IFU
detects that the instruction stream has been modified, it flushes the pipeline and attempts to restart the
instruction stream. In the interim, the IFU recognizes the disparate instructions described above, and signals a
data parity error. The data parity error is signaled as an MCE before the instruction stream has had a chance to
restart. This MCE will cause an operating system that has enabled MCE to shut down. No incorrect code is
executed by the processor in this situation (even if MCE is disabled). Note that this erratum occurs under a
specific set of address dependencies and timing events.

IMPLICATION: Executing such a sequence by modifying code without proper synchronization may not always
result in predictable program behavior. The processor’s signaling of an MCE due to a data parity error in the IFU
may then result in an unexpected system halt if the above conditions are met and MCEs are enabled.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A21. Loss of Inclusion In IFU Can Cause Machine Check Exception

PROBLEM: The Pentium II processor can signal an unrecoverable Machine Check Exception (MCE) as a
consistency checking mechanism in the event that the Instruction Fetch Unit (IFU) detects differences in the
consistency of code in instruction streaming buffers against code resident in the instruction cache, i.e., a loss of
inclusion. When application code makes an operating system call, the processor transitions execution privilege
levels. If the code for the OS call is not already resident in the level 1 cache, then the processor may prefetch
code while identifying a cache line(s) for eventual eviction to make space for the new code. Upon return from the
OS call, the processor continues execution of application code at the user level. The processor, due to deep
speculation and branch prediction, may attempt to execute instructions from the previously prefetched kernel
code starting by attempting to replace the victim line with kernel code in a buffer internal to the IFU. The IFU
detects that the current application is insufficiently privileged to execute the kernel code and so, suppresses the
eviction of the previously selected victim line. Despite having detected this condition, the IFU does replace this
victim line with the kernel line. If the processor now attempts to restart execution of the current application code
by refetching the original victim line it no longer finds it in the instruction cache. The IFU detects this loss of
inclusion, and signals this by generating a MCE. If MCEs are enabled, this event can cause an operating system
to shutdown. Note that this erratum occurs under a specific set of address dependencies and timing events.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

26

IMPLICATION: The occurrence of all the conditions above can lead the IFU to signal a loss of inclusion by
generating an MCE. If MCEs are enabled in the system, then the operating system may shut down upon noticing
the MCE resulting in system failure. If MCEs are disabled, then unpredictable application behavior is theoretically
possible, although current validation has shown execution to continue normally.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A22. Possible System Hang When Paging Is Disabled and Reenabled
from Uncached Memory

PROBLEM: If paging is disabled via the PG bit of CR0 and then later reenabled while executing code from a
page marked uncachable by its Page Table Entry (PCD=1) but located in memory mapped as Write Back or
Write Through by the processor MTRRs, the processor could internally enter a state resulting in a system hang.

IMPLICATION: Operating systems that enable and disable paging with the above described memory
configurations could hang. Intel has not observed this erratum to date in laboratory testing of commercially
available operating systems and applications.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A23. L2 Performance Counters Miscount L2_RQSTS

PROBLEM: L2_RQSTS is a performance counter that counts the number of L2 cache access requests. This
counter increments for each incoming L2 cache request. In some cases, an L2 request cannot be serviced by
the L2 Cache. This request is then retried at a later time when the request can be serviced by the L2 cache.
When this happens, the L2_RQSTS counter counts the initial L2 cache request and the retried L2 cache request,
thereby counting the same request twice.

IMPLICATION: The L2_RQSTS counter may contain a larger erroneous number of L2 cache requests due to this
erratum. This erratum does not affect functionality of the Pentium II processor. This erratum only affects the
performance counter specified.

WORKAROUND : None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A24. Erroneous Signaling of User Mode Protection Violation

PROBLEM : If the Pentium II processor attempts to access a page in physical memory marked not present
(Present bit clear), a page fault exception (#PF) is generated. Before proceeding, there is a narrow internal
timing window where the processor verifies that no other higher priority fault conditions are present. During this
time, it is possible for another agent to allocate a new page directory or page table entry (PDE/PTE)
corresponding to the same linear address of the original access, writing new values into the PDE/PTE with the
Access bit (A-bit) or the Dirty bit (D-bit) cleared. When the original processor completes its checking for other
fault conditions, and re-examines the A/D bit of the recently modified PDE/PTE, it finds that it has been cleared.
Internal hardware correctly signals this scenario as a condition to which the processor should respond by setting
the A/D bit, but erroneously reports it as a generic paging protection violation. Instead of attempting to set the
appropriate A/D bit, this event is reported as an Int14 with exception code 0x05, i.e., user mode protection
violation.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

27

IMPLICATION: The occurrence of this scenario will result in the erroneous signaling of a user mode protection
violation instead of a page fault and may result in application termination depending on operating system
behavior in response to a user mode protection violation. Intel has only observed this erratum to date in
laboratory testing of multi-processor systems.

WORKAROUND : Operating systems which allocate new PTEs and PDEs should set the Access bit (A-bit) and
Dirty bit (D-bit) to workaround this erratum. Alternatively, an operating system’s Int14 handler can determine if a
protection violation condition truly exists, and if none is found, return without further action.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A25. Invalid Operation Not Signaled by the FIST Instruction on Some
Out of Range Operands

PROBLEM: On certain, large, negative, floating-point operands, and only in three of the four possible processor
rounding modes, the instructions FIST[P] m16int and FIST[P] m32int do not detect that the operand is so large
that it will not fit into the target data size. As a consequence, the expected Invalid Operation exception response
for this situation is not correctly provided, nor is the Invalid Operation flag set in the Floating Point status word as
specified in the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference. Under the
failing conditions, noted below, the precision exception (#PE) flag will also be incorrectly set.

The erratum occurs only when all of the following conditions are met:

1. The FIST[P] instruction is either a 16- or 32-bit operation; 64-bit operations are unaffected.

2. Either the ‘to nearest ’, ‘to zero’ or ‘up’ rounding modes are being used. The round ‘down’ mode is
unaffected by this erratum.

3. The sign bit of the floating-point operand is negative.

4. The floating-point operand being converted is significantly more negative than can be described by the
integer size being targeted.

ACTUAL vs. EXPECTED RESPONSE

A. Actual Response

When the required conditions are encountered, the processor provides the following response:

• Return the MAXNEG value (8000h for FIST16 & 80000000h for FIST32) to memory.

• The IE (Invalid Operation) bit in the Floating Point status word is not set to flag the use of an invalid operand.

• The PE (precision error) bit in the Floating Point status word is set.

• No exception handler is invoked.

• In the case of a FISTP instruction the Operand will have been popped from the floating-point stack.

B. Expected Response

The expected processor response when the invalid operation exception is masked is:

• Return the MAXNEG value (8000h for FIST16 & 80000000h for FIST32) to memory.

• The IE (Invalid Operation) bit in the Floating Point status word is set to flag the overflow.

• The PE (precision error) bit in the Floating Point status word is not set.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

28

The expected processor response when the invalid operation exception is unmasked is:

• Do not return a result to memory. Keep the original operand intact on the stack.

• The IE (Invalid Operation) bit in the Floating Point status word is set to flag the overflow.

• The PE (precision error) bit in the Floating Point status word is not set.

• Vector to the user numeric exception handler.

IMPLICATION: Erroneous operation results when the operand is so large that it will not fit into the target data
size. The operands affected by this erratum are significantly outside (by a factor of 3X) the range that can be,
correctly, converted to an integer value. The figure below and corresponding table identifies the normal range of
integer numbers (between A and B) and the starting point of the operands affected by this erratum. Discrete
failing operands will be present in the range between point C and the maximum negative number that can be
represented by the processor (-21023 in double precision format). Note 2 below gives a qualitative description of
the nature of the discrete failing values. Software that does not rely on the Invalid Operation exception flag being
set and signaled by either an exception OR by software polling is not impacted by this erratum.

16-bit Operation A B C

-32,768.0 +32,767.0 < -98304.0

32-bit Operation A B C

-2,147,483,648.0 +2,147,483,647.0 < -6,442,450,944.0

WORKAROUND: Any of two software workarounds will avoid occurrence of this erratum:

1. Range checking performed prior to execution of the FIST[P] instruction will prevent the overflow condition
from occurring, and may already be implemented as a coding style.

2. Software can use the presence of MAXNEG in the result integer to indicate that an out of range conversion
may have occurred.

Note 1: A possible alternative is to use the FIST64 instruction to store the converted operand to memory and
access the lower 16 or 32 bits as the required integer. Even though this mechanism will not signal an attempted
out of range conversion with a 16 bit or 32 bit target, it is currently in use by many compilers today.

Note 2: The values affected by this erratum are those which contain an exponent value within the affected
range, AND a specific bit pattern at a specific offset within the mantissa, AND at least one nonzero bit to the right
of the above bit pattern. The offset within the mantissa is a function of the floating-point exponent value. The
specific bit pattern is 0x8000 for FIST16 and 0x80000000 for FIST32. This means that for any given exponent
within the range, one mantissa value in every 216 possible mantissa values exhibits the erratum for FIST16, and
one mantissa value in every 232 possible mantissa values exhibits the erratum for FIST32.

Range for a valid
Integer

- 21023
+21023

Range of potentially
affected numbers.

Not all number in this
range are affected

0A BC

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

29

Examples of affected values for FIST16, 80-bit binary notation (not an exhaustive list)

 (xx means any bit pattern, yy means any nonzero bit pattern)

sign exponent mantissa

1 100000000010100 1xxxxx1000000000000000yy

1 100000000010101 1xxxxxx1000000000000000yyy

1 100000000010110 1xxxxxxx1000000000000000yy

 Examples of affected values for FIST32, 80-bit binary notation (not an exhaustive list)

 (xx means any bit pattern, yy means any nonzero bit pattern)

sign exponent mantissa

1 100000000100011 1xxxx10000000000000000000000000000000yyyyyyyyyyyyyyyyyyyyyyyyyyy

1 100000000100100 1xxxxx10000000000000000000000000000000yyyyyyyyyyyyyyyyyyyyyyyyyy

1 100000000100101 1xxxxxx10000000000000000000000000000000yyyyyyyyyyyyyyyyyyyyyyyyy

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A26. FLUSH# Assertion Disables L2 Machine Check Exception
Reporting

PROBLEM: Upon FLUSH# assertion, the L2 Machine Check Exception generation is disabled. Once the
FLUSH# pin is asserted, the processor disables the L2 MCA, by clearing the associated MCi_CTL control
register to “0”s. This operation is invisible to the software being executed.

IMPLICATION: Errors that should be reported by the L2 MCA are not reported from the time that the FLUSH#
signal is asserted until the time that the MCi_CTL register is written back to all “1”s. All other errors will continue
to be logged as normal.

WORKAROUND: Platform specific code (e.g., BIOS or system management software) has the potential for
driving a device to assert the FLUSH# pin. If the platform specific code asserts the FLUSH# pin, this code
should be enhanced to detect that MCA Exceptions are globally enabled (via register CR4.MCE). The code
should then write “0”s to all of the MCi_CTL registers to clear any spurious entries and then write “1”s to all of the
MCi_CTL registers in order to re-enable exception reporting. Hardware devices in systems that require L2 error
reporting which could assert the FLUSH# pin should not assert FLUSH#.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section

A27. EFLAGS May Be Incorrect After a Multiprocessor TLB S hootdown

PROBLEM : When the Pentium II processor executes a read-modify-write arithmetic instruction with memory as
the destination, it is possible for a page fault to occur during the execution of the store on the memory operand
after the read operation has completed but before the write operation completes. In this case the EFLAGS value
pushed onto the stack of the page fault handler may be reflective of the status of the EFLAGS register after the
instruction would have completed execution rather than that before it has executed under a certain set of
circumstances. This class of instruction will initially perform a load operation that has the side effect of ensuring
that the final store portion of the instruction will successfully complete. The load ensures this by bringing the
page table information of the page containing the data into the DTLB. This page entry could be evicted from the
DTLB by speculative loads from other instructions that hit the same way of the DTLB, before the store is

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

30

executed. DTLB eviction will require at least three load operations that have linear address bits 15:12 equal to
each other and address bits 31:16 different from each other in close physical proximity to the arithmetic
operation. If, in the very small window of time between the page eviction and the store execution, the page table
entry has had its page permissions tightened (e.g., from Present to Not Present, or from Read/Write to Read
Only, etc.) by the operating system in main memory by another processor (with no corresponding
synchronization and subsequent TLB flush), the store will generate a DTLB miss and a call to the OS’s page
fault handler. The EFLAGS register may have already been updated by the arithmetic portion of the instruction
before entry to the page fault handler. If under these circumstances the fault handler elects to restart the
instruction, the re-execution may generate an incorrect result. Instructions affected by this erratum are the
memory destination forms of ADC, SBB, RCR & RCL (instructions that use a flag, carry, as input to the
instruction). It should be noted that the locked version of these instructions is not impacted by this erratum.

IMPLICATION: This scenario can only occur in a multiprocessor system running under an operating system that
implements a “lazy” TLB shootdown. Lazy TLB shootdown occurs when one processor makes changes to the
page tables in memory, and then signals other processors to remove the page entry from their TLB without a
multiprocessor synchronization being performed. To date, Intel has not observed this erratum in any laboratory
testing of commercially available software applications.

In a multiprocessor system the arithmetic flags of the EFLAGS register and its memory stack image, may
contain incorrect data if the read-modify-write arithmetic instruction encounters a page fault. Page Fault handler
software that uses the resulting EFLAGS may see incorrect information. If the original instruction is restarted by
the page fault handler, the instruction may produce incorrect results based on the prior modifications of the
EFLAGS register.

WORKAROUND : Software may use the locked form of the ADC, SBB, RCR & RCL instructions to avoid this
erratum. Operating systems should ensure that no processor is currently accessing a page that is scheduled to
have its page permissions tightened, e.g., moved from Present to Not Present or have a page fault handler that
can handle any incorrect state. Intel is working with Multiprocessor Operating System vendors to ensure that an
OS level workaround is implemented as required.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A28. Delayed Line Invalidation Issue During 2-Way MP Data Ownership
Transfer

PROBLEM: In 2-way MP systems, each processor may attempt to modify a different portion of the same cache
line, referenced as line ‘A’ in the discussion below. When this erratum occurs (with the following example given
for a 2-way MP system with processors noted as ‘P0’ and ‘P1’), each processor contains a shared copy of line A
in both their L1 and L2 caches. Each processor must issue an invalidation cycle before that processor can
definitively source the results of its internal write to a portion of line A to the other processors.

There exists a narrow timing window when, if P0 wins the external bus invalidation race and gains ownership
rights to line A due to the sequence of bus invalidation traffic, P1 may not have completed the pending
invalidation of its own, currently valid and shared copy of line A. During this window, it is possible for a P1
internal opportunistic write to a portion of line A (while awaiting ownership rights) to occur with the original shared
copy of line A still resident in P1’s L2 cache. Such internal modification is permissible subject to delaying the
broadcast of such changes until line ownership has actually been gained. However, the processor must ensure
that any internal re-read by P1 of line A returns with data in the order actually written; in this case, this should be
the data written by P0. In the case of this erratum, the internal re-read uses the data which was written by P1.

IMPLICATION: Multiprocessor or threaded application synchronization that is implemented via operating system-
provided synchronization constructs are not affected by this erratum. Applications which rely upon the usage of
locked semaphores rather than memory ordering are also unaffected. Uniprocessor systems are not affected by
this erratum. Intel has not identified, to date, any commercially available application or operating system software
which is affected by this erratum. If the erratum does occur, the delayed line invalidation that occurs naturally

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

31

due to the fact that one processor will necessarily win the invalidation race allows a narrow timing window to
exist where one processor may re-read a line that it just wrote internally, but return with the stale data that was
present from the previous shared state rather than the data written more recently by another processor.

WORKAROUND: Deterministic barriers beyond which program variables will not be modified can be achieved via
the usage of locked semaphore operations, and this scheme has been shown to effectively work around this
erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A29. Potential Early Deassertion of LOCK# During Split-Lock Cycles

PROBLEM : During a split-lock cycle there are four bus transactions: 1st ADS# (a partial read), 2nd ADS# (a
partial read), 3rd ADS# (a partial write), and the 4th ADS# (a partial write). Due to this erratum, LOCK# may
deassert one clock after the 4th ADS# of the split-lock cycle instead of after the 4th RS# assertion corresponding
to the 4th ADS# has been sampled. The following sequence of events are required for this erratum to occur:

1. A lock cycle occurs (split or nonsplit).

2. Five more bus transactions (assertion of ADS#) occur.

3. A split-lock cycle occurs and BNR# toggles after the 3rd ADS# (partial write) of the split-lock cycle. This in
turn delays the assertion of the 4th ADS# of the split-lock cycle. BNR# toggling at this time could most likely
happen when the bus is set for an IOQ depth of 2.

When all of these events occur, LOCK# will be deasserted in the next clock after the 4th ADS# of the split-lock
cycle.

IMPLICATION: This may affect chipset logic which monitors the behavior of LOCK# deassertion.

WORKAROUND : None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A30. A20M# May Be Inverted After Returning From SMM and Reset

PROBLEM: This erratum is seen when software causes the following events to occur:

1. The assertion of A20M# in real address mode.

2. After entering the 1-Mbyte address wrap-around mode caused by the assertion of A20M#, there is an
assertion of SMI# intended to cause a Reset or remove power to the processor. Once in the SMM handler,
software saves the SMM state save map to an area of nonvolatile memory from which it can be restored at
some point in the future. Then software asserts RESET# or removes power to the processor.

3. After exiting Reset or completion of power-on, software asserts SMI# again. Once in the SMM handler, it
then retrieves the old SMM state save map which was saved in event 2 above and copies it into the current
SMM state save map. Software then asserts A20M# and executes the RSM instruction. After exiting the
SMM handler, the polarity of A20M# is inverted.

IMPLICATION: If this erratum occurs, A20M# will behave with a polarity opposite from what is expected (i.e., the
1-Mbyte address wrap-around mode is enabled when A20M# is deasserted, and does not occur when A20M# is
asserted).

WORKAROUND: Software should save the A20M# signal state in nonvolatile memory before an assertion of
RESET# or a power down condition. After coming out of Reset or at power on, SMI# should be asserted again.
During the restoration of the old SMM state save map described in event 3 above, the entire map should be
restored, except for bit 5 of the byte at offset 7F18h. This bit should retain the value assigned to it when the SMM

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

32

state save map was created in event 3. The SMM handler should then restore the original value of the A20M#
signal.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A31. Reporting of Floating-Point Exception May Be Delayed

PROBLEM: The Pentium II processor normally reports a floating-point exception for an instruction when the next
floating-point or MMX technology instruction is executed. The assertion of FERR# and/or the INT 16 interrupt
corresponding to the exception may be delayed until the floating-point or MMX technology instruction after the
one which is expected to trigger the exception, if the following conditions are met:

1. A floating-point instruction causes an exception.

2. Before another floating-point or MMX™ technology instruction, any one of the following occurs:

a. A subsequent data access occurs to a page which has not been marked as accessed, or

b. Data is referenced which crosses a page boundary, or

c. A possible page-fault condition is detected which, when resolved, completes without faulting.

3. The instruction causing event 2 above is followed by a MOVQ or MOVD store instruction.

IMPLICATION: This erratum only affects software which operates with floating-point exceptions unmasked.
Software which requires floating-point exceptions to be visible on the next floating-point or MMX technology
instruction, and which uses floating-point calculations on data which is then used for MMX technology
instructions, may see a delay in the reporting of a floating-point instruction exception in some cases. Note that
mixing floating-point and MMX technology instructions in this way is not recommended.

WORKAROUND: Inserting a WAIT or FWAIT instruction (or reading the floating-point status register) between
the floating-point instruction and the MOVQ or MOVD instruction will give the expected results. This is already
the recommended practice for software.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A32. EFLAGS Discrepancy on a Page Fault After a Multiprocessor TLB
Shootdown

PROBLEM: This erratum may occur when the Pentium II processor executes one of the following read-modify-
write arithmetic instructions and a page fault occurs during the store of the memory operand: ADD, AND, BTC,
BTR, BTS, CMPXCHG, DEC, INC, NEG, NOT, OR, ROL/ROR, SAL/SAR/SHL/SHR, SHLD, SHRD, SUB, XOR,
and XADD. In this case, the EFLAGS value pushed onto the stack of the page fault handler may reflect the
status of the register after the instruction would have completed execution rather than before it. The following
conditions are required for the store to generate a page fault and call the operating system page fault handler:

1. The store address entry must be evicted from the DTLB by speculative loads from other instructions that hit
the same way of the DTLB before the store has completed. DTLB eviction requires at least three load
operations that have linear address bits 15:12 equal to each other and address bits 31:16 different from each
other in close physical proximity to the arithmetic operation.

2. The page table entry for the store address must have its permissions tightened during the very small window
of time between the DTLB eviction and execution of the store. Examples of page permission tightening
include from Present to Not Present or from Read/Write to Read Only, etc.

3. Another processor, without corresponding synchronization and TLB flush, must cause the permission
change.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

33

IMPLICATION: This scenario may only occur on a multiprocessor platform running an operating system that
performs “lazy” TLB shootdowns. The memory image of the EFLAGS register on the page fault handler’s stack
prematurely contains the final arithmetic flag values although the instruction has not yet completed. Intel has not
identified any operating systems that inspect the arithmetic portion of the EFLAGS register during a page fault
nor observed this erratum in laboratory testing of software applications.

WORKAROUND: No workaround is needed upon normal restart of the instruction, since this erratum is
transparent to the faulting code and results in correct instruction behavior. Operating systems may ensure that
no processor is currently accessing a page that is scheduled to have its page permissions tightened or have a
page fault handler that ignores any incorrect state.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A33. Near CALL to ESP Creates Unexpected EIP Address

PROBLEM: As documented, the CALL instruction saves procedure linking information in the procedure stack
and jumps to the called procedure specified with the destination (target) operand. The target operand specifies
the address of the first instruction in the called procedure. This operand can be an immediate value, a general
purpose register, or a memory location. When accessing an absolute address indirectly using the stack pointer
(ESP) as a base register, the base value used is the value in the ESP register before the instruction executes.
However, when accessing an absolute address directly using ESP as the base register, the base value used is
the value of ESP after the return value is pushed on the stack, not the value in the ESP register before the
instruction executed.

IMPLICATION: Due to this erratum, the processor may transfer control to an unintended address. Results are
unpredictable, depending on the particular application, and can range from no effect to the unexpected
termination of the application due to an exception. Intel has observed this erratum only in a focused testing
environment. Intel has not observed any commercially available operating system, application, or compiler that
makes use of or generates this instruction.

WORKAROUND: If the other seven general purpose registers are unavailable for use, and it is necessary to do a
CALL via the ESP register, first push ESP onto the stack, then perform an indirect call using ESP (e.g., CALL
[ESP]). The saved version of ESP should be popped off the stack after the call returns.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A34. Deep Sleep Exit Transition May Cause Hang

PROBLEM: Under normal operating conditions, when a system enters a power conservation mode, it enters
System Management Mode (SMM), puts the processor in the Stop Grant State, followed by Sleep State and then
may enter Deep Sleep State. Upon a resume event, the processor exits Deep Sleep but remains in SMM
execution space until the SMI handler completes the system resume cycle.

If, prior to entering the Deep Sleep, the system was in SMM space, it is possible for the processor to exit Deep
Sleep state and begin making accesses in the ‘normal’ memory space instead of staying in SMM space. The
converse is also possible, i.e., if the processor is in ‘normal’ space prior to entering the Deep Sleep state, the
processor may exit Deep Sleep and make accesses in SMM space instead.

IMPLICATION: Systems may execute incorrect code after exiting Deep Sleep, due to accesses to incorrect
address space. This may produce unpredictable behavior, most likely hanging the system.

WORKAROUND: Avoid entering Deep Sleep. The table below offers the possible state transitions:

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

34

System State Processor State Possible Solutions

Name
ACPI

Equivalent Transition
ACPI

Equivalent Description
Suggested
Solution

1 Active S0 Normal to Stop
Grant

C0, C1 N/A None necessary

2 Active S0 Stop Grant to
Sleep to Deep
Sleep

C1, C3 Use Stop
Grant/Sleep
only; do not use
Deep Sleep

BIOS can specify
the C3 latency time
to be >1000 µs in
the ACPI FACP
table
(P_LVL3_LAT,
worst case
hardware latency
for the C3 state).

3 Powered
On
Suspend

S1, S2 Stop Grant to
Deep Sleep

C1, C3 Reset CPU only
and flush the
cache without
resetting the PCI
bus, i.e., use
POS_CCL state
(POS with CPU
Context Lost)
instead of POS
state.

BIOS can prevent
the OS from
entering the S1
state by NOT
defining the S1
object in the ACPI
DSDT table.
Ensure that the
cache is always
flushed.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A35. Built-in Self Test Always Gives Nonzero Result

PROBLEM: The Built-in Self Test (BIST) of the Pentium II processor does not give a zero result to indicate a
passing test. Regardless of pass or fail status, bit 6 of the BIST result in the EAX register after running BIST is
set.

IMPLICATION: Software which relies on a zero result to indicate a passing BIST will indicate BIST failure.

WORKAROUND: Mask bit 6 of the BIST result register when analyzing BIST results.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A36. THERMTRIP# May Not Be Asserted as Specified

PROBLEM: THERMTRIP# is a signal on the Pentium II processor which is asserted when the core reaches a
critical temperature during operation as detailed in the processor specification. The Pentium II processor may not
assert THERMTRIP# until a much higher temperature than the one specified is reached.

IMPLICATION: The THERMTRIP# feature is not functional on the Pentium II processor. Note that this erratum
can only occur when the processor is running with a TPLATE temperature over the maximum specification of
75 °C.

WORKAROUND: Avoid operation of the Pentium II processor outside of the thermal specifications defined by the
processor specifications.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

35

A37. Cache State Corruption in the Presence of Page A/D-bit Setting
and Snoop Traffic

PROBLEM: If an operating system uses the Page Access and/or Dirty bit feature implemented in the Intel
architecture and there is a significant amount of snoop traffic on the bus, while the processor is setting the
Access and/or Dirty bit the processor may inappropriately change a single L1 cache line to the modified state.

IMPLICATION: The occurrence of this erratum may result in cache incoherency, which may cause parity errors,
data corruption (with no parity error), unexpected application or operating system termination, or system hangs.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A38. Snoop Cycle Generates Spurious Machine Ch eck Exception

PROBLEM: The processor may incorrectly generate a Machine Check Exception (MCE) when it processes a
snoop access that does not hit the L1 data cache. Due to an internal logic error, this type of snoop cycle may still
check data parity on undriven data lines. The processor generates a spurious machine check exception as a
result of this unnecessary parity check.

IMPLICATION: A spurious machine check exception may result in an unexpected system halt if Machine Check
Exception reporting is enabled in the operating system.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum. This workaround would
fix the erratum, however, the data parity error will still be reported.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A39. MOVD/MOVQ Instruction Writes to Memory Prematurely

PROBLEM: When an instruction encounters a fault, the faulting instruction should not modify any CPU or system
state. However, when the MMX technology store instructions MOVD and MOVQ encounter any of the following
events, it is possible for the store to be committed to memory even though it should be canceled:

1. If CR0.EM = 1 (Emulation bit), then the store could happen prior to the triggered invalid opcode exception.

2. If the floating-point Top-of-Stack (FP TOS) is not zero, then the store could happen prior to executing the
processor assist routine that sets the FP TOS to zero.

3. If there is an unmasked floating-point exception pending, then the store could happen prior to the triggered
unmasked floating-point exception.

4. If CR0.TS = 1 (Task Switched bit), then the store could happen prior to the triggered Device Not Available
(DNA) exception.

If the MOVD/MOVQ instruction is restarted after handling any of the above events, then the store will be
performed again, overwriting with the expected data. The instruction will not be restarted after event 1. The
instruction will definitely be restarted after events 2 and 4. The instruction may or may not be restarted after
event 3, depending on the specific exception handler.

IMPLICATION: This erratum causes unpredictable behavior in an application if MOVD/MOVQ instructions are
used to manipulate semaphores for multiprocessor synchronization, or if these MMX instructions are used to
write to uncacheable memory or memory mapped I/O that has side effects, e.g., graphics devices. This erratum
is completely transparent to all applications that do not have these characteristics. When each of the above
conditions are analyzed:

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

36

1. Setting the CR0.EM bit forces all floating-point/MMX™ instructions to be handled by software emulation. The
MOVD/MOVQ instruction, which is an MMX instruction, would be considered an invalid instruction.
Operating systems typically terminates the application after getting the expected invalid opcode fault.

2. The FP TOS not equal to 0 case only occurs when the MOVD/MOVQ store is the first MMX instruction in an
MMX technology routine and the previous floating-point routine did not clean up the floating-point states
properly when it exited. Floating-point routines commonly leave TOS to 0 prior to exiting. For a store to be
executed as the first MMX instruction in an MMX technology routine following a floating-point routine, the
software would be implementing instruction level intermixing of floating-point and MMX instructions. Intel
does not recommend this practice.

3. The unmasked floating-point exception case only occurs if the store is the first MMX technology instruction
in an MMX technology routine and the previous floating-point routine exited with an unmasked floating-point
exception pending. Again, for a store to be executed as the first MMX instruction in an MMX technology
routine following a floating-point routine, the software would be implementing instruction level intermixing of
floating-point and MMX instructions. Intel does not recommend this practice.

4. Device Not Available (DNA) exceptions occur naturally when a task switch is made between two tasks that
use either floating-point instructions and/or MMX instructions. For this erratum, in the event of the DNA
exception, data from the prior task may be temporarily stored to the present task’s program state.

WORKAROUND: Do not use MMX instructions to manipulate semaphores for multiprocessor synchronization.
Do not use MOVD/MOVQ instructions to write directly to I/O devices if doing so triggers user visible side effects.
An OS can prevent old data from being stored to a new task’s program state by cleansing the FPU explicitly after
every task switch. Follow Intel’s recommended programming paradigms in the Intel Architecture Optimization
Manual for writing MMX technology programs. Specifically, do not mix floating-point and MMX instructions. When
transitioning to new a MMX technology routine, begin with an instruction that does not depend on the prior state
of either the MMX technology registers or the floating-point registers, such as a load or PXOR mm0, mm0. Be
sure that the FP TOS is clear before using MMX instructions.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A40. Memory Type Undefined for Nonmemory Operations

PROBLEM: The Memory Type field for nonmemory transactions such as I/O and Special Cycles are undefined.
Although the Memory Type attribute for nonmemory operations logically should (and usually does) manifest itself
as UC, this feature is not designed into the implementation and is therefore inconsistent.

IMPLICATION: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

WORKAROUND: Bus agents must consider transaction type to determine the validity of the Memory Type field
for a transaction.

STATUS: For the steppings affected, see the Summary Table of Changes at the beginning of this section.

A41. Infinite Snoop Stall During L2 Initialization of MP Systems

PROBLEM: It is possible for snoop traffic generated on the system bus while a processor is executing its L2
cache initialization routine to cause the initializing processor to hang.

IMPLICATION: A DP (2-way) system which does not suppress snoop traffic while L2 caches are being initialized
may hang during this initialization sequence.

WORKAROUND: System BIOS can create an execution environment which allows processors to initialize their
L2 caches without the system generating any snoop traffic on the bus.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

37

Below is a pseudo-code fragment, designed explicitly for a 2 processor system, that uses a serial algorithm to
initialize each processor’s L2 cache:

Suppress_all_I/O_traffic()
 K = 0;
 while (K <= 1)
 {
 /* Obtain current value of K. This forces both Temp and K into */
 /* the L1 cache. Note that Temp could also be maintained in a */
 /* general purpose register. */

 Temp = K;
 Wait_until_all_processors_are_signed_in_at_barrier()
 if (logical_proc_APIC_id == K) {
 {
 wait_10_usecs_delay_loop(); /* this time delay, required */
 /* in the worst case, allows */
 /* the barrier semaphore to */
 /* settle to shared state. */
 Initialize L2 cache
 K++
 }
 else
 while (Temp == K);
 }
 }

This algorithm prevents bus snoop traffic from the other processors, which would otherwise cause the initializing
processor to hang. The algorithm assumes that the L1 cache is enabled (the Temp and K variables must be
cached by each processor). Also, the Memory Type Range Register (MTRR) for the data segment must be set
to WB (writeback) memory type.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A42. Bus Protocol Conflict With Optimized Chipsets

PROBLEM: A “dead” turnaround cycle with no agent driving the address, address parity, request command, or
request parity signals must occur between the processor driving these signals and the chipset driving them after
asserting BPRI#. The Pentium II processor does not follow this protocol. Thus, if a system uses a chipset or
third party agent which optimizes its arbitration latency (reducing it to 2 clocks when it observes an active (low)
ADS# signal and an inactive (high) LOCK# signal on the same clock that BPRI# is asserted (driven low)), the
Pentium II processor may cause bus contention during an unlocked bus exchange.

IMPLICATION: This violation of the bus exchange protocol when using a reduced arbitration latency may cause a
system-level setup timing violation on the address, address parity, request command, or request parity signals
on the system bus. This may result in a system hang or assertion of the AERR# signal, causing an attempted
corrective action or shutdown of the system, as the system hardware and software dictate. The possibility of
failure due to the contention caused by this erratum may be increased due to the processor’s internal active pull-
up of these signals on the clock after the signals are no longer being driven by the processor.

WORKAROUND: If the chipset and third party agents used with the Pentium II processor do not optimize their
arbitration latency as described above, no action is required. For the 66 MHz Pentium II processor, no action is
required. If agents that have implemented this optimization, by following the 100 MHz GTL+ Layout Guidelines
for the Pentium® II Processor and Intel 440BX AGPset for UP-SET (single-ended termination) and DP with both
processors installed, no action is required. The following two cases are additional guidelines for UP-DET (dual-
ended termination) and DP-DET with only one processor populated.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

38

440 BX
AGPset

L4
L3

L1

RTT

VTT

L2

Figure 1. UP Dual Ended Termination (DET)

For UP-DET topologies (see Figure 1), the trace length L1 must be between 1.5" to 4.5" while using a 56Ω
termination resistor.

440BX

L3L4 L5

AGPset

Figure 2. DP Dual Ended Termination (DET)

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

39

For DP topologies (see Figure 2) installed with a processor and a termination card, L4 + L3 or L5 + L3 must be
less than or equal to 4.5". Additionally, for DP platforms with one processor installed, the termination card
should be placed in the longer leg.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A43. FP Data Operand Pointer May Not Be Zero After Power On or Reset

PROBLEM: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or Reset by the
processor. Due to this erratum, the FP Data Operand Pointer may be nonzero after power on or Reset.

IMPLICATION: Software which uses the FP Data Operand Pointer and count on its value being zero after power
on or Reset without first executing an FINIT/FNINIT instruction will use an incorrect value, resulting in incorrect
behavior of the software.

WORKAROUND: Software should follow the recommendation in Section 8.2 of the Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide (Order Number 243192). This recommendation
states that if the FPU will be used, software-initialization code should execute an FINIT/FNINIT instruction
following a hardware reset. This will correctly clear the FP Data Operand Pointer to zero.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A44. MOVD Following Zeroing Instruction Can Cause Incorrect Result

PROBLEM: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg instruction,

2. A value is moved with sign extension into the same register’s lower 16 bits; or a signed integer multiply is
performed to the same register’s lower 16 bits,

3. This register is then copied to an MMX™ technology register using the MOVD instruction prior to any other
operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. Only the MMX
technology register is affected by this erratum.

The erratum only occurs when the 3 following steps occur in the order shown. The erratum may occur with up to
40 intervening instructions that do not modify the sign-extended value between steps 2 and 3.

1. XOR EAX, EAX
or SUB EAX, EAX

2. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX, 1024 (opcode 69 /r iw)
or CBW

3. MOVD MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that any value in
the range for the size may be affected. Also, note that this erratum may occur with “EAX” replaced with any

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

40

32-bit general purpose register, and “AX” with the corresponding 16-bit version of that replacement. “BL” or “BX”
can be replaced with any 8-bit or 16-bit general purpose register. The CBW and IMUL (opcode F6 /5)
instructions are specific to the EAX register only.

In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the four types of the MOVSX
or IMUL instructions and the CBW instruction modify only bits 15:8 of EAX by sign extending the lower 8 bits of
EAX, bits 31:16 of EAX should always contain 0. This implies that when MOVD copies EAX to MM0, bits 31:16
of MM0 should also be 0. Under certain scenarios, bits 31:16 of MM0 are not 0, but are replicas of bit 15 (the
16th bit) of AX. This is noticeable when the value in AX after the MOVSX, IMUL or CBW instruction is negative,
i.e., bit 15 of AX is a 1.

When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer. If AX is negative (bit 15
of AX is a 1), MOVD may produce the right answer or the wrong answer depending on the point in time when the
MOVD instruction is executed in relation to the MOVSX, IMUL or CBW instruction.

IMPLICATION: The effect of incorrect execution will vary from unnoticeable, due to the code sequence discarding
the incorrect bits, to an application failure. If the MMX technology-enabled application in which MOVD is used to
manipulate pixels, it is possible for one or more pixels to exhibit the wrong color or position momentarily. It is also
possible for a computational application that uses the MOVD instruction in the manner described above to
produce incorrect data. Note that this data may cause an unexpected page fault or general protection fault.

WORKAROUND: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD, IMUL-MOVD or CBW-MOVD pairing to handle one variable at a
time, use the sign extension capabilities (PSRAW, etc.) within MMX™ technology for operating on multiple
variables. This would result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the MOVSX/IMUL/CBW
instruction and the MOVD instruction as in the example below:

XOR EAX, EAX (or SUB EAX, EAX)
MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
*MOV EAX, EAX
MOVD MM0, EAX

*Note: MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-bit register.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A45. Premature Execution of a Load Operation Prior to Exception
Handler Invocation

PROBLEM: This erratum can occur with any of the following situations:

1. If an instruction that performs a memory load causes a code segment limit violation,

2. If a waiting floating-point instruction or MMX™ instruction that performs a memory load has a floating-point
exception pending, or

3. If an MMX instruction that performs a memory load and has either CR0.EM =1 (Emulation bit set), or a
floating-point Top-of-Stack (FP TOS) not equal to 0, or a DNA exception pending.

If any of the above circumstances occur it is possible that the load portion of the instruction will have executed
before the exception handler is entered.

IMPLICATION: In normal code execution where the target of the load operation is to write back memory there is
no impact from the load being prematurely executed, nor from the restart and subsequent re-execution of that

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

41

instruction by the exception handler. If the target of the load is to uncached memory that has a system side-
effect, restarting the instruction may cause unexpected system behavior due to the repetition of the side-effect.

WORKAROUND: Code which performs loads from memory that has side-effects can effectively workaround this
behavior by using simple integer-based load instructions when accessing side-effect memory and by ensuring
that all code is written such that a code segment limit violation cannot occur as a part of reading from side-effect
memory.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A46. Read Portion of RMW Instruction May Execute Twice

PROBLEM: When the Pentium II processor executes a read-modify-write (RMW) arithmetic instruction, with
memory as the destination, it is possible for a page fault to occur during the execution of the store on the
memory operand after the read operation has completed but before the write operation completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the occurrence of the initial
load before the page fault handler and again if the instruction is restarted.

IMPLICATION: This erratum has no effect if the memory targeted for the RMW instruction has no side-effects. If,
however, the load targets a memory region that has side-effects, multiple occurrences of the initial load may lead
to unpredictable system behavior.

WORKAROUND: Hardware and software developers who write device drivers for custom hardware that may
have a side-effect style of design should use simple loads and simple stores to transfer data to and from the
device. Then, the memory location will simply be read twice with no additional implications.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A47. Test Pin Must Be High During Power Up

PROBLEM: The processor uses the PWRGOOD signal to ensure that no voltage sequencing issues arise; no
pin assertions should cause the processor to change its behavior until this signal is asserted, when all power
supplies and clocks to the processor are valid and stable. However, if the TESTHI signal is at a low voltage
level when the core power supply comes up, it will cause the processor to enter an invalid test state.

IMPLICATION: If this erratum occurs, the system may boot normally however, L2 cache may not be initialized.

WORKAROUND: Ensure that the 2.5 V (VCC2.5) power supply ramps at or before the 2.0 V (VCCCORE) power
plane. If 2.5 V ramps after core, pull up TESTHI to 2.5 V (VCC2.5) with a 100K ohm resistor. The internal pull-up
will keep the signal from being asserted during power up. For new motherboard designs, it is recommended that
TESTHI be pulled up to 2.0 V (VCCCORE) using a 1K-10K ohm resistor.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

 A48. Intervening Writeback May Occur During Locked Transaction

 PROBLEM: During a transaction which has the LOCK# signal asserted (i.e., a locked transaction), there is a
potential for an explicit writeback caused by a previous transaction to complete while the bus is locked. The
explicit writeback will only be issued by the processor which has locked the bus, and the lock signal will not be
deasserted until the locked transaction completes, but the atomicity of a lock may be compromised by this
erratum. Note that the explicit writeback is an expected cycle, and no memory ordering violations will occur. This
erratum is, however, a violation of the bus lock protocol.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

42

 IMPLICATION: A chipset or third-party agent (TPA) which tracks bus transactions in such a way that locked
transactions may only consist of a read-write or read-read-write-write locked sequence, with no transactions
intervening, may lose synchronization of state due to the intervening explicit writeback. Systems using chipsets
or TPAs which can accept the intervening transaction will not be affected.

 WORKAROUND: The bus tracking logic of all devices on the system bus should allow for the occurrence of an
intervening transaction during a locked transaction.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A49. MC2_STATUS MSR Has Model-Specific Error Code and Machine
Check Architecture Error Code Reversed

PROBLEM: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA (machine-check architecture) error code
field, and bits 31:16 contain the model-specific error code field. However, for the MC2_STATUS MSR, these bits
have been reversed. For the MC2_STATUS MSR, bits 15:0 contain the model-specific error code field and bits
31:16 contain the MCA error code field.

IMPLICATION: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS MSR is
not taken into account.

WORKAROUND: When decoding the MC2_STATUS MSR, reverse the two error fields.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A50. Mixed Cacheability of Lock Variables Is Problematic in MP
Systems

PROBLEM: This errata only affects multiprocessor systems where a lock variable address is marked cacheable
in one processor and uncacheable in any others. The processors which have it marked uncacheable may stall
indefinitely when accessing the lock variable. The stall is only encountered if:

• One processor has the lock variable cached, and is attempting to execute a cache lock.

• If the processor which has that address cached has it cached in its L2 only.

• Other processors, meanwhile, issue back to back accesses to that same address on the bus.

IMPLICATION: MP systems where all processors either use cache locks or consistent locks to uncacheable
space will not encounter this problem. If, however, a lock variable’s cacheability varies in different processors,
and several processors are all attempting to perform the lock simultaneously, an indefinite stall may be
experienced by the processors which have it marked uncacheable in locking the variable (if the conditions above
are satisfied). Intel has only encountered this problem in focus testing with artificially generated external events.
Intel has not currently identified any commercial software which exhibits this problem.

WORKAROUND: Follow a homogenous model for the memory type range registers (MTRRs), ensuring that all
processors have the same cacheability attributes for each region of memory; do not use locks whose memory
type is cacheable on one processor, and uncacheable on others. Avoid page table aliasing, which may produce
a nonhomogenous memory model.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

43

A51. MOV With Debug Register Cau ses Debug E xception

PROBLEM: When in V86 mode, if a MOV instruction is executed on debug registers, a general-protection
exception (#GP) should be generated, as documented in the Intel Architecture Software Developer's Manual,
Volume 3: System Programming Guide, Section 14.2. However, in the case when the general detect enable flag
(GD) bit is set, the observed behavior is that a debug exception (#DB) is generated instead.

IMPLICATION: With debug-register protection enabled (i.e., the GD bit set), when attempting to execute a MOV
on debug registers in V86 mode, a debug exception will be generated instead of the expected general-protection
fault.

WORKAROUND: In general, operating systems do not set the GD bit when they are in V86 mode. The GD bit is
generally set and used by debuggers. The debug exception handler should check that the exception did not
occur in V86 mode before continuing. If the exception did occur in V86 mode, the exception may be directed to
the general-protection exception handler.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A52. Upper Four PAT Entries Not Usable With Mode B or Mode C Paging

PROBLEM: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and considered
when setting up memory types for the Pentium II processor. However, in Mode B or Mode C paging, the upper
four entries do not function correctly for 4-Kbyte pages. Specifically, bit seven of page table entries that translate
addresses to 4-Kbyte pages should be used as the upper bit of a three-bit index to determine the PAT entry that
specifies the memory type for the page. When Mode B (CR4.PSE = 1) and/or Mode C (CR4.PAE) are enabled,
the processor forces this bit to zero when determining the memory type regardless of the value in the page table
entry. The upper four entries of the PAT function correctly for 2-Mbyte and 4-Mbyte large pages (specified by bit
12 of the page directory entry for those translations).

IMPLICATION: Only the lower four PAT entries are useful for 4 KB translations when Mode B or C paging is
used. In Mode A paging (4-Kbyte pages only), all eight entries may be used. All eight entries may be used for
large pages in Mode B or C paging.

WORKAROUND: None identified.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A53. UC Write May Be Reordered Around a Cacheable Write

PROBLEM: After a write occurs to a UC (uncacheable) region of memory, there exists a small window of
opportunity where a subsequent write transaction targeted for a UC memory region may be reordered in front of
a write targeted to a region of cacheable memory. This erratum can only occur during the following sequence of
bus transactions:

• A write to memory mapped as UC occurs,

• A write to memory mapped as cacheable (WB or WT) which is present in Shared or Invalid state in the L2
cache occurs, and

• During the bus snoop of the cacheable line, another store to UC memory occurs.

IMPLICATION: If this erratum occurs, the second UC write will be observed on the bus prior to the Bus Invalidate
Line (BIL) or Bus Read Invalidate Line (BRIL) transaction for the cacheable write. This presents a small window
of opportunity for a fast bus-mastering I/O device which triggers an action based on the second UC write to
arbitrate and gain ownership of the bus prior to the completion of the cacheable write, possibly retrieving stale
data.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

44

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A54. Incorrect Memory Type May Be Used When MTRRs Are Disabled

PROBLEM: If the Memory Type Range Registers (MTRRs) are disabled without setting the CR0.CD bit to
disable caching, and the Page Attribute Table (PAT) entries are left in their default setting, which includes
UC- memory type (PCD = 1, PWT = 0; see the Addendum—Intel Architecture Software Developer’s Manual,
Volume 3: System Programming Guide, for details), data for entries set to UC- will be cached as if the memory
type were writeback (WB). Also, if the page tables are set to a memory type other than UC-, then the effective
memory type used will be that specified by the page tables and PAT. Any regions of memory normally forced to
UC by the MTRRs (such as the VGA video region) may now be incorrectly cached and speculatively accessed.

Even if the CR0.CD bit is correctly set when the MTRRs are disabled and the PAT is left in its default state, then
retries and out of order retirement of UC accesses may occur, contrary to the strong ordering expected for these
transactions.

IMPLICATION: The occurrence of this erratum may result in the use of incorrect data and unpredictable
processor behavior when running with the MTRRs disabled. Interaction between the mouse, cursor, and VGA
video display leading to video corruption may occur as a symptom of this erratum as well.

WORKAROUND: Ensure that when the MTRRs are disabled, the CR0.CD bit is set to disable caching. This
recommendation is described in Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. If it is necessary to disable the MTRRs, first clear the PAT register before setting the
CR0.CD bit, flushing the caches, and disabling the MTRRs to ensure that UC memory type is always returned
and strong ordering is maintained.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A55. Misprediction in Program Flow May Cause Unexpected Instruction
Execution

PROBLEM: To optimize performance through dynamic execution technology, the P6 architecture has the ability
to predict program flow. In the event of a misprediction, the processor will normally clear the incorrect prediction,
adjust the EIP to the correct location, and flush out any instructions it may have fetched from the misprediction.
In circumstances where a branch misprediction occurs, the correct target of the branch has already been
opportunistically fetched into the streaming buffers, and the L2 cycle caused by the evicted cache line is retried
by the L2 cache, the processor may fail to flush out the retirement unit before the speculative program flow is
committed to a permanent state.

IMPLICATION: The results of this erratum may range from no effect to unpredictable application or OS failure.
Manifestations of this failure may result in:

• Unexpected values in EIP,

• Faults or traps (e.g., page faults) on instructions that do not normally cause faults,

• Faults in the middle of instructions, or

• Unexplained values in registers/memory at the correct EIP.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

45

A56. System Bus ECC May Report False Errors

PROBLEM: The processor’s ECC circuitry may fail to meet its frequency timing specification under certain
environmental conditions. At the high end of the temperature specification and/or the low end of the voltage
range, the processor may report false ECC errors.

IMPLICATION: If the system has data error checking enabled (bit [1] of the EBL_CR_POWERON register set to
“1”) and has Machine Check Architecture enabled, spurious double bit error detection can occur causing
Machine Check Exceptions (MCE) and spurious single bit errors to occur and be logged. Under some
circumstances the processor may assert BINIT#, which in turn, may cause some systems to generate an MCE,
and in others cause a reboot.

WORKAROUND: Disable system bus data error checking (set bit [1] of the EBL_CR_POWERON register to “0”).

STATUS: For the processor part numbers affected see the “Pentium II Processor Identification Information”
table in the General Information section.

A57. Full In-Order Queue May Cause Infinite DBSY# Assertion

PROBLEM: For this erratum to occur, there must be a high rate of code fetches from the core to its L2 cache,
which must hit the L2 cache, AND in parallel an externally generated read transaction that hits a modified line
FOLLOWED by 7 consecutive 0 length external transactions in rapid succession FOLLOWED by another
external transaction that also hits a modified line.

IMPLICATION: The writeback data is not transferred to memory. No further bus transactions may be issued
because the In-Order Queue is full.

WORKAROUND: None Identified.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A58. Data Breakpoint Exception in a Displacement Relative Near Call
May Corrupt EIP

PROBLEM: If a data breakpoint is programmed at the memory location where the stack push of a near call is
performed, the processor will update the stack and ESP appropriately, but may skip the code at the destination
of the call. Hence, program execution will continue with the next instruction immediately following the call,
instead of the target of the call.

IMPLICATION: The failure mechanism for this erratum is that the call would not be taken; therefore, instructions
in the called subroutine would not be executed. As a result, any code relying on the execution of the subroutine
will behave unpredictably.

WORKAROUND: Do not program a data breakpoint exception on the stack where the push for the near call is
performed.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A59. System Bus ECC Not Functional With 2:1 Ratio

PROBLEM: If a processor is underclocked at a core frequency to system bus frequency ratio of 2:1 and system
bus ECC is enabled, the system bus ECC detection and correction will negatively affect internal timing
dependencies.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

46

IMPLICATION: If system bus ECC is enabled, and the processor is underclocked at a 2:1 ratio, the system may
behave unpredictably due to these timing dependencies.

WORKAROUND: All bus agents that support system bus ECC must disable it when a 2:1 ratio is used.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A60. Fault on REP CMPS/SCAS Operation May Cause Incorrect EIP

PROBLEM: If either a General Protection Fault, Alignment Check Fault or Machine Check Exception occur
during the first iteration of a REP CMPS or a REP SCAS instruction, an incorrect EIP may be pushed onto the
stack of the event handler if all the following conditions are true:

• The event occurs on the initial load performed by the instruction(s),

• The condition of the zero flag before the repeat instruction happens to be opposite of the repeat condition
(i.e., REP/REPE/REPZ CMPS/SCAS with ZF = 0 or RENE/REPNZ CMPS/SCAS with ZF = 1), and

• The faulting micro-op and a particular micro-op of the REP instruction are retired in the retirement unit in a
specific sequence.

The EIP will point to the instruction following the REP CMPS/SCAS instead of pointing to the faulting instruction.

IMPLICATION: The result of the incorrect EIP may range from no effect to unexpected application/OS behavior.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A61. RDMSR or WRMSR To Invalid MSR Address May Not Cause GP
Fault

PROBLEM: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific Registers)
based on the index number placed in ECX. The processor should reject access to any reserved or
unimplemented MSRs by generating #GP(0). However, there are some invalid MSR addresses for which the
processor will not generate #GP(0).

IMPLICATION: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined processor
behavior may result.

WORKAROUND: Do not use invalid MSR addresses with RDMSR or WRMSR.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

 A62. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null
Segment Selector” to SS and CS Registers

 PROBLEM: According to the processor specification, attempting to load a null segment selector into the CS and
SS segment registers should generate a General Protection Fault (#GP). Although loading a null segment
selector to the other segment registers is allowed, the processor will generate an exception when the segment
register holding a null selector is used to access memory.

 However, the SYSENTER instruction can implicitly load a null value to the SS segment selector. This can occur
if the value in SYSENTER_CS_MSR is between FFF8h and FFFBh when the SYSENTER instruction is
executed. This behavior is part of the SYSENTER/SYSEXIT instruction definition; the content of the

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

47

SYSTEM_CS_MSR is always incremented by 8 before it is loaded into the SS. This operation will set the null bit
in the segment selector if a null result is generated, but it does not generate a #GP on the SYSENTER
instruction itself. An exception will be generated as expected when the SS register is used to access memory,
however.

 The SYSEXIT instruction will also exhibit this behavior for both CS and SS when executed with the value in
SYSENTER_CS_MSR between FFF0h and FFF3h, or between FFE8h and FFEBh, inclusive.

 IMPLICATION: These instructions are intended for operating system use. If this erratum occurs (and the OS does
not ensure that the processor never has a null segment selector in the SS or CS segment registers), the
processor’s behavior may become unpredictable, possibly resulting in system failure.

 WORKAROUND: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh, FFF0h
and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

 A63. PRELOAD Followed by EXTEST Does Not Load Boundary Scan
Data

 PROBLEM: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data “typically loaded
onto the latched parallel outputs of boundary-scan shift-register stages using the SAMPLE/PRELOAD instruction
prior to the selection of the EXTEST instruction.” As a result of this erratum, this method cannot be used to load
the data onto the outputs.

 IMPLICATION: Using the PRELOAD instruction prior to the EXTEST instruction will not produce expected data
after the completion of EXTEST.

 WORKAROUND: None identified at this time.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

 A64. Far Jump to New TSS With D-bit Cleared May Cause System Hang

 PROBLEM: A task switch may be performed by executing a far jump through a task gate or to a new Task State
Segment (TSS) directly. Normally, when such a jump to a new TSS occurs, the D-bit (which indicates that the
page referenced by a Page Table Entry (PTE) has been modified) for the PTE which maps the location of the
previous TSS will already be set, and the processor will operate as expected. However, if the D-bit is clear at the
time of the jump to the new TSS, the processor will hang.

 IMPLICATION: If an OS is used which can clear the D-bit for system pages, and which jumps to a new TSS on a
task switch, then a condition may occur which results in a system hang. Intel has not identified any commercial
software which may encounter this condition; this erratum was discovered in a focused testing environment.

 WORKAROUND: Ensure that OS code does not clear the D-bit for system pages (including any pages that
contain a task gate or TSS). Use task gates rather than jumping to a new TSS when performing a task switch.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

48

A65. Incorrect Chunk Ordering May Pr event Execution of the Machine
Check Exception Handler After BINIT#

PROBLEM: If a catastrophic bus error is detected which results in a BINIT# assertion, and the BINIT# assertion
is propagated to the processor’s L2 cache at the same time that data is being sent to the processor, then the
data may become corrupted in the processor’s L1 cache.

IMPLICATION: Since BINIT# assertion is due to a catastrophic event on the bus, the corrupted data will not be
used. However, it may prevent the processor from executing the Machine Check Exception (MCE) handler,
causing the system to hang.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A66. Resume Flag May Not Be Cleared After Debug E xception

PROBLEM: The Resume Flag (RF) is normally cleared by the processor after executing an instruction which
causes a debug exception (#DB). In the process of determining whether the RF needs to be cleared after
executing the instruction, the processor uses an internal register containing stale data. The stale data may
unpredictably prevent the processor from clearing the RF.

IMPLICATION: If this erratum occurs, further debug exceptions will be disabled.

WORKAROUND : None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A1AP. APIC Access to Cacheable Memory Causes SHUTDOWN

PROBLEM: APIC operations which access memory with any type other than uncacheable (UC) are illegal. If an
APIC operation to a memory type other than UC occurs and Machine Check Exceptions (MCEs) are disabled,
the processor will enter shutdown after such an access. If MCEs are enabled, an MCE will occur. However, in
this circumstance, a second MCE will be signaled. The second MCE signal will cause the Pentium II processor
to enter shutdown.

IMPLICATION: Recovery from a PIC access to cacheable memory will not be successful. Software that
accesses only UC type memory during APIC operations will not encounter this erratum.

WORKAROUND: Ensure that the memory space to which PIC accesses can be made is marked as type UC
(uncacheable) in the memory type range registers (MTRRs) to avoid this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A2AP. 2-Way MP Systems May Hang Due to Catastrophic Errors During
BSP Determination

PROBLEM: In 2-way MP systems, a catastrophic error during the bootstrap processor (BSP) determination
process should cause the assertion of IERR#. If the catastrophic error is due to the APIC data bus being stuck
at electrical zero, then the system hangs without asserting IERR#.

IMPLICATION: 2-way MP systems may hang during boot due to a catastrophic error. This erratum has not been
observed to date in a typical commercial system, but was found during focused system testing using a grounded
APIC data bus.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

49

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

A3AP. Write to Mask LVT (Programmed as EXTINT) Will Not Deassert
Outstanding Interrupt

PROBLEM: If the APIC subsystem is configured in Virtual Wire Mode implemented through the local APIC (i.e.,
the 8259 INTR signal is connected to LINT0 and LVT1’s interrupt delivery mode field is programmed as
EXTINT), a write to LVT1 intended to mask interrupts will not deassert the internal interrupt source if the external
LINT0 signal is already asserted. The interrupt will be erroneously posted to the Pentium II processor despite the
attempt to mask it via the LVT.

IMPLICATION: Because of the masking attempt, interrupts may be generated when the system software expects
no interrupts to be posted.

WORKAROUND: Software can issue a write to the 8259A interrupt mask register to deassert the LINT0 interrupt
level, followed by a read to the controller to ensure that the LINT0 signal has been deasserted. Once this is
ensured, software may then issue the write to mask LVT entry 1.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

50

DOCUMENTATION CHANGES
The Documentation Changes listed in this section apply to the Pentium® II Processor at 233 MHz, 266 MHz, 300
MHz, and 333 MHz datasheet, the Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet (Order
Number 243657), the Pentium® Pro Family Developer’s Manual, Volumes 1, 2, and 3, and the Intel Architecture
Software Developer’s Manual, Volumes 1, 2, and 3. All Documentation Changes will be incorporated into a future
version of the appropriate Pentium II processor documentation.

A1. Invalid Arithmetic Operations and Masked Res ponses to Them
Relative to FIST/FISTP Instruction

The Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, Table 7-20, and the
Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, Table 7-20, show “Invalid
Arithmetic Operations and the Masked Responses to Them.” The table entry corresponding to the FIST/FISTP
condition is missing, and is shown below:

Condition Masked Response

FIST/FISTP instruction when input operand <>
MAXINT for destination operand size.

Return MAXNEG to destination operand.

When FIST/FISTP instruction is executed with input operand <> and the destination operand size is MAXINT,
the floating-point zero-divide exception will return MAXNEG to the destination operand as its masked response.

A2. FIDIV/FIDIVR m16int Description

The Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, pages 11-118 and
11-121, and the Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, pages 3-118 and
3-122, show in the Description column for the FIDIV m16int instruction as “Divide ST(0) by m64int by ST(0) and
store the result in ST(0)” and FIDIVR m16int instruction as “Divide m64int by ST(0) and store the result in ST(0).”
In both of these cases, m64int should be replaced with m16int.

A3. PUSH Does Not Pad With Zeros

The Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, page 4-2, and the
Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, page 4-3, contain a section
regarding stack alignment. The last sentence in the first paragraph of this section, reads “If a 16-bit value is
pushed onto a 32-bit wide stack, the value is automatically padded with zeros out to 32-bits.” This sentence
should be removed. The PUSH instruction does not pad with zeros.

A4. DR7, Bit 10 is Reserved

In Figure 10-1 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating Systems Writer’s Manual,
and Figure 14-1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
bit 10 of DR7 should be “Reserved” instead of “1”.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

51

A5. Additional States That Are Not Automatically Saved and Restored

In Section 9.4.1 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating Systems Writer’s Manual,
and in Section 11.4.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, the end of section lists the registers that are not automatically saved and restored following an SMI and
the RSM instruction, respectively. The last two paragraphs should be as follows:

The following state is not automatically saved and restored following an SMI and the RSM instruction,
respectively:

• Debug registers DR0 through DR3.

• The FPU registers.

• The MTRRs.

• Control register CR2.

• The model-specific registers (for the P6 family and Pentium® processors), or test registers TR3 through
TR7 (for the Pentium and Intel486™ processors).

• The state of the trap controller.

• The Machine-Check architecture registers.

• The APIC internal interrupt state (ISR, IRR, etc.).

• The Microcode Update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down
should first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile
storage. After the power-on reset, the continuation of the SMI handler should restore these values, along with the
rest of the system’s state. Anytime the SMI handler changes these registers in the processor it must also save
and restore them.

NOTE

A small subset of the MSRs (such as the time-stamp counter and performance-
monitoring counter) are not arbitrarily writeable and therefore cannot be saved and
restored. SMM-based power-down and restoration should only be performed with
operating systems that do not use or rely on the values of these registers.
Operating system developers should be aware of this fact and ensure that their
operating-system assisted power-down and restoration software is immune to
unexpected changes in these register values.

A6. S.E.C. Cartridge Mechanical Specification Corrections

In Section 4.3 of Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
corrections should be made:

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

52

4.3 Thermal Solution Attach Methods

The design of the thermal plate is intended to support two different attach methods — heatsink clips and
Rivscrews*. Figure 41 shows the thermal plate and the locations of the attach features. Only one attach method
should be used for any thermal solution.

4.3.1 HEATSINK CLIP ATTACH

Figure 23 and Figure 24 illustrate example clip designs to support a low profile and a full height heatsink,
respectively. The clips attach the heatsink by engaging with the underside of the thermal plate. The clearance of
the thermal plate to the internal processor substrate is a minimum 0.089" (illustrated in Figure 23 and Figure 24).
The clips should be designed such that they will engage within this space, and also not damage the substrate
upon insertion or removal. Finally, the clips should be able to retain the heatsink onto the thermal plate through a
system level mechanical shock and vibration test. The clips should also apply a high enough force to spread the
interface material for the spot size selected.

4.3.2 RIVSCREW* ATTACH

The Rivscrew attach mechanism uses a specialized rivet that is inserted through a hole in the heatsink into the
thermal plate. Upon insertion, a threaded fastener is formed that can be removed if necessary. For Rivscrew
attachment, the minimum gap between the thermal plate and the processor substrate is 0.125". For use of the
Advel Rivscrew (part number 1712-3510), the heatsink base thickness must be 0.140 ±0.010". See Figure 25,
Figure 26 and Figure 27 for details of heatsink requirements for use with Rivscrews.

0.089 Min Gap
Thermal Plate

Spring Clip

Cover

Processor Substrate

All dimensions in inches.

Processor Core

008770a

Figure 23. Processor with an Example Low Profile Heatsink Attached Using Spring Clips

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

53

0.089 Min Gap
Thermal Plate

Spring Clip

Cover

Processor Substrate

All dimensions in inches.

Processor Core

000878a

Figure 24. Processor with an Example Full Height Heatsink Attached Using Spring Clips

All dimensions in inches.

Heatsink Base

Thermal Plate

Processor Core

Processor Substrate

0.125 Min.

0.140 ±0.010 Heatsink Base (Recommended)

0.144 ±0.005

Thermal Grease

Mandrel

Rivscrew*

000915

Figure 26. Heatsink Rivscrew* and Thermal Plate Recommendations and Guidelines

A7. Cache and TLB Description Correction

In the Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, Table 11-10, and
in the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, Table 3-7, the
correct description for descriptor value 02H should be as follows:

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

54

Descriptor Value Cache or TLB Description

02H Instruction TLB: 4-Mbyte Pages, fully associative, 2 entries

Also, the third bullet after the table should be as follows:

• Bytes 1, 2 and 3 of register EAX indicate that the processor contains the following:

–01H–A 32-entry instruction TLB (4-way set associative) for mapping 4-Kbyte pages.

–02H–A 2-entry instruction TLB (fully associative) for mapping 4-Mbyte pages.

–03H–A 64-entry data TLB (4-way set associative) for mapping 4-Kbyte pages.

Finally, for the Pentium® Pro Family Developer’s Manual, Volume 3: Operating Systems Writer’s Manual, Table
11-1, the following corrections should be made:

Cache or Buffer Characteristics

Instruction TLB (Large Pages) 2 entries, fully associative

For the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, Table 9-1, the
following corrections should be made:

Cache or Buffer Characteristics

Instruction TLB (Large
Pages)

- P6 family processors: 2 entries, fully associative.

- Pentium® processor: Uses same TLB as used for 4-Kbyte pages.

- Intel486™ processor: None (large pages not supported).

Data TLB (Large Pages) - P6 family processors: 8 entries, 4-way set associative.

- Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for
4-Kbyte pages in Pentium processors with MMX™ technology.

- Intel486 processor: None (large pages not supported).

A8. SMRAM State Save Map Contains Documentation Errors

In the Pentium® Pro Family Developer's Manual, Volume 3: Operating System Writer’s Manual, Chapter 9,
“System Management Mode,” Table 9-1 incorrectly documents the SMBASE+Offset for IDT Base and GDT
Base for Pentium II processors. In the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, Chapter 11, “System Management Mode,” Table 11-1 incorrectly documents the
SMBASE+Offset for IDT Base and GDT Base for Pentium II processors.

The storage locations for these parameters are model specific (i.e., they may differ between the Pentium
processor, the Pentium Pro processor, Pentium II processor, and other P6 family proliferations). These entries in
the tables above will be changed to Reserved. Hardware and software may not rely on the contents of these
Reserved regions.

A9. OF and DF of the EFLAGS Register Are Mislabeled as System
Flags

In Table 3-7 of the Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, and
the Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, the Overflow Flag (OF) and

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

55

Direction Flag (DF) are both incorrectly labeled as System Flags. The Overflow Flag should be labeled as a
Status Flag and the Direction Flag should be labeled as a Control Flag.

A10. CS:EIP Pushed Onto Stack Prior to Code Segment Limit Check

The Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, Section 11.3, and
the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, Section 3.4, contain a
detailed definition of the CALL instruction. In this definition, all instances where the instruction pointer is checked
to ensure it is within the acceptable code segment limit followed by the CS:EIP register being pushed on the
stack are in error. CS:EIP is pushed on the stack prior to the check of the instruction pointer. This means that in
the case of a GP#(0) being generated due to an out-of-range instruction pointer, these values will be present on
the stack.

A11. Corrections to Opcode Maps

In Appendix A, “Opcode Map,” in the Pentium Pro Family Developer’s Manual, Volume 3: Operating System
Writer’s Manual, and in Appendix A, “Opcode Map,” in the Intel Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference, are the one and two byte opcode maps. The following tables are intended
to replace those tables in their entirety:

Table A-1. One-Byte Opcode Map 1

0 1 2 3 4 5 6 7

0 ADD PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv ES ES

1 ADC PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv SS SS

2 AND DAA

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =ES

3 XOR AAA

Eb,Gb Ev,Gv Gb,Eb Gb,Ev AL,Ib eAX,Iv =SS

4 INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSHA/
PUSHAD

POPA/
POPAD

BOUND ARPL Operand Address

Gv,Ma Ew,Gw =FS =GS Size Size

7 Short-displacement jump on condition (Jb)

JO JNO JB/JNAE/JC JNB/
JAE/JNC

JZ/JE JNZ/
JNE

JBE/
JNA

JNBE/
JA

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

56

Table A-1. One-Byte Opcode Map 1 (Continued)

8 Imm Group 12 Imm Group
12

TEST XCHG

Eb,Ib Ev,Iv Ev,Ib Ev,lb Eb,Gb Ev,Gv Eb,Gb Ev,Gv

9 NOP XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

A MOV MOVSB MOVSW CMPSB CMPSW

AL,Ob eAX,Ov Ob,AL Ov,eAX Xb,Yb Xv,Yv Xb,Yb Xv,Yv

B MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

C Shift Group 22 RET near LES LDS MOV

Eb,Ib Ev,Ib Iw Gv,Mp Gv,Mp Eb,Ib Ev,Iv

D Shift Group 22 AAM AAD XLAT/
XLATB

Eb,1 Ev,1 Eb,CL Ev,CL

E LOOPNE/
LOOPNZ

LOOPE/LO
OPZ

LOOP JCXZ/
JECXZ

IN OUT

Jb Jb Jb Jb AL,Ib eAX,Ib Ib,AL Ib,eAX

F LOCK REPNE REP/
REPE

HLT CMC Unary Group 32

Eb Ev

8 9 A B C D E F

0 OR PUSH 2-byte

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv CS Escape

1 SBB PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv DS DS

2 SUB DAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv

3 CMP AAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =DS

4 DEC General-Purpose Register

eAX eCX eDX eBX eSP eBP eSI eDI

5 POP Into General-Purpose Register

eAX eCX eDX eBX eSP eBP eSI eDI

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

57

Table A-1. One-Byte Opcode Map 1 (Continued)

6 PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/
D

lv Gv,Ev,lv lb Gv,Ev,lb Yb,DX Yv,DX Dx,Xb DX,Xv

7 Short-Displacement Jump on Condition (Jb)

JS JNS JP/JPE JNP/JPO JL/JNGE JNL/JGE JLE/JNG JNLE/JG

8 MOV LEA MOV POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev Ew,Sw Gv,M Sw,Ew Ev

9 CBW/
CWDE

CWD/
CDQ

CALL FWAIT PUSHF/
PUSHFD

POPF/
POPFD

SAHF LAHF

Ap Fv Fv

A TEST STOS/
STOSB

STOS/STO
SW/STOTS

D

LODSB LODSW/LO
DSD

SCAS/
SCACSB

SCASW/
SCASD/
SCAS

AL,Ib eAX,Iv Yb,AL Yv,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv

B MOV Immediate Word or Double Into Word or Double Register

eAX eCX eDX eBX eSP eBP eSI eDI

C ENTER LEAVE RET far RET far INT 3 INT INTO IRET

Iw, Ib Iw lb

D ESC (Escape to Coprocessor Instruction Set)

E CALL JMP IN OUT

Jv Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX

F CLC STC CLI STI CLD STD Group 42 Group 52

NOTES:
1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of these undefined

opcodes.
2. Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (see Section A.4).

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

58

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1

0 1 2 3 4 5 6 7

0 Group 62 Group 72 LAR LSL CLTS

Gv,Ew Gv,Ew

1

2 MOV

Rd,Cd Rd,Cd Cd,Rd Dd,Rd

3 WRMSR RDTSC RDMSR RDPMC

4 CMOVO CMOVNO CMOVB/
CMOVC/

CMOVNAE

CMOVAE/
CMOVNB/
CMOVNC

CMOVE/
CMOVZ

CMOVNE/C
MOVNZ

CMOVBE/
CMOVNA

CMOVA/
CMOVN

BE

Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

5

6 PUNPCKL
BW

PUNPCKL
WD

PUNPCKLD
Q

PACKSSD
W

PCMPGTB PCMPGTW PCMPGT
D

PACKUS
WB

Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd

7 Group A2 PCMPEQB PCMPEQW PCMPEQ
D

EMMS

PSHIMW3 PSHIMD3 PSHIMQ3 Pq, Qd Pq, Qd Pq, Qd

8 Long-Displacement Jump on Condition (Jv)

JO JNO JB/JNAE/
JC

JAE/JNB/JN
C

JE/JZ JNE/JNZ JBE/JNA JA/JNBE

9 Byte Set on condition (Eb)

SETO SETNO SETB/
SETC/
SETNA

SETAE/
SETNB/
SETNC

SETE/
SETG/
SETZ

SETNE/
SETNZ

SETBE/
SETNA

SETA/
SETNBE

A PUSH POP CPUID BT SHLD SHLD

FS FS Ev,Gv Ev,Gv,Ib Ev,Gv,CL

B CMPXCH
G

CMPXCHG LSS BTR LFS LGS MOVZX

Eb,Gb Ev,Gv Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew

C XADD XADD Group 92

Eb,Gb Ev,Gv

D PSRLW PSRLD PSRLQ PMULLW

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

59

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1 (Continued)

Pq, Qd Pq, Qd Pq, Qd Pq, Qd

E PSRAW PSRAD PMULHW

Pq, Qd Pq, Qd Pq, Qd

F PSLLW PSLLD PSLLQ PMADDWD

Pq, Qd Pq, Qd Pq, Qd Pq, Qd

8 9 A B C D E F

0 INVD WBINVD UD24

1

2

3

4 CMOVS CMOVNS CMOVP/
CMOVPE

CMOVNP/C
MOVPO

CMOVL/
CMOVNGE

CMOVGE/C
MOVNL

CMOVLE/
CMOVNG

CMOVG/
CMOVNL

E

Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

5

6 PUNPCKH
BW

PUNPCKH
WD

PUNPCKH
DQ

PACKSSD
W

MOVD MOVQ

Pq,Qd Pq,Qd Pq,Qd Pq,Qd Pd,Ed Pq,Qq

7 MOVD MOVQ

Ed,Pd Qq,Pq

8 Long-Displacement Jump on Condition (Jv)

JS JNS JP/JPE JNP/JPO JL/JNGE JNL/JGE JLE/JNG JNLE/JG

Byte set on condition (Eb)

9 SETS SETNS SETP/
SETPE

SETNP/
SETPO

SETL/
SETNGE

SETNL/
SETGE

SETLE/
SETNG

SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

A PUSH POP RSM BTS SHRD SHRD IMUL

GS GS Ev,Gv Ev,Gv,Ib Ev,Gv,CL Gv,Ev

B Invalid
Opcode4

Group 82 BTC BSF BSR MOVSX

Ev,lb Ev,Gv Gv,Ev Gv,Ev Gv,Eb Gv,Ew

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

60

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1 (Continued)

C BSWAP

EAX ECX EDX EBX ESP EBP ESI EDI

D PSUBUSB PSUBUSW PAND PADDUSB PADDUSW PANDN

Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq

E PSUBSB PSUBSW POR PADDSB PADDSW PXOR

Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq

F PSUBB PSUBW PSUBD PADDB PADDW PADDD

Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq

NOTES:
1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of these undefined

opcodes.
2. Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (see Section A.4).
3. These abbreviations are not actual mnemonics. When shifting by immediate shift counts, the PSHIMD mnemonic

represents the PSLLD, PSRAD, and PSRLD instructions, PSHIMW represents the PSLLW, PSRAW, and PSRLW
instructions, and PSHIMQ represents the PSLLQ and PSRLQ instructions. The instructions that shift by immediate
counts are differentiated by the ModR/M bytes (see Section A.4).

4. Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately trying to generate an invalid opcode
exception (#UD).

A12. MP Initialization Protocol Algorithm Correction

In Section 7.5.6 of the Pentium Pro Family Developer’s Manual, Volume 3: Operating System Writer’s Manual,
and in Section 7.6.5 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, the algorithm for MP Initialization is defined. It is stated “the APIC hardware observes the BNR# (block
next request) and BPRI# (priority agent bus request) pins to guarantee that the initial BIPI is not issued on the
APIC bus until the BIST sequence is complete for all processors in the system.” This is not correct. Only the
observation of BNR# is required for the APIC hardware to proceed.

A13. Interrupt 13-General Protection Exception (#GP)

In Section 5.12 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
and in Section 5.12 of the Pentium Pro Family Developer’s Manual, Volume 3: Operating System Writer’s
Manual, a description of the exception interrupts is provided. In the description section of Interrupt 13-General
Protection Exception (#GP), the last bullet applies if the PAE and/or PSE flags are set, rather than just the PAE
flag as reported in the documentation.

A14. Corrections to Intel Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference

The following typographical errors and other documentation errors will be corrected in the next revision of the
Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference. A list of significant
changes is given below. Note that other changes may be made, and not all significant changes may be listed
here.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

61

• Page 3-79: The example for the DAA instruction is incorrect, and should read:

ADD AL, BL Before: AL=79H BL=35H EFLAGS(0SZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL= 2EH BL=35H EFLAGS(0SZAPC)=110000
After: AL= 04H BL=35H EFLAGS(0SZAPC)=X00101

• Page 3-236: The TASK-RETURN parameters are (* PE=1, VM=0, NT=1 *).

• Page 3-350: The second paragraph of the description should begin “The current operand -size attribute...”

A15. MCI_ADDR MSR Reference Section Correction

The first sentence of Section 16.3.2.3 of the Pentium® Pro Family Developer's Manual, Volume 3: Operating
System Writer’s Manual, and Section 12.3.2.3 of the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, contain a reference to a previous section, but incorrectly identify the referenced
section number. The first sentence should read: “The MCi_ADDR MSR contains the address of the code or data
memory location that produced the machine-check error if the ADDRV flag in the MCi_STATUS register is set
(see Section 16.3.2.2, “MCi_STATUS MSR”).” For the Intel Architecture Software Developer’s Manual, Volume
3: System Programming Guide, the referenced section number should be 12.3.2.2, “MCi_STATUS MSR.”

A16. FCOMI/FCOMIP/FUCOMI/FUCOMIP Setting of Flags Relative to
Exceptions

Page 11-112 of the Pentium® Pro Family Developer's Manual, Volume 2: Programmer’s Reference Manual, and
page 3-112 of the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, show a
table for FCOMI/FCOMIP/FUCOMI/FUCOMIP comparison results, where the last entry in the table “Unordered”
has an asterisk (*) beside it referencing a table note that reads: “Note: * Flags not set if unmasked invalid-
arithmetic operand (#IA) exception is generated”; however this note should read: “Note: * Flags are set
regardless, whether there is an unmasked invalid operand (#IA) exception generated or not.”

A17. MemTypeGet() Function Example

Example 9-2 of Section 9.11.7.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, contains pseudocode that uses the MemTypeGet() function.

The line that reads: “IF (BASE + SIZE) wrap 4-Gbyte address space THEN return INVALID.” is incorrect. This
line should read: “IF (BASE + SIZE) wrap 64-Gbyte address space THEN return INVALID.”

A18. RSVD Flag Correction

Figure 5-7 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
contains a definition of the RSVD flag. The definition is reversed and should read as follows:

RSVD 1 The page fault occurred because a 1 was detected in one of the reserved bit positions of a page
table entry or directory entry that was marked present.

0 The fault was not caused by a reserved bit violation.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

62

SPECIFICATION CLARIFICATIONS
The Specification Clarifications listed in this section apply to the Pentium® II Processor at 233 MHz, 266 MHz,
300 MHz and 333 MHz datasheet, the Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet
(Order Number 243657), the Pentium® Pro Family Developer’s Manual, Volumes 1, 2, and 3, and the Intel
Architecture Software Developer’s Manual, Volumes 1, 2, and 3. All Specification Clarifications will be
incorporated into a future version of the appropriate Pentium II processor documentation.

A1. Writes to WC Memory

Section 11.3 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System Writer’s Guide, and
Section 9.3 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
identifies that “Writes” to a region of WC memory “may be delayed and combined in the write buffer to reduce
memory accesses.” This sentence should state that “Writes” to a region of WC memory “may be delayed and
combined in the write buffer to reduce memory accesses. The writes may be delayed until the next occurrence
of a buffer or processor serialization event, e.g., CPUID execution, a read or write to uncached memory,
interrupt occurrence, LOCKed instruction execution, etc., if the WC buffer is partially filled.”

A2. Multiple Processors Protocol and Restrictions

Section 7.5.2 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System Writer's Guide, and
Section 7.6.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
contain inconsistencies which will be clarified as follows:

7.5.2. Protocol Requirements and Restrictions

The MP protocol imposes the following requirements and restrictions on the system:

• An APIC clock (APICLK) must be provided on all systems based on the P6 family processors (excluding
mobile processors and modules).

• All interrupt mechanisms must be disabled for the duration of the MP protocol algorithm including the window
of time between the assertion of INIT# or receipt of an INIT IPI by the application processors and the receipt
of a STARTUP IPI by the application processors. That is, requests generated by interrupting devices must
not be seen by the local APIC unit (on board the processor) until the completion of the algorithm. Failure to
disable the interrupt mechanisms may result in processor shutdown.

• The MP protocol should be initiated only after a hardware reset. After completion of the protocol algorithm, a
flag is set in the APIC base MSR of the BSP (APIC_BASE.BSP) to indicate that it is the BSP. This flag is
cleared for all other processors. If a processor or the system is subject to an INIT sequence (either through
the INIT# pin or an INIT IPI), then the MP protocol is not reexecuted. Instead, each processor examines its
BSP flag to determine whether the processor should boot or wait for a STARTUP IPI.

A3. NMI Handling While in SMM

Section 9.7, “NMI Handling While in SMM,” in the Pentium® Pro Family Developer’s Manual, Volume 3:
Operating System Writer's Guide, will be clarified as follows:

9.7. NMI Handling While in SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

63

handler. If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced
before the next instruction of the interrupted code sequence.

Although the NMI requests are blocked when the CPU enters SMM, they may be enabled through software by
executing an IRET/IRETD instruction. If the SMM handler requires the use of NMI interrupts, it should invoke a
dummy interrupt service routine for the purpose of executing an IRET/IRETD instruction. Once an IRET/IRETD
instruction is executed, NMI interrupt requests are serviced in the same “real mode” manner in which they are
handled outside of SMM.

A4. Critical Sequence of Events During a Page Fault Exception

Section 3.6.4 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System Writer's Guide, and
Section 3.6.4 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, will
be clarified as follows:

If the processor generates a page-fault exception, the operating system must carry out the following operations
in this order:

1. Copy the page from disk storage into physical memory if needed.

2. Load the page address into the page-table or page-directory entry and set its present flag. Other bits, such
as the dirty and accessed bits, may also be set at this time.

3. Invalidate the current page table entry in the TLB (see Section 3.7, “Translation Lookaside Buffers (TLBs)”
for a discussion of TLBs and how to invalidate them).

4. Return from the page fault handler to restart the interrupted program or task.

A5. Performance-Monitoring Counter Issues

The following table replaces Table B-1 of Pentium® Pro Family Developer’s Manual, Volume 3: Operating
Systems Writer’s Guide, and Table A-1 of the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide. The only changes to this new table are enhanced descriptions of the events
counted.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

64

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

Data
Cache
Unit
(DCU)

43H DATA_ MEM_
REFS

00H All loads from any
memory type. All
stores to any memory
type. Each part of a
split is counted
separately. The
internal logic counts
not only external
memory loads and
stores, but also
internal retries.

Note: 80-bit floating-
point accesses are
double counted, since
they are decomposed
into a 16-bit exponent
load and a 64-bit
mantissa load.Memory
accesses are only
counted when they
are actually
performed. E.g., a
load that gets
squashed because a
previous cache miss
is outstanding to the
same address, and
which finally gets
performed, is only
counted once.
Does not include I/O
accesses, or other
nonmemory
accesses.

45H DCU_LINES_I
N

00H Total lines allocated in
the DCU.

46H DCU_M_
LINES_IN

00H Number of M state
lines allocated in the
DCU.

47H DCU_M_
LINES_ OUT

00H Number of M state
lines evicted from the
DCU. This includes
evictions via snoop
HITM, intervention or
replacement.

48H DCU_ MISS_
OUT-STAND-
ING

00H Weighted number of
cycles while a DCU
miss is outstanding,
incremented by the

An access that also
misses the L2 is short-
changed by 2 cycles.
(i.e., if count is N

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

65

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

number of outstanding
cache misses at any
particular time.
Cacheable read
requests only are
considered.
Uncacheable requests
are excluded. Read-
for-ownerships are
counted as well as line
fills, invalidates, and
stores.

cycles, should be N+2
cycles.) Subsequent
loads to the same
cache line will not
result in any additional
counts. Count value
not precise, but still
useful.

Instr-
uction
Fetch
Unit
(IFU)

80H IFU_ IFETCH 00H Number of instruction
fetches, both
cacheable and
noncacheable.
Including UC fetches.

81H IFU_
IFETCH_MIS
S

00H Number of instruction
fetch misses. All
instruction fetches that
do not hit the IFU, i.e.,
that produce memory
requests. Includes UC
accesses.

85H ITLB_ MISS 00H Number of ITLB
misses.

86H IFU_ MEM_
STALL

00H Number of cycles
instruction fetch is
stalled, for any
reason. Includes IFU
cache misses, ITLB
misses, ITLB faults
and other minor stalls.

87H ILD_ STALL 00H Number of cycles that
the instruction length
decoder is stalled.

L2
Cache1

28H L2_ IFETCH MESI
0FH

Number of L2
instruction fetches.
This event indicates
that a normal
instruction fetch was
received by the L2.
The count includes
only L2 cacheable
instruction fetches; it
does not include UC
instruction fetches. It
does not include ITLB
miss accesses.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

66

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

29H L2_LD MESI
0FH

Number of L2 data
loads. This event
indicates that a
normal, unlocked, load
memory access was
received by the L2. It
includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as
UC/WT memory
accesses. It does
include L2 cacheable
TLB miss memory
accesses.

2AH L2_ST MESI
0FH

Number of L2 data
stores. This event
indicates that a
normal, unlocked,
store memory access
was received by the
L2. Specifically, it
indicates that the DCU
sent a read-for-
ownership request to
the L2. It also includes
Invalid to Modified
requests sent by the
DCU to the L2. It
includes only L2
cacheable store
memory accesses; it
does not include I/O
accesses, other
nonmemory
accesses, or memory
accesses like UC/WT
stores. It includes TLB
miss memory
accesses.

24H L2_LINES _IN 00H Number of lines
allocated in the L2.

26H L2_LINES_O
UT

00H Number of lines
removed from the L2
for any reason.

25H L2_M_
LINES_ INM

00H Number of modified
lines allocated in the

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

67

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

L2.

27H L2_M_
LINES_
OUTM

00H Number of modified
lines removed from
the L2 for any reason.

2EH L2_ RQSTS MESI
0FH

Total number of L2
requests.

21H L2_ADS 00H Number of L2 address
strobes.

22H L2_DBUS_BU
SY

00H Number of cycles
during which the L2
cache data bus was
busy.

23H L2_DBUS_BU
SY_ RD

00H Number of cycles
during which the data
bus was busy
transferring read data
from L2 to the
processor.

Exter-
nal Bus
Logic
(EBL)2

62H BUS_ DRDY_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks
during which DRDY#
is asserted.
Essentially, utilization
of the external system
data bus.

Unit Mask = 00H
counts bus clocks
when the processor is
driving DRDY#. Unit
Mask = 20H counts in
processor clocks
when any agent is
driving DRDY#.

63H BUS_ LOCK_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks
during which LOCK#
is asserted on the
external system bus.

Always counts in
processor clocks.

60H BUS_REQ_O
UT-STAND-
ING

00H
(Self)

Number of bus
requests outstanding.
This counter is
incremented by the
number of cacheable
read bus requests
outstanding in any
given cycle.

Counts only DCU full-
line cacheable reads,
not RFOs, writes,
instruction fetches, or
anything else. Counts
“waiting for bus to
complete” (last data
chunk received).

65H BUS_ TRAN_
BRD

00H
(Self)
20H
(Any)

Number of burst read
transactions.

66H BUS_ TRAN_
RFO

00H
(Self)
20H
(Any)

Number of completed
read for ownership
transactions.

67H BUS_ 00H Number of completed

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

68

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

TRANS_WB (Self)
20H
(Any)

write back
transactions.

68H BUS_ TRAN_
IFETCH

00H
(Self)
20H
(Any)

Number of completed
instruction fetch
transactions.

69H BUS_ TRAN_
INVAL

00H
(Self)
20H
(Any)

Number of completed
invalidate
transactions.

6AH BUS_ TRAN_
PWR

00H
(Self)
20H
(Any)

Number of completed
partial write
transactions.

6BH BUS_
TRANS_P

00H
(Self)
20H
(Any)

Number of completed
partial transactions.

6CH BUS_
TRANS_ IO

00H
(Self)
20H
(Any)

Number of completed
I/O transactions.

6DH BUS_ TRAN_
DEF

00H
(Self)
20H
(Any)

Number of completed
deferred transactions.

6EH BUS_ TRAN_
BURST

00H
(Self)
20H
(Any)

Number of completed
burst transactions.

70H BUS_ TRAN_
ANY

00H
(Self)
20H
(Any)

Number of all
completed bus
transactions. Address
bus utilization can be
calculated knowing
the minimum address
bus occupancy.
Includes special
cycles, etc.

6FH BUS_ TRAN_
MEM

00H
(Self)
20H
(Any)

Number of completed
memory transactions.

64H BUS_ DATA_
RCV

00H
(Self)

Number of bus clock
cycles during which
this processor is

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

69

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

receiving data.

61H BUS_BNR_D
RV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the BNR# pin.

7AH BUS_HIT_
DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the HIT# pin.

Includes cycles due to
snoop stalls.

The event counts
correctly, but the BPMi
pins function as
follows based on the
setting of the PC bits
(bit 19 in the
PerfEvtSel0 and
PerfEvtSel1 registers).
If the core clock to bus
clock ratio is 2:1 or
3:1, and a PC bit is
set, the BPMi pins will
be asserted for a
single clock when the
counters overflow. If
the PC bit is clear, the
processor toggles the
BPMi pins when the
counter overflows. If
the clock ratio is not
2:1 or 3:1, the BPMi
pins will not function
for these
performance-
monitoring counter
events.

7BH BUS_ HITM_
DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the HITM# pin.

Includes cycles due to
snoop stalls.

The event counts
correctly, but the BPMi
pins function as
follows based on the
setting of the PC bits
(bit 19 in the
PerfEvtSel0 and
PerfEvtSel1 registers).
If the core clock to bus
clock ratio is 2:1 or
3:1, and a PC bit is
set, the BPMi pins will
be asserted for a
single clock when the
counters overflow. If

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

70

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

the PC bit is clear, the
processor toggles the
BPMi pins when the
counter overflows. If
the clock ratio is not
2:1 or 3:1, the BPMi
pins will not function
for these
performance-
monitoring counter
events.

7EH BUS_
SNOOP_
STALL

00H
(Self)

Number of clock
cycles during which
the bus is snoop
stalled.

Float-
ing
Point
Unit

C1H FLOPS 00H Number of
computational floating-
point operations
retired. Excludes
floating-point
computational
operations that cause
traps or assists.
Includes floating-point
computational
operations executed
by the assist handler.
Includes internal sub-
operations of complex
floating-point
instructions like
transcendentals.
Excludes floating-point
loads and stores.

Counter 0 only

10H FP_COMP_O
PS_ EXE

00H Number of
computational floating-
point operations
executed. The number
of FADD, FSUB,
FCOM, FMULs,
integer MULs and
IMULs, FDIVs,
FPREMs, FSQRTS,
integer DIVs and
IDIVs. Note not the
number of cycles but,
the number of
operations. This event
does not distinguish
an FADD used in the
middle of a

Counter 0 only

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

71

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

transcendental flow
from a separate FADD
instruction.

11H FP_ ASSIST 00H Number of floating-
point exception cases
handled by microcode.

Counter 1 only. This
event includes counts
due to speculative
execution.

12H MUL 00H Number of multiplies.
Note: includes integer
and well FP multiplies
and is speculative.

Counter 1 only

13H DIV 00H Number of divides.
Note: includes integer
and FP multiplies and
is speculative.

Counter 1 only

14H CYCLES_DIV
_ BUSY

00H Number of cycles that
the divider is busy,
and cannot accept
new divides. Note:
includes integer and
FP divides, FPREM,
FPSQRT, etc., and is
speculative.

Counter 0 only

Mem-
ory
Order-
ing

03H LD_ BLOCKS 00H Number of store buffer
blocks. Includes
counts caused by
preceding stores
whose addresses are
unknown, preceding
stores whose
addresses are known
to conflict, but whose
data is unknown and
preceding stores that
conflicts with the load,
but which
incompletely overlap
the load.

04H SB_
DRAINS

00H Number of store buffer
drain cycles.
Incremented during
every cycle the store
buffer is draining.
Draining is caused by
serializing operations
like CPUID,
synchronizing
operations like XCHG,
Interrupt

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

72

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

acknowledgment as
well as other
conditions such as
cache flushing.

05H MIS-ALIGN_
MEM_ REF

00H Number of misaligned
data memory
references.
Incremented by 1
every cycle during
which either the proc
load or store pipeline
dispatches a
misaligned uop.
Counting is performed
if its the first half or
second half, or if it is
blocked, squashed or
misses.
Note in this context
misaligned means
crossing a 64 bit
boundary.

It should be noted that
MISALIGN_MEM_RE
F is only an
approximation, to the
true number of
misaligned memory
references. The value
returned is roughly
proportional to the
number of misaligned
memory accesses,
i.e., the size of the
problem.

In-
struc-
tion De-
coding
and
Retire-
ment

C0H INST_
RETIRED

00H Number of instructions
retired.

A hardware interrupt
received during/after
the last iteration of the
REP STOS flow
causes the counter to
undercount by 1
instruction.

C2H UOPS_
RETIRED

00H Number of UOPs
retired.

D0H INST_
DECOD-ER

00H Number of instructions
decoded.

Inter-
rupts

C8H HW_INT_
RX

00H Number of hardware
interrupts received.

C6H CYCLES_
INT_
MASKED

00H Number of processor
cycles for which
interrupts are
disabled.

C7H CYCLES_
INT_
PENDING_A
ND_
MASKED

00H Number of processor
cycles for which
interrupts are disabled
and interrupts are
pending.

Bran-
ches

C4H BR_INST_RE
TIRED

00H Number of branch
instructions retired.

C5H BR_MISS_
PRED_

00H Number of
mispredicted

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

73

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

RETIRED branches retired.

C9H BR_ TAKEN_
RETIRED

00H Number of taken
branches retired.

CAH BR_MISS_PR
ED_ TAKEN_
RET

00H Number of taken
mispredictions
branches retired.

E0H BR_INST_
DECOD-ED

00H Number of branch
instructions decoded.

E2H BTB_
MISSES

00H Number of branches
that for which the BTB
did not produce a
prediction

E4H BR_ BOGUS 00H Number of bogus
branches.

E6H BA-CLEARS 00H Number of time
BACLEAR is
asserted. This is the
number of times that a
static branch
prediction was made,
where the branch
decoder decided to
make a branch
prediction because the
BTB did not.

Stalls A2H RE-
SOURCE_ST
ALLS

00H Incremented by one
during every cycle that
there is a resource
related stall. Includes
register renaming
buffer entries, memory
buffer entries. Does
not include stalls due
to bus queue full, too
many cache misses,
etc. In addition to
resource related stalls,
this event counts
some other events.
Includes stalls arising
during branch
misprediction
recovery, e.g., if
retirement of the
mispredicted branch is
delayed and stalls
arising while store
buffer is draining from
synchronizing

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

74

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

operations.

D2H PARTIAL_RA
T_
STALLS

00H Number of cycles or
events for partial
stalls. Note Includes
flag partial stalls.

Seg-
ment
Reg-
ister
Loads

06H SEG-MENT_
REG_ LOADS

00H Number of segment
register loads

Clocks 79H CPU_CLK_U
N-HALTED

00H Number of cycles
during which the
processor is not
halted.

MMX™
Unit

B0H MMX_INSTR_
EXEC

00H Number of MMX
Instructions Executed

Available in Intel®
Celeron™, Pentium®

II and Pentium II
Xeon™ processors
only.

Does not account for
MOVQ and MOVD
stores from register to
memory.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the PerfEvtSel0 and

PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction with L2 events to indicate the cache
state or cache states involved. The Pentium® II processor identifies cache states using the “MESI” protocol and
consequently each bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI (FH) should be used to collect data
for all states; UMSK = 0H, for the applicable events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask (UMSK) field
in the PerfEvtSel0 and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in conjunction with the EBL events to
indicate whether the processor should count transactions that are self generated (UMSK[5] = 0) or transactions that
result from any processor on the bus (UMSK[5] = 1).

A6. POP[ESP] with 16-bit Stack Size

In the Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, and the Intel
Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, the section regarding “POP–
Pop a Value from the Stack,” the following note:

“If the ESP register is used as a base register for addressing a destination operand in memory, the POP
instruction computes the effective address of the operand after it increments the ESP register.”

is incomplete, and should read as follows:

“If the ESP register is used as a base register for addressing a destination operand in memory, the POP
instruction computes the effective address of the operand after it increments the ESP register. For the case of a
16-bit stack where ESP wraps to 0h as a result of the POP instruction, the resulting location of the memory write
is processor family specific.”

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

75

In Section 15.12.1 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System Writer’s Guide,
and Section 17.23.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, a new section will be added:

A POP-to-memory instruction, Which U ses the Stack Pointer (ESP) as a Base Register.

For a POP-to-memory instruction that meets the following conditions:

1. The stack segment size is 16-bits,

2. Any 32-bit addressing form with the SIB byte specifying ESP as the base register, and

3. The initial stack pointer is FFFCh(32-bit operand) or FFFEh (16-bit operand) and will wrap around to 0h as a
result of the POP operation.

The result of the memory write is processor family specific. For example, in Pentium II and Pentium Pro
processors the result of the memory write is to SS:0h plus any scaled index and displacement. In Pentium and
i486™ processors, the result of the memory write may be either a stack fault (real mode or protected mode with
stack segment size of 64 Kbytes), or write to SS:10000h plus any scaled index and displacement (protected
mode and stack segment size exceeds 64 Kbytes).

A7. Preventing Caching

Section 11.5.2 of the Pentium® Pro Family Developer's Manual, Volume 3: Operating System Writer’s Guide,
and Section 9.5.2 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
document the procedure to prevent the L1 and L2 caches from performing all caching operations. However, this
procedure differs from that given in Section 11.11.8, “Multiple-Processor Considerations.” The correct procedure
that should be used is as follows:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.)

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached, or set all MTRRs for the uncached
memory type (see the discussion of the TYPE field and the E flag in Section 11.11.2.1, “MTRRdefType
Register”).

The caches must be flushed when the CD flag is cleared to insure system memory coherency. If the caches are
not flushed in step 2, cache hits on reads will still occur and data will be read from valid cache lines.

A8. Paging Must Be Enabled Before Enabling the Page Global Enable
Bit

In Section 2.5 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
and in Section 2.5 of the Pentium Pro Family Developer’s Manual, Volume 3: Operating System Writer’s
Manual, the following line should be added to the text describing the Page Global Enable bit (PGE).

“In addition, the bit must not be enabled before paging is enabled via CR0.PG. Program correctness may be
affected by reversing this sequence and processor performance will be impacted.”

A9. PWRGOOD Inactive Pulse Width

Footnote 8 of Table 13 in the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet,
should read as follows:

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

76

8. When driven inactive or after VCCCORE, VCCL2, and BCLK become stable. PWRGOOD must remain below VIL,max from
Table 7 until all the voltage planes meet the voltage tolerance specifications in Table 6 and BCLK has met the BCLK AC
specifications in Table 10 for at least 10 clock cycles. PWRGOOD must rise glitch-free and monotonically to 2.5 V.

A10. Interrupt Recognition Determines Priority

The interrupt priority documented in Table 5-2 of the Pentium® Pro Family Developer’s Manual, Volume 3:
Operating System Writer’s Manual, and Table 5-2 of the Intel Architecture Software Developer’s Manual, Volume
3: System Programming Guide, reflects the order in which interrupts will be serviced upon simultaneous
recognition by the processor (for example, when multiple interrupts are pending at an instruction boundary).
These tables do not necessarily reflect the order in which interrupts will be recognized by the processor if
received simultaneously at the processor pins.

A11. References to 2-Mbyte Pages S hould Include 4-Mbyte Pages

Generically, “large pages” refers to either 2-Mbyte or 4-Mbyte pages. In Section 3.8 of the Pentium® Pro Family
Developer’s Manual, Volume 3: Operating System Writer’s Manual, and Section 3.8 of the Intel Architecture
Software Developer’s Manual, Volume 3: System Programming Guide, 2-Mbyte pages are often referenced
alone, when the behavior of 4-Mbyte pages is identical; these references should include all large pages.

A12. Modification of Reserved Areas in the SMRAM Saved State Map

If data is incorrectly written to reserved areas of the saved state map, the processor will enter the shutdown
state. This can also occur if invalid state information is saved in the SMRAM (such as if illegal combinations of
bits are written to CR0 or CR4 before an SMI is serviced). CR4 is not distinctly part of the saved state map, as
implied in Section 9.3.1.1 of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System Writer’s
Manual, and Section 11.3.1.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide.

A13. TLB Flush Necessary After PDPE Change

As described in Section 3.7, “Translation Lookaside Buffers (TLBs),” in the Pentium® Pro Family Developer's
Manual, Volume 3: Operating System Writer’s Manual, and Section 3.7 of the Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide, the operating system is required to invalidate the
corresponding entry in the TLB after any change to a page-directory or page-table entry. However, if the physical
address extension (PAE) feature is enabled to use 36-bit addressing, a new table is added to the paging
hierarchy, called the page directory pointer table (as per Section 3.8, “Physical Address Extension”). If an entry
is changed in this table (to point to another page directory), the TLBs must then be flushed by writing to CR3.

A14. Exception Handler Error Code Bit Clarification

Section 5.10 of the Pentium® Pro Family Developer's Manual, Volume 3: Operating System Writer’s Manual, and
Section 5.11 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
describe the bit definitions for the error code pushed onto the stack of the exception handler. The explanation of
the EXT bit 0 will be changed to read as follows: External event (bit 0). When set, indicates that an event
external to the program caused the exception, such as a hardware interrupt.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

77

A15. Propagation of Page Table Entry Changes to Multiple Processors

The Pentium® Pro Family Developer's Manual, Volume 3: Operating System Writer’s Manual, and the Intel
Architecture Software Developer’s Manual, Volume 3: System Programming Guide, describe techniques for
Multiple Processor Management in Chapter 7. The following new section, which addresses TLB management in
MP systems, will be inserted for clarity between Sections 7.2 and 7.3.

7.3 Propagation of Page Table Entry Changes to Multiple Processors

In a multiprocessor system, when one processor changes a page table entry or mapping, the changes must also
be propagated to all of the other processors. This process is also known as “TLB Shootdown.” Propagation may
be done by memory based semaphores and/or interprocessor interrupts between processors. One naive but
algorithmically correct TLB shootdown sequence for the Intel Architecture is:

1. Begin barrier: Stop all processors. Cause all but one to HALT or stop in a spinloop.

2. Let the active processor change the PTE(s).

3. Let all processors invalidate the PTE(s) modified in their TLBs.

4. End barrier: Resume all processors.

Alternate, performance-optimized, TLB shootdown algorithms may be developed, however, care must be taken
by the developers to ensure that:

1. The differing TLB mappings are not actually used on different processors during the update process.

 OR

2. The operating system is prepared to deal with the case where processor(s) are using the stale mapping
during the update process.

A16. Software Initialization Requi rements for FRC Mode

In the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System Writer’s Guide, Section 8.4, and
in the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, Section 8.4, the
following paragraph should be added to the end of each of the sections:

“Systems configured to implement FRC mode must write all of the processors’ internal MSRs to deterministic
values before performing either a read or read-modify-write operation using these registers. The following is a list
of MSRs that are not initialized by the processors’ reset sequences.

1. All fixed and variable MTRRs,

2. All Machine Check Architecture (MCA) status registers,

3. Microcode Update signature register, and

4. All L2 Cache initialization MSRs.”

A17. Switching to Protected Mode While in SMM

Should the System Management Mode (SMM) code developer require a transition to protected mode while in
SMM, a change is required to the sequence of events used to switch to protected mode as documented in
Section 8.8.1 of the Intel Architecture Software Developer's Manual, Volume 3: System Programming Guide.

Items 3 and 4 of this section state:

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

78

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL instruction. (This operation
is typically a far jump or call to the next instruction in the instruction stream.)

Random failures can occur if other instructions exist between steps 3 and 4, and failures will be readily seen in
some situations such as when instructions that reference memory are inserted between steps 3 and 4 above
while in System Management Mode.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

79

SPECIFICATION CHANGES
The Specification Changes listed in this section apply to the Pentium® II Processor at 233 MHz, 266 MHz, 300
MHz, and 333 MHz datasheet, or the Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet
(Order Number 243657). All Specification Changes will be incorporated into a future version of the appropriate
Pentium II processor documentation.

The latest datasheet was published January 1998.

A1. Mixing Steppings in DP Systems

Though Intel recommends using identical steppings of processor silicon in dual processor systems whenever
possible (as this is the only configuration which receives full validation across all of Intel's testing), Intel supports
mixing processor steppings, and does not actively prevent various steppings of the Pentium II processor from
working together in DP systems. However, since Intel cannot validate every possible combination of devices,
each new processor stepping is fully validated only with the same steppings of other processors and the latest
steppings of chipset components.

A requirement for mixed steppings system is that the system designer ensures that the processor with the
lowest feature-set, determined by the CPUID Feature Bytes, is the Bootstrap Processor (BSP). In the event of a
tie in feature-set, the tie will be resolved by selecting the BSP as the processor with the lowest model/stepping
as determined by the CPUID instruction.

The following list and matrix explain the known issues with mixing steppings:

• While Intel has done nothing to prevent different frequency Pentium® II processors within a system from
working together, there may be uncharacterized errata which exist in such configurations. Intel does not
support these configurations. In mixed stepping systems, both processors must be run at an identical
frequency (i.e., the highest frequency acceptable to all components).

• The workarounds for various errata must take all processors into account.

• Errata for all processor steppings present in a system will affect that system, unless worked around.

• Microcode Updates must be properly installed for all processors in the system regardless of stepping.

• FRC mode is not supported using a master and checker pair with different steppings or model numbers.

• Intel DOES NOT recommend mixing ECC and non-ECC processors. However, if mixed, the system BIOS
should disable the ECC on the ECC supported processor to ensure consistent behavior of time-dependent
software, e.g., timing loops.

• When mixing processors with different cacheable address ranges, the BIOS should ensure the system
cacheable range is set to the lowest range supported by all parts, e.g., 512 MB. Addresses above the lowest
cacheable range should not be sent to L2, this is accomplished by properly initializing the MTRRs. The
requirements for initializing the MTRRs are described in the “Extensions to the Pentium® Pro BIOS Writer’s
Guide,” revision 3.3, Section 2.3.1.

• As documented in the “Extentions to the Pentium® Pro BIOS Writer’s Guide,” in a mixed stepping
environment, the BootStrap Processor (BSP) should be the lowest feature processor. Stepping mixing is
permissible only if the BIOS has appropriate code to select the lowest feature BSP processor.

In the following table, “NI” implies that there are currently no known issues associated with mixing these
steppings. An “X” implies that these configurations should not be used together in a system and are not
supported by Intel. A number indicates a known issue, and refers to the numbered note.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

80

DP Platform Population Matrix for the Pentium ® II Processor with 66 MHz System Bus

Pentium  II
Processor
Stepping

266
MHz
C0

300
MHz
C0

233
MHz
C1

266
MHz
C1

300
MHz
C1

266
MHz
dA0

333
MHz
dA0

300
MHz
dA1

333
MHz
dA1

266
MHz
dB0

300
MHz
dB0

333
MHz
dB0

266-MHz
C0

1 X X 1 X 1 X X X 1 X X

300-MHz
C0

X 1 X X 1 X X 1 X X 1 X

233-MHz
C1

X X NI X X X X X X X X X

266-MHz
C1

1 X X NI X NI X X X NI X X

300-MHz
C1

X 1 X X NI X X NI X X NI X

266-MHz
dA0

1 X X NI X NI X X X NI X X

333-MHz
dA0

X X X X X X NI X NI X X NI

300-MHz
dA1

X 1 X X NI X X NI X X NI X

333-MHz
dA1

X X X X X X NI X NI X X NI

266-MHz
dB0

1 X X NI X NI X X X NI X X

300-MHz
dB0

X 1 X X NI X X NI X X NI X

333-MHz
dB0

X X X X X X NI X NI X X NI

NOTE:
1. Errata A16 and A17, as listed in the Pentium® II Processor Specification Update, may be problematic for

DP systems which use Pentium® II processor, model 3 C0 stepping. Please see the Pentium® II Processor
Specification Update for further information.

X = Mixing processors at different frequencies is not supported.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

81

DP Platform Population Matrix for the Pentium ® II Processor with 100 MHz System Bus

Pentium ® II
Processor
Stepping

300
MHz
dA0

350
MHz
dA0

350
MHz
dA1

400
MHz
dA1

350
MHz
dB0

400
MHz
dB0

450
MHz
dB0

350
MHz
dB1

400
MHz
dB1

300 MHz dA0 NI X X X X X X X X

350 MHz dA0 X NI NI X NI X X NI X

350 MHz dA1 X NI NI X NI X X NI X

400 MHz dA1 X X X NI X NI X X NI

350 MHz dB0 X NI NI X NI X X NI X

400 MHz dB0 X X X NI X NI X X NI

450 MHz dB0 X X X X X X NI X X

350 MHz dB1 X NI NI X NI X X NI X

400 MHz dB1 X X X NI X NI X X NI

X = Mixing processors at different frequencies is not supported.

A2. System Bus Timings Changes

In Table 12 and Table 13 of Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet,
the following changes should be made:

Table 12. GTL+ Signal Groups System Bus AC Specifications 1, 2

T# Parameter Min Max Unit Figure Notes

T7: GTL+ Output Valid Delay 1.07 6.37 ns 8 3

T8: GTL+ Input Setup Time 1.96 ns 9 4, 5, 6

T9: GTL+ Input Hold Time 1.53 ns 9 7

T10: RESET# Pulse Width 1.00 ms 12 8

NOTES:

1. Not 100% tested. Specified by design characterization.

2. All AC timings for the GTL+ signals are referenced to the BCLK rising edge at 0.70 V at the processor edge fingers. All
GTL+ signal timings (address bus, data bus, etc.) are referenced at 1.00 V at the processor edge fingers.

3. Valid delay timings for these signals are specified into 50 W to 1.5 V.

4. A minimum of 3 clocks must be specified between two active-to-inactive transitions of TRDY#.

5. RESET# can be asserted (active) asynchronously, but must be deasserted synchronously.

6. Specification is for a minimum 0.40 V swing.

7. Specification is for a maximum 1.0 V swing.

8. After VCCCORE, VCCL2 and BCLK become stable.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

82

Table 13. System Bus AC Specifications (CMOS Signal Group) 1, 2, 3

T# Parameter Min Max Unit Figure Notes

T11: 2.5 V Output Valid Delay 1.00 10.5 ns 8 4

T12: 2.5 V Input Setup Time 4.50 ns 9 5, 6

T13: 2.5 V Input Hold Time 1.50 ns 9 5

T14: 2.5 V Input Pulse Width, except PWRGOOD 2 BCLKs 8 Active and
Inactive states

T14B: LINT[1:0] Input Pulse Width 6 BCLKs 8 7

T15: PWRGOOD Inactive Pulse Width 10 BCLKs 8
13

8

NOTES:
1. Not 100% tested. Specified by design characterization.
2. All AC timings for the CMOS signals are referenced to the BCLK rising edge at 0.7 V at the processor edge fingers. All

CMOS signal timings (address bus, data bus, etc.) are referenced at 1.25 V at the processor edge fingers.
3. These signals may be driven asynchronously, but must be driven synchronously in FRC mode.
4. Valid delay timings for these signals are specified to 2.5 V +5%. See Table 3 for pull-up resistor values.
5. To ensure recognition on a specific clock, the setup and hold times with respect to BCLK must be met.
6. INTR and NMI are only valid during APIC disable mode. LINT[1:0]# are only valid during APIC enabled mode.
7. This specification only applies when the APIC is enabled and the LINT1 or LINT0 pin is configured as an edge triggered

interrupt with fixed delivery, otherwise specification T14 applies.

8. When driven inactive or after VCCCORE, VCCL2 and BCLK become stable.

A3. FRCERR Pin Removed From Specification

The Pentium II processor will not use the FRCERR pin. All references to these pins will be removed from the
specification. These references currently appear in the Intel Architecture Software Developer’s Manual, Volume
3: System Programming Guide, Appendix B. These references also appear in the Pentium® II Processor
Developer’s Manual, Sections 3.2.7, 5.1.14, 7.5, 7.12 and A.1.23. Finally, these references appear in the
Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, Sections 2.8, 2.13, and A.1.23.

A4. New Footnote for PWRGOOD Inactive Pulse Width

In Table 13 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
addition should be made:

Table 13. System Bus AC Specifications (CMOS Signal Group) 1, 2, 3

T# Parameter Min Max Unit Figure Notes

T15: PWRGOOD Inactive Pulse Width 10 BCLKs 8
13

8, 9

Also, the following footnote should be added:

9. If the BCLK signal meets its AC specification within 150 ns of turning on, then the PWRGOOD Inactive Pulse Width
specification (T15) is waived and BCLK may start after PWRGOOD is asserted. PWRGOOD must still remain below
VIL,max until all the voltage planes meet the voltage tolerance specifications.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

83

A5. PICCLK Rise and Fall Times

In Table 15 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
changes should be made:

Table 15. System Bus AC Specifications (APIC Clock and APIC I/O) 1, 2

T# Parameter Min Max Unit Figure Notes

T21: PICCLK Frequency 2.0 33.3 MHz 3

T21B: FRC Mode BCLK to PICCLK Offset 1.0 5.0 ns 10 3

T22: PICCLK Period 30.0 500.0 ns 7

T23: PICCLK High Time 12.0 ns 7

T24: PICCLK Low Time 12.0 ns 7

T25: PICCLK Rise Time 0.25 3.0 ns 7

T26: PICCLK Fall Time 0.25 3.0 ns 7

T27: PICD[1:0] Setup Time 8.5 ns 9 4

T28: PICD[1:0] Hold Time 3.0 ns 9 4

T29: PICD[1:0] Valid Delay 3.0 12.0 ns 8 4, 5, 6

A6. System Bus AC Specifications (Clock)

In Table 10 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
changes should be made:

Table 10. System Bus AC Specifications (Clock)

T# Parameter Min Nom Max Unit Notes

T3: BCLK High Time 4.44 ns @>2.0 V

T4: BCLK Low Time 4.44 ns @<0.5 V

T5: BCLK Rise Time 0.84 2.31 ns (0.5 V–2.0 V)

T6: BCLK Fall Time 0.84 2.31 ns (2.0 V–0.5 V)

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

84

NOTES:
1. All AC timings for the GTL+ signals are referenced to the BCLK rising edge at 0.50 V at the processor edge fingers. This

reference is to account for trace length and capacitance on the processor substrate, allowing the processor core to
receive the signal with a reference at 1.25 V. All GTL+ signal timings (address bus, data bus, etc.) are referenced at
1.00 V at the processor edge fingers.

2. All AC timings for the CMOS signals are referenced to the BCLK rising edge at 0.5 V at the processor edge fingers. This
reference is to account for trace length and capacitance on the processor substrate, allowing the processor core to
receive the signal with a reference at 1.25 V. All CMOS signal timings (compatibility signals, etc.) are referenced at
1.25 V at the processor edge fingers.

3. The internal core clock frequency is derived from the Slot 1 processor system bus clock. The system bus clock to core
clock ratio is determined during initialization as described in Section 2.5. Table 11 shows the supported ratios for each
processor.

4. The BCLK period allows a +0.5 ns tolerance for clock driver variation.
5. The BCLK offset time is the absolute difference needed between the BCLK signal arriving at the Slot 1 processor edge

finger at 0.5 V vs. arriving at the core logic at 1.25 V. The positive offset is needed to account for the delay between the
Slot 1 connector and processor core. The positive offset ensures both the processor core and the core logic receive the
BCLK edge concurrently.

6. See Section 3.1 for Slot 1 processor system bus clock signal quality specifications.
7. Due to the difficulty of accurately measuring clock jitter in a system, it is recommended that a clock driver be used that is

designed to meet the period stability specification into a test load of 10 to 20 pF. This should be measured on the rising
edges of adjacent BCLKs crossing 1.25 V at the processor core pin . The jitter present must be accounted for as a
component of BCLK timing skew between devices.

8. The clock driver’s closed loop jitter bandwidth must be set low to allow any PLL-based device to track the jitter created by
the clock driver. The –20 dB attenuation point, as measured into a 10 to 20 pF load, should be less than 500 kHz. This
specification may be ensured by design characterization and/or measured with a spectrum analyzer.

9. Not 100% tested. Specified by design characterization as a clock driver requirement.

In Table 17 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
changes should be made:

Table 17. BCLK Signal Quality Specifications

T# Parameter Min Nom Max Unit Figure Notes

V1’: BCLK VIL 0.5 V 7

V2’: BCLK VIH 2.0 V 7

In Figure 6 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
changes should be made:

BCLK at

Edge Finger

000807

0.5V

BCLK at
Core Logic

1.25V

T7

Figure 6. BCLK to Core Logic Offset

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24333721.doc

85

In Figure 7 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
changes should be made:

761a

1.7V
1.25V

0.7V

tr

tp

tf

th

tl

CLK

Tr = T5, T25, T34 (Rise Time)
Tf = T6, T26, T35 (Fall Time)
Th = T3, T23, T32 (High Time)
Tl = T4, T24, T33 (Low Time)
Tp = T1, T22, T31 (BLCK, TCK, PCICLK Period)

0.5V*

2.0V*

Figure 7. BCLK*, PICCLK, and TCK Generic Clock Waveform

In Tables 9 and 10 of the Pentium® II Processor at 350 MHz,400 MHz and 450 MHz datasheet, the following
changes should be made:

Table 9. Pentium ® II Processor System Bus AC Specifications (Clock) at the Processor Edge Fingers

T# Parameter Min Nom Max Unit Figure Notes

System Bus Frequency 100.00 MHz All processor core
frequencies 4

T1’: BCLK Period 10.0 6 4, 5, 6

T1B’: SC2422 to Core Logic
BCLK Offset

0.78 ns 6 Absolute Value 7,8

T2’: BCLK Period Stability See Table 10

T3’: BCLK High Time 2.1 ns 6 @>2.0 V 6

T4’: BCLK Low Time 1.97 ns 6 @<0.5 V 6

T5’: BCLK Rise Time 0.88 2.37 ns 6 (0.5 V–2.0 V) 6, 9

T6’: BCLK Fall Time 0.88 2.37 ns 6 (2.0 V–0.5 V) 6, 9

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

86

Table 10. Pentium ® II Processor System Bus AC Specifications (Clock) at Processor Core Pins

T# Parameter Min Nom Max Unit Figure Notes

System Bus Frequency 100.00 MHz All processor core
frequencies 4

T1: BCLK Period 10.0 6 4, 5, 6, 11

T2: BCLK Period Stability ±250 ps 6 6, 8, 9, 11

T3: BCLK High Time 2.6 ns 6 @>2.0 V 6

T4: BCLK Low Time 2.47 ns 6 @<0.5 V 6

T5: BCLK Rise Time 0.38 1.25 ns 6 (0.5 V–2.0 V) 6, 10

T6: BCLK Fall Time 0.38 1.25 ns 6 (2.0 V–0.5 V) 6, 10

A7. Thermal Design Specification

In Table 20 of the Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet, the following
changes should be made:

Table 20. Pentium ® II Processor Thermal Design Specification 1

Processor
Core

Frequency
(MHz)

L2 Cache
Size
(kB)

Max
Processor

Power 2

(W)

Max
Thermal

Plate
Power 3

(W)
Min TPLATE

(°C)
Max TPLATE

(°C)
Min TCOVER

(°C)
Max TCOVER

(°C)

333 5 512 20.6 19.9 5 65 5 75

300 5 512 18.7 18.0 5 65 5 75

300 4 512 43.0 41.4 5 72 5 72

266 5 512 16.8 16.1 5 65 5 75

266 4 512 38.2 37.0 5 75 5 75

233 4 512 34.8 33.6 5 75 5 75

NOTES:
1. These values are specified at nominal VccCORE for the processor core and nominal VccL2 (3.3 V) for the L2 cache.
2. Processor power is 100% of processor core and 100% L2 cache power.
3. Thermal plate power is 100% of the processor core power and a percentage of the L2 cache power.
4. This specification applies to CPU ID 063x.
5. This specification applies to CPU ID 065x.

A8. WC Buffer Eviction Data Ordering

The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, states in Section
9.3.1 that “a completely full WC [Write Combining] buffer will always be propagated as a single burst transaction
with ascending data order.” This statement is incorrect and should be changed to “a completely full WC buffer
will always be propagated as a single burst transaction using any of the valid chunk orders.”

	REVISION HISTORY
	PREFACE
	Specification Update for Pentium ® II Processors
	GENERAL INFORMATION
	Summary Table of Changes

	ERRATA
	DOCUMENTATION CHANGES
	SPECIFICATION CLARIFICATIONS
	SPECIFICATION CHANGES

